Linear programming approach to partially identified econometric models

Andrei Voronin

UCLA

December 16, 2024

The Question

Consider a linear program (LP):

$$
B(\theta) \equiv \min_{Mx \ge c} p'x, \text{ where } \theta = (p, M, c) \in \mathbb{R}^d \times \mathbb{R}^{q \times d} \times \mathbb{R}^q
$$

The value $\theta_0(\mathbb{P})$ is an identified feature of probability measure \mathbb{P} .

We are interested in $B(\mathbb{P}) = B(\theta_0(\mathbb{P}))$.

Key structure:

- $\bigoplus B(\mathbb{P})$ is a measure-dependent linear program
- \bullet All parameters p, M, c are to be estimated

Examples of LP estimation

Conditions in the AICM class result in LPs:

• Blundell et al. [\(2007\)](#page-32-0), Gundersen et al. [\(2012\)](#page-33-0), Siddique [\(2013\)](#page-34-0), De Haan [\(2017\)](#page-32-1), Cygan-Rehm et al. [\(2017\)](#page-32-2), among others.

Example 1 (MIV in Manski and Pepper [\(2000\)](#page-33-1)) $\mathbb{E}[Y(t)|Z=z]$ *is non-decreasing in* $z \in \mathcal{Z}$ *for each* $t \in \mathcal{T}$ *.*

Example 2 (Roy model in Lafférs [\(2019\)](#page-33-2))

For each $t \in \mathcal{T}$, the individual's choice is, on average, optimal $\mathbb{E}[Y(t)|T = t, Z = z] = \max_{d \in \mathcal{T}} \mathbb{E}[Y(d)|T = t, Z = z].$

LP often appears outside of AICM class:

• Mogstad et al. [\(2018\)](#page-34-1), Syrgkanis et al. [\(2021\)](#page-34-2), Andrews et al. [\(2023\)](#page-32-3) among others, see Kline and Tamer [\(2023\)](#page-33-3) for a review.

Figure: $b < 0$, $B(b) = 0$

Figure: $b < 0$, $B(b) = 0$

Figure: $b = 0, B(b) = -1$ **Key point:** $B(\cdot)$ is discontinuous, $B(b) = -1$ { $b \ge 0$ }.

Suppose we estimate b as $b_n = n^{-1} \sum_{i=1}^n U_i$ with $U_i \sim U[-1+2b;1]$ i.i.d.:

Figure: Comparison of estimators for two measures with $b = -0.02$ and $b = 0$, left to right. Average values over 400 simulations.

Aside: At $b = 0$ if intercept is noisy $B(b_n)$ does not exist w.p. $1/2 \forall n \in \mathbb{N}$

Estimation

- Develop the first generally \sqrt{n} -consistent estimator of $B(\mathbb{P})$
- Develop exact, computationally efficient inference

Estimation

- Develop the first generally \sqrt{n} -consistent estimator of $B(\mathbb{P})$
- Develop exact, computationally efficient inference
- Show that ∄ uniformly consistent estimator absent further conditions
- Formulate the weakest condition (\mathcal{P}^{δ}) for its existence
- Show uniformity of our estimator over \mathcal{P}^{δ}

Estimation

- Develop the first generally \sqrt{n} -consistent estimator of $B(\mathbb{P})$
- Develop exact, computationally efficient inference
- Show that ∄ uniformly consistent estimator absent further conditions
- Formulate the weakest condition (\mathcal{P}^{δ}) for its existence
- Show uniformity of our estimator over \mathcal{P}^{δ}

Identification via LP (not in this talk)

• Provide a general identification result for 'AICM': LP sharp bounds

Estimation

- Develop the first generally \sqrt{n} -consistent estimator of $B(\mathbb{P})$
- Develop exact, computationally efficient inference
- Show that ∄ uniformly consistent estimator absent further conditions
- Formulate the weakest condition (\mathcal{P}^{δ}) for its existence
- Show uniformity of our estimator over \mathcal{P}^{δ}

Identification via LP (not in this talk)

• Provide a general identification result for 'AICM': LP sharp bounds

Application (not in this talk)

- Introduce a new condition (cMIV) that tightens classical bounds
- Develop a test for cMIV
- Apply results to estimating returns to education in Colombia
- cMIV yields a lower bound of 5.91% for the return to college education, classical conditions do not produce an informative bound

Problematic scenarios

Define
$$
\Theta_I(\theta) \equiv \underbrace{\{x \in \mathbb{R}^d | Mx \ge c\}}_{\text{Identified set}}
$$
 and $\mathcal{A}(\theta) \equiv \underset{\Theta_I(\theta)}{\arg \min} p'x$

Definition 1 Slater's condition (SC) asserts that $Relint(\Theta_I(\theta_0)) \neq \emptyset$. **Intuition**: SC rules out point-identification along a perturbed direction

Problematic scenarios

Define
$$
\Theta_I(\theta) \equiv \underbrace{\{x \in \mathbb{R}^d | Mx \ge c\}}_{\text{Identified set}}
$$
 and $\mathcal{A}(\theta) \equiv \underset{\Theta_I(\theta)}{\arg \min} p'x$

Definition 1 Slater's condition (SC) asserts that $Relint(\Theta_I(\theta_0)) \neq \emptyset$. **Intuition**: SC rules out point-identification along a perturbed direction

Definition 2

Linear independence constraint qualification (LICQ) asserts that the submatrix of binding constraints at any $x \in \mathcal{A}(\theta_0)$ is full-rank. **Intuition**: LICQ rules out over-identification at an optimum

UCLA

Problematic scenarios

Define
$$
\Theta_I(\theta) \equiv \underbrace{\{x \in \mathbb{R}^d | Mx \ge c\}}_{\text{Identified set}}
$$
 and $\mathcal{A}(\theta) \equiv \underset{\Theta_I(\theta)}{\arg \min} p'x$

Definition 1 Slater's condition (SC) asserts that $Relint(\Theta_I(\theta_0)) \neq \emptyset$. **Intuition**: SC rules out point-identification along a perturbed direction

Definition 2

Linear independence constraint qualification (LICQ) asserts that the submatrix of binding constraints at any $x \in \mathcal{A}(\theta_0)$ is full-rank. **Intuition**: LICQ rules out over-identification at an optimum

Definition 3 The notion of flat faces refers to the situation where $|\mathcal{A}(\theta_0)| \neq 1$.

Pointwise assumptions

Assumption (A0: Pointwise setup)

Suppose that at the fixed true parameter θ_0 :

- $\bigoplus_{I} \left(\theta_{0} \right) \neq \emptyset$ and $\Theta_{I}(\theta_{0}) \subseteq \mathcal{X}$ for a known compact \mathcal{X} | {z } *The model cannot be rejected*
- $\mathbf{\hat{u}}$ *There is a* \sqrt{n} *-consistent estimator* $\hat{\theta}_n$ *for* θ_0

Key: we do not assume SC, LICQ or no-flat-faces - unlike previous work.

Penalty-function estimator

Fix a $w \in \mathbb{R}_{++}^q$ and introduce the following:

$$
\begin{aligned} L(x;\theta,w) &\equiv p'x + \underbrace{w'(c-Mx)^+}_{\text{Penalty term}} \\ \tilde{B}(\theta;w) &\equiv \min_{x\in\mathcal{X}} L(x;\theta,w), \quad \tilde{\mathcal{A}}(\theta;w) \equiv \underset{x\in\mathcal{X}}{\arg\min}\ L(x;\theta,w) \end{aligned}
$$

Lemma 1

If $\exists \lambda^*$ - KKT vector in the true LP such that $w > \lambda^*$, then:

- **1** optimal values coincide: $B(\theta_0) = \tilde{B}(\theta_0; w)$
- **2** *solutions coincide:* $A(\theta_0) = \tilde{A}(\theta_0; w)$

[Proof](#page-41-0)

• In general, $\tilde{B}(\theta_0; w) \leq B(\theta_0)$

Consistency of penalty-function estimator

Theorem 1 *For any* $w_n \to \infty$ w.p. 1 *as. and* $\frac{w_n}{\sqrt{n}}$ $\stackrel{p}{\rightarrow} 0$, we have:

$$
|\tilde{B}(\hat{\theta}_n; w_n \iota) - B(\theta_0)| = O_p\left(\frac{w_n}{\sqrt{n}}\right)
$$

Comments:

- At a fixed measure eventually $w_n > \max_j \lambda_j^*$ for some λ^*
- Intuitively, $\frac{w_n}{\sqrt{n}}$ rate from $w_n \iota'(\hat{c}_n \hat{M}_n x)^+ = O_p(\frac{w_n}{\sqrt{n}})$ for $x \in \Theta_I(\theta_0)$.
- We can do better by dropping that term.

√ n**-consistency of the debiased estimator**

Theorem 2 *Suppose* $\mathcal{A}(\theta_0) \subseteq Int(\mathcal{X})$ *. For any* $w_n \to \infty$ with $\frac{w_n}{\sqrt{n}}$ p −→ 0*:*

$$
\sup_{\tilde{\mathcal{A}}(\hat{\theta}_n; w_n)} |p'x - B(\theta_0)| = O_p\left(\frac{1}{\sqrt{n}}\right)
$$

Intuition:

1 The (biased) estimator selects a correct 'vertex' w.p. approaching 1 2 Once we get the 'vertex', can drop the penalty

A \sqrt{n} –consistent debiased estimator:

$$
\hat{B}(\hat{\theta}_n; w_n) \equiv \sup_{\tilde{\mathcal{A}}(\hat{\theta}_n; w_n)} p'x
$$

Sample splitting for asymptotic normality

Split the data $\mathcal{D}_n = \mathcal{D}_n^{(1)} \cup \mathcal{D}_n^{(2)}$ randomly, in proportion $\gamma \in (0;1)$

0 On \mathcal{D}_n^1 , estimate $\hat{\theta}_n^{(1)}$, and:

$$
\hat{x} \in \underset{\tilde{\mathcal{A}}(\hat{\theta}_n^{(1)}; w_n)}{\arg \max} \; p'x, \quad \hat{A} \equiv \{j \in [q] : \hat{M}^{(1)}'_{j}\hat{x} = 0\}
$$
\n
$$
\hat{v} \in \underset{v \in \mathbb{R}^{|\tilde{A}|}:||v|| \le \overline{v}}{\arg \min} \; ||p - \hat{M}^{(1)}'_{\tilde{A}}v||^2
$$

2 On $\mathcal{D}_n^{(2)}$, simply compute $\hat{\theta}_n^{(2)} = (\hat{M}_n^{(2)}, \hat{c}_n^{(2)})$

Exact inference

Theorem 3 *Suppose* $\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\rightarrow} \mathcal{N}(0, \Sigma)$, and we have an estimator $\hat{\Sigma}_n \stackrel{p}{\rightarrow} \Sigma < \infty$. *Under a non-degeneracy condition, for any* $w_n \to \infty$ *with* $w_n = o_p(\sqrt{n})$ *, for Under a non-degeneracy condition, for any* $w_n \to \infty$ *with* $w_n = o_p(\sqrt{n})$ *, for any* $\alpha > 0$ *:*

$$
\mathbb{P}\left[\frac{\sqrt{n_2}}{\sigma(\hat{A}, \hat{v}, \hat{x}, \hat{\Sigma}_n)} \left(\hat{v}'(\hat{c}^{(2)}_{\hat{A}} - \hat{M}^{(2)}_{\hat{A}}\hat{x}) + p'\hat{x} - B(\theta_0) \right) \leq z_{1-\alpha} \right] \to 1 - \alpha,
$$

Comments:

- Closed-form for $\sigma(\cdot) \rightarrow$ no resampling needed
- If explicit Σ_n is not available, can bootstrap it from $\hat{\theta}_n$

Uniform asymptotic theory

Lemma 2

Suppose the estimand $V : (\mathcal{P}, || \cdot ||_{TV}) \rightarrow (\mathbb{R}, || \cdot ||)$ *is discontinuous at* $\mathbb{P}_0\in\mathcal{P}.$ Then, there exists no uniformly consistent estimator $\hat{V}_n=\hat{V}_n(X),$ *which is a sequence of measurable functions of the data* $X \sim \mathbb{P}^n$. Moreover, *if* $\delta > 0$ *is the jump at* \mathbb{P}_0 *, then:*

$$
\inf_{\hat{V}_n} \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}_{\mathbb{P}}[||V(\mathbb{P}) - \hat{V}_n(X(\mathbb{P}^n))||] \ge \frac{\delta}{2}, \quad \forall n \in \mathbb{N},
$$

where infinum is taken over all measurable functions of the data.

Proo

• The Lemma is proven via Le Cam's binary method.

Assumption (U0: Uniform setup)

The functional $\theta_0(\cdot)$ *and the set of measures* $\mathcal P$ *are such that:*

- \mathbf{D} $\theta_0: (\mathcal{P},||\cdot||_{TV}) \to (\mathbb{R}^S, ||\cdot||_2)$ is a continuous functional
- $\mathbf{\hat{\theta}} \theta_0(\mathcal{P}) = \{y \in \mathbb{R}^S \text{ s.t. } \Theta_I(y) \neq \emptyset, \Theta_I(y) \subseteq \mathcal{X}\}\$
- We have seen that $B(\theta)$ is discontinuous
- So, under U0, $B \circ \theta_0$ is discontinuous

Theorem 4 *Under U0, there exists no uniformly consistent estimator of* B(P)*.*

• Is there a weak condition, under which it exists?

The δ**-condition**

Theorem 5 *Under A0,* $\exists x^* \in \mathcal{A}(\theta_0)$, the associated KKT vector λ^* and a subset of *binding inequalities* $J^* \subseteq \{1, \ldots, q\}$ with $|J^*| = \mathsf{rk}(M_{J^*}) = d$, such that:

$$
x^* = M_{J^*}^{-1} c_{J^*}
$$

$$
\lambda_{J^*}^* = M_{J^*}^{-1} p
$$

$$
\lambda_i^* = 0, \ i \notin J^*
$$

Assumption (U1: δ -condition)

For some $\delta > 0$, the collection \mathcal{P}^{δ} and the functional $\theta_0(\cdot)$ satisfy $\forall \mathbb{P} \in \mathcal{P}^{\delta}$.

 $\max_{J^*} \sigma_d(M_{J^*}(\theta_0(\mathbb{P}))) > \delta,$

where J [∗] *are defined above.*

Geometry of δ**-condition**

Figure: Optimal vertex $J = \{1, 2\}$

LICQ holds, δ -condition holds with $\delta = \sigma_2(M_{\{1,2\}}) \gg 0$

Geometry of δ**-condition**

Figure: Optimal vertex $J = \{1, 2, 3\}$

LICQ fails, δ -condition holds with $\delta = \sigma_2(M_{\{1,2\}}) \gg 0$

δ**-condition in the baseline example**

(c) Set of b satisfying a δ -condition

Properties of the δ**-condition**

The usual uniform conditions are:

$$
\begin{aligned} \mathcal{P}^{Slater;\varepsilon} &\equiv \{ \mathbb{P} \in \mathcal{P} | \text{Volume}(\Theta_I(\theta(\mathbb{P}))) > \varepsilon \} \\ \mathcal{P}^{LICQ;\varepsilon} &\equiv \{ \mathbb{P} \in \mathcal{P} | \mathcal{M}(v) \in \mathbb{R}^{d \times d}, \sigma_d(\mathcal{M}(v)) > \varepsilon \; \forall v \in \mathcal{V}(\mathbb{P}) \}, \end{aligned}
$$

V– all vertices of Θ_I , $\mathcal{M}(\cdot)$ – matrix of binding constraints

- $\mathbf{1}_{n\to\infty}\mathcal{P}^{Slater;1/n}\cup\mathcal{P}^{LICQ;1/n}\subset\mathcal{P}=\lim_{n\to\infty}\mathcal{P}^{1/n},$ the inclusion is strict
- $\bm{2}$ $\mathcal{P}^{LICQ;\varepsilon}\subset\mathcal{P}^{\delta}$ for any $\delta\leq\varepsilon,$ the inclusion is strict
- $\bf{3}$ If M is normalized, $\forall \varepsilon > 0, \, \exists \ \delta \ \text{s.t.} \ \mathcal{P}^{Slater;\varepsilon} \subset \mathcal{P}^{\delta},$ the inclusion is strict

\tilde{B}_n is uniformly consistent over \mathcal{P}^δ

Theorem 6

 $Suppose: i) \exists \delta > 0$: $\mathcal{P}^* \subseteq \mathcal{P}^{\delta}$, *ii*) $\hat{\theta}_n(\cdot) \to \theta_0(\cdot)$ at rate \sqrt{n} *uniformly. Setting* $w_n = ||\hat{p}_n||\delta^{-1} + \zeta$ *for any globally fixed* $\zeta > 0$ *yields,* $\forall \varepsilon > 0$ *and* $r_n \ll \sqrt{n}$.

$$
\lim_{n \to \infty} \sup_{\mathbb{P} \in \mathcal{P}^*} \mathbb{P}[\sup_{m \ge n} r_m | \tilde{B}(\hat{\theta}_m, w_m) - B(\theta_0(\mathbb{P}))| \ge \varepsilon] = 0.
$$
 (1)

Moreover, [\(1\)](#page-27-0) *holds at rate* $\frac{\sqrt{n}}{n}$ $\frac{\sqrt{n}}{w_n}$ for any $w_n\to\infty$ with $\frac{w_n}{\sqrt{n}}\to 0$.

Uniform consistency

Put differently, for any $w_n\to\infty$ with $\frac{w_n}{\sqrt{n}}\to 0,$ for \tilde{B}_n there is:

$$
\frac{\sqrt{n}}{w_n} \text{ uniform consistency under U1:} \sup_{\delta > 0} \limsup_{n \to \infty} \sup_{\mathbb{P} \in \mathcal{P}^{\delta}} \mathbb{P}[\dots] = 0
$$
\nNo uniform consistency under U0:

\n
$$
\lim_{n \to \infty} \sup_{\delta > 0} \sup_{\mathbb{P} \in \mathcal{P}^{\delta}} \mathbb{P}[\dots] \neq 0
$$
\n
$$
\sum_{\substack{\text{supp} \\ \text{supp} \\ \mathbb{P} \in \mathcal{P}}} \mathbb{P}[\dots]
$$

Comments:

- The debiased estimator converges at least $\frac{\sqrt{n}}{m}$ $\frac{\sqrt{n}}{w_n}$ uniformly over \mathcal{P}^δ (*)
- \hat{B}_n actual uniform rate appears to be \sqrt{n} , unless SC, LICQ, NFF all fail

Simulations

Figure: Left: $b = -0.02$ ($\alpha = 0.12$) & SC holds; **Right**: $b = 0$ ($\alpha = 0.75$) & SC fails. Parameters: $N_{sim} = 400$, $w_n = \delta_{0.15}^{-1} \frac{\ln \ln n}{\ln \ln 100}$, $\sqrt{\kappa_n} = \ln \ln n$

min x s.t. : $y \ge (1 + b_n)x + \kappa_n, y \le (1 + \zeta_n)x + \zeta_n, x \in [-1 - \kappa_n; 1 + \kappa_n]$ x,y $b_n=b+{\overline{U^b}}, \kappa_n={\overline{U^{\kappa}}}, \zeta_n={\overline{U^{\zeta}}}$ with $U_i^t\sim U[-0.5;0.5]$ i.i.d. across i,t

(a) $b = 0$

(b) $b = -0.1$ (angle 3°)

Thank you for your attention! avoronin@ucla.edu

I am grateful to Andres Santos, Denis Chetverikov, Bulat Gafarov, Zhipeng Liao, Jinyong Hahn, Rosa Matzkin, Tim Armstrong, Shuyang Sheng, Kirill Ponomarev, Manu Navjeevan and Daniel Ober-Reynolds as well as all the participants of the 2024 California Econometrics Conference for the valuable discussions and criticisms. All mistakes are mine.

References I

Andrews, I., Roth, J., & Pakes, A. (2023).Inference for Linear Conditional Moment Inequalities. *The Review of Economic Studies*, *90*(6), 2763–2791. <https://doi.org/10.1093/restud/rdad004> Bertsekas, D. P. (1975).Necessary and sufficient conditions for a penalty method to be exact. *Mathematical programming*, *9*(1), 87–99. Blundell, R., Gosling, A., Ichimura, H., & Meghir, C. (2007).Changes in the distribution of male and female wages accounting for employment composition using bounds. *Econometrica*, *75*(2), 323–363. Chetverikov, D. (2019).Testing regression monotonicity in econometric models. *Econometric Theory*, *35*(4), 729–776. <https://doi.org/10.1017/S0266466618000282> Cygan-Rehm, K., Kuehnle, D., & Oberfichtner, M. (2017).Bounding the causal effect of unemployment on mental health: Nonparametric evidence from four countries. *Health Economics*, *26*(12), 1844–1861. <https://doi.org/https://doi.org/10.1002/hec.3510> De Haan, M. (2017).The effect of additional funds for low-ability pupils: A non-parametric bounds analysis. *The Economic Journal*, *127*(599), 177–198.

Gundersen, C., Kreider, B., & Pepper, J. (2012).The impact of the national school lunch program on child health: A nonparametric bounds analysis [Annals Issue on "Identification and Decisions", in Honor of Chuck Manski's 60th Birthday]. *Journal of Econometrics*, *166*(1), 79–91.

<https://doi.org/https://doi.org/10.1016/j.jeconom.2011.06.007>

- Kline, B., & Tamer, E. (2023).Recent developments in partial identification. *Annual Review of Economics*, *15*(Volume 15, 2023), 125–150. [https://doi.org/https://doi.org/10.1146/annurev-economics-051520-](https://doi.org/https://doi.org/10.1146/annurev-economics-051520-021124) [021124](https://doi.org/https://doi.org/10.1146/annurev-economics-051520-021124)
- Lafférs, L. (2019). Bounding average treatment effects using linear programming. *Empirical economics*, *57*, 727–767.
- Manski, C. F., & Pepper, J. V. (2000).Monotone instrumental variables: With an application to the returns to schooling. *Econometrica*, *68*(4), 997–1010. Retrieved November 10, 2023, from <http://www.jstor.org/stable/2999533>

Mogstad, M., Santos, A., & Torgovitsky, A. (2018).Using instrumental variables for inference about policy relevant treatment parameters. *Econometrica*, *86*(5), 1589–1619. Rockafellar, R. T. (1970). *Convex analysis*. Princeton University Press. <https://doi.org/doi:10.1515/9781400873173> Siddique, Z. (2013).Partially identified treatment effects under imperfect compliance: The case of domestic violence. *Journal of the American Statistical Association*, *108*(502), 504–513. <https://doi.org/10.1080/01621459.2013.779836> Syrgkanis, V., Tamer, E., & Ziani, J. (2021).Inference on auctions with weak assumptions on information. *arXiv preprint arXiv:1710.03830*. Tao, T., & Vu, V. (2010).Random matrices: The distribution of the smallest singular values. *Geometric And Functional Analysis*, *20*, 260–297. Wainwright, M. J. (2019). *High-dimensional statistics: A non-asymptotic viewpoint* (Vol. 48). Cambridge university press.

Identification result in this paper

Outcome: $Y \in \mathcal{Y} \subseteq \mathbb{R}$, treatment: $T \in \mathcal{T} \subseteq \mathbb{R}$, covariates: $Z \in \mathcal{Z} \subseteq \mathbb{R}^{d_Z}$

 $\mathcal{T} = \mathcal{O} \sqcup \mathcal{U}$: if $T \in \mathcal{U}$, Y - unobserved. For the talk, $\mathcal{T} = \mathcal{O}$.

$$
Y=\sum_{t\in\mathcal{T}}\mathbb{1}\{T=t\}Y(t)
$$

Potential outcomes $\mathbb{Y} \equiv (Y(t))_{t \in \mathcal{T}} \in \mathbb{R}^{N_T}$

 \rightarrow conditional moments $m(P) \equiv (\mathbb{E}_P[\mathbb{Y}|T=d,Z=z])_{d\in\mathcal{T},z\in\mathcal{Z}}$

Target: $\beta^*(\mathbb{P}) = \mu^*(\mathbb{P})' m(\mathbb{P})$ for identified μ^* (e.g. ATE)

Identification result in this paper

For identified matrices: A^*, \tilde{A} , vectors: b^*, \tilde{b} , the model is:

 $\mathcal{P}^* \equiv \{ P \in \mathcal{P} | A^*(P)m(P) + b^*(P) \geq 0, \ \tilde{A}(P) \mathbb{Y} + \tilde{b}(P) \geq 0 \ P\text{-a.s.} \}$

Split $m(\cdot)$ into identified \overline{x} and counterfactual moments x:

$$
\overline{x} \equiv (\mathbb{E}[Y(t)|T=t, Z=z])_{z,t}, \quad x \equiv (\mathbb{E}[Y(t)|T=d, Z=z])_{z, t \neq d}
$$

- A^*, \tilde{A} and $F_{T,Z} \rightarrow$ identified M
- b^*, \tilde{b} and $F_{T,Z} \rightarrow$ identified c
- μ^* and $F_{T,Z} \to$ identified $p, \, \overline{p}$

For any M^*, b^* and relevant \tilde{M}, \tilde{b} , sharp identified set for β^* is:

$$
\mathcal{B}^* = \{ \beta \in \mathbb{R} \vert \inf_{Mx \ge c} p'x \le \beta - \overline{p}'\overline{x} \le \sup_{Mx \ge c} p'x \}
$$

Returns to education in Colombia

- **Data:** 664633 observations from Colombian labor force
- **Variables**: Saber test results (Z) , average wages (Y) , schooling (S)
- Split Z into deciles
- Education levels T : primary, secondary, high school and university

- **AICM**: (c)MIV + bounded outcomes + MTR $(Y(t') \ge Y(t))$ if $t' > t$)
- **Result:** university education \rightarrow average wage \uparrow by $> 5.91\%$

Testing cMIV

(a) Estimated conditional moments

(b) Results of the monotonicity test. Columns: 2. estimated Chetverikov [\(2019\)](#page-32-4) test-statistic; 3. 10% critical values, corresponding to 2.6% individual critical value; 3. p -value against the individual null. The overall p -value is 29% .

Selecting a reasonable δ

Impossible to estimate, but can select a reasonable "conservative" δ

Theorem 7 (Tao and Vu [\(2010\)](#page-34-3))

Let Ξ_d be a sequence of $d \times d$ *matrices with* $[\Xi_d]_{ii} \sim \xi_{ii}$, independently $\arccos i,j$ where ξ_{ij} are such that $\mathbb{E}[\xi]=0$, $Var(\xi)=1$ and $\mathbb{E}[|\xi|^{C_0}]<\infty$ for *some sufficiently large* C_0 , then:

$$
\sqrt{d}\sigma_d(\Xi_d) \stackrel{d}{\to} \Pi \tag{2}
$$

- The distribution of ξ_{ij} is any: possibly discrete, not identical.
- Normalize the matrix: $||\hat{M}_{\cdot j}|| = 1$ for each row, or $\hat{M} \rightarrow \hat{M}/\hat{\sigma}(\hat{M})$ • Pick $\delta =$ $\left(\sqrt{1-2\ln(1-\alpha)}-1\right)^2$ $\frac{\alpha}{\sqrt{d}}$ - the α -quantile of Π (we use $\alpha = 0.2$) • Set $w_n = ||\hat{p}_n|| \delta^{-1} \frac{\kappa_n}{\kappa_{100}}$ for some $\kappa_n \to \infty$, $\kappa_n = o(\sqrt{n})$.

Proof of Lemma 2

Proof.

Let $\delta > 0$ be a jump at \mathbb{P}_0 . Construct a sequence $\{\mathbb{P}_n\} \subset \mathcal{P}$ such that for some $0 < \vartheta < 1$:

$$
||\mathbb{P}_0 - \mathbb{P}_n||_{TV} < \vartheta n^{-1} \tag{3}
$$

While $||V(\mathbb{P}_0) - V(\mathbb{P}_n)|| > \delta$. Recall that:

$$
||\mathbb{P}_0^n - \mathbb{P}_n^n||_{TV} \le n||\mathbb{P}_0 - \mathbb{P}_n||_{TV}
$$
\n(4)

It follows that:

$$
||\mathbb{P}_0^n - \mathbb{P}_n^n||_{TV} \le \vartheta \tag{5}
$$

Using the binary Le Cam's method¹, one obtains $\forall n$:

$$
\inf_{\hat{V}_n} \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}_{\mathbb{P}}[||V(\mathbb{P}) - \hat{V}_n(X(\mathbb{P}^n))||] \ge \frac{\delta(1-\vartheta)}{2} \tag{6}
$$

Recalling that $0 < \vartheta < 1$ and δ were chosen arbitrarily and taking supremum over δ as well as sending $\vartheta \to 0$ yields the result.

If w in the linear penalty function is component-wise larger than the KKT vector λ at a local minimum of the original problem, then this local minimum is also a local minimum of the penalized unconstrained problem (see Bertsekas [\(1975\)](#page-32-5)). The claim then follows from the fact that any local minimum of a convex program is also global.

Suppose that $(\overline{\lambda}, w)$ are the KKT vector and the penalty vector that satisfy Assumption A0 and \bar{x} is the associated optimum of the initial LP and $\overline{B}\equiv p'\overline{x}.$ Note that one direction of ii) is trivial, since any \tilde{x} that is optimal in the initial problem yields the same value in the penalized problem.

For another direction, suppose x^* is a local (global) minimum of the penalized problem. If x^* is feasible, it is also an optimum of the initial problem. Suppose it is not feasible. By the assumption on $(w, \overline{\lambda})$:

$$
p'x^* + w'(c - M'x^*)^+ > p'x^* + \overline{\lambda}'(c - M'x^*)
$$
 (7)

The definition of a KKT vector in Rockafellar [\(1970\)](#page-34-4) also requires that:

$$
\overline{B} = \inf_{x \in \mathbb{R}^{N(S-1)}} p'x + \overline{\lambda}'(c - M'x) \le p'x^* + \overline{\lambda}'(c - M'x^*)
$$
(8)

Therefore,

$$
\overline{B} = p'x^* + w'(c - M'x^*) > p'x^* + \overline{\lambda}'(c - M'x^*) \ge \overline{B}
$$
 (9)

Which yields a contradiction, so there can be no such x^* . Thus, the sets of optimal solutions coincide. [Return](#page-15-0)

Three forms of cMIV

Consider $Z \in \mathbb{R}$ and bounded outcomes $Y(t) \in [K_0, K_1]$ a.s. Assumption (cMIV-s)

Suppose that for any $t \in \mathcal{T}$, $A \subseteq \mathcal{T}$ and $z, z' \in \mathcal{Z}$ *s.t.* $z' > z$ we have:

$$
\mathbb{E}[Y(t)|T \in A, Z = z'] \ge \mathbb{E}[Y(t)|T \in A, Z = z]
$$
\n(10)

Assumption (cMIV-w)

Suppose MIV holds and for any $t \in \mathcal{T}$ *and* $z, z' \in \mathcal{Z}$ *s.t.* $z' > z$ *we have:*

$$
\left\{\mathbb{E}[Y(t)|T \neq t, Z = z'] \geq \mathbb{E}[Y(t)|T \neq t, Z = z]\right\}
$$
\n(11)

Assumption (cMIV-p)

Suppose MIV holds and for any $t \in \mathcal{T}, d \in \mathcal{T} \setminus \{t\}$ and $z, z' \in \mathcal{Z}$ *s.t.* $z' > z$ *we have:*

$$
\mathbb{E}[Y(t)|T=d, Z=z] - \text{ monotone} \tag{12}
$$

cMIV bounds are tighter than MIV

Figure: Sharp bounds for a [DGP](#page-50-0) satisfying cMIV

Sharp bounds:

Let $Y(t)$ be the individual's wage, $T \in \{0, 1\}$ - college degree, and Z - ability (e.g. IQ).

MIV assumption implies that:

• 'Smarter' individuals can do better both with and without a college degree on average: $\mathbb{E}[Y(t)|Z=z]$ - monotone

cMIV additionally assumes:

- Among those who have a college degree, a 'smarter' individual could have done relatively better than their counterpart if both did not have it: $\mathbb{E}[Y(0)|Z=z,T=1]$ - monotone
- Among those who do not have a college degree, a 'smarter' individual could have done relatively better than their counterpart if both had it: $\mathbb{E}[Y(1)|Z=z,T=0]$ - monotone

Example: education selection (1)

Suppose there is an innate '**effort**' level η s.t. $\eta \perp Z$. Roy model:

$$
Y(t) = \beta_0(t) + \beta_1(t)Z + \beta_2(t)\eta + \varepsilon(t)
$$
\n(13)

$$
T = \mathbb{1}\{\mathbb{E}[Y(1) - Y(0)|Z, \eta] + \nu \ge 0\}
$$
\n(14)

where $\varepsilon(t) \perp \!\!\! \perp (Z,T,\eta)$ and $\nu \perp \!\!\! \perp (Z,\eta,\varepsilon(\cdot)).$

Let $\delta_z \equiv \beta_1(1) - \beta_1(0)$ and $\delta_n \equiv \beta_2(1) - \beta_2(0)$ - the differential effects of Z, η . **MIV**:

$$
\beta_1(t) \ge 0, \ t = 0, 1 \tag{15}
$$

cMIV: MIV and

$$
\underbrace{\beta_1(0)z}_{\text{direct effect}} + \underbrace{\beta_2(0)\mathbb{E}[\eta]\delta_z z + \delta_{\eta}\eta + \tilde{\nu} \geq 0}_{\text{selection given }T=1} - \underbrace{\beta_1(1)z}_{\text{direction given }T=1} + \underbrace{\beta_2(1)\mathbb{E}[\eta]\delta_z z + \delta_{\eta}\eta + \tilde{\nu} \leq 0}_{\text{selection given }T=0} - \text{increasing}
$$
\n(17)

Example: education selection (2)

cMIV: [\(15\)](#page-46-0) and

$$
\underbrace{\beta_1(0)z}_{\text{direct effect}} + \underbrace{\beta_2(0)\mathbb{E}[\eta|\delta_z z + \delta_\eta \eta + \tilde{\nu} \ge 0]}_{\text{select effect}} - \text{intereasing} \tag{18}
$$
\n
$$
\underbrace{\beta_1(1)z}_{\text{direct effect}} + \underbrace{\beta_2(1)\mathbb{E}[\eta|\delta_z z + \delta_\eta \eta + \tilde{\nu} \le 0]}_{\text{selection given }T = 0} - \text{increasing} \tag{19}
$$

Suppose $\beta_1(t)$, $\beta_2(t) > 0$, $t = 0, 1$

- δ_Z and δ_n have different signs \rightarrow cMIV implied by MIV
- δ_z and δ_n have the same sign \rightarrow cMIV requires $\beta_1(t)$ to be larger

Takeaway:

- Z has to affect the potential outcomes **directly** and strongly enough
- In the presence of unobserved heterogeneity η with $sgn(\delta_n) = sgn(\delta_{\mathbf{Z}})$, Z's direct effect relative to its effect on **selection** must be greater than that for η

In other words, Z should be **relatively weak** and **strongly monotone**

Example: education selection (3)

1 Suppose education \rightarrow jobs where ability Z gives a comparative advantage $\delta_Z > 0$, no education \rightarrow jobs that are more effort-intensive $\delta_n < 0$.

Positive conditional association b/w Z, η:

- Given $T=0,$ Z $\underset{+}{\sim}$ η as else a higher Z -person would select into $T=1$
- Given $T=1,\,Z\,\mathop{\sim}\limits_{+}\,\eta$ as else a higher η -person would select into $T=0$
- **2** Suppose to get a degree one needs to be either hardworking or of high ability:

$$
T=\mathbb{1}\{\eta+Z\geq 0\}
$$

Negative conditional association b/w Z, η:

- Given $T = 0$, $Z \sim \eta$ as a higher Z person would have gotten a degree, if − not for lower effort
- Given $T=1,$ $Z\sim\eta$ as at higher Z one does not need to be as hardworking to get a degree

 $Y(t) = f(t, Z, T, \eta, \xi)$ where η is an unobs. r. vector, noise $\xi \perp\!\!\!\perp (T, Z, \eta)$ Homogeneity of $f(\cdot) + \text{MIV} \rightarrow \text{cMIV-p}$ is **testable**:

Proposition 1

Suppose that a): i) $Y(t) = g(t, \xi) + h(t)\psi(Z, \eta)$, $h(t) \neq 0$ *and ii) MIV, strictly for zome* $(z,z';$ \bm{or} $\bm{b})$: $\bm{i})$ $Y(t) = g(t,\xi,T) + h(t) \psi(Z,\eta),$ $\bm{ii})$ $\frac{h(t)}{h(d)} > 0$ $\forall t,d \in \mathcal{T}$ and iii) MIV. Then *Assumption cMIV-p holds iff* $\mathbb{E}[Y(t)|T = t, Z = z]$ *are all monotone.*

• MP (2009) discusses **HLR**: $Y(t) = \beta t + \eta$ under MIV \implies a.i) or b.i)

Using regression monotonicity (Chetverikov, [2019\)](#page-32-4), will test:

$$
\mathcal{H}_0: \mathbb{E}[Y(t)|T=t, Z=z] - \text{monotone in } z
$$

$$
\mathcal{H}_a: o/w
$$

- If \mathcal{H}_0 is not rejected and we believe in homogeneity can assume cMIV
- Applied work has inspected this monotonicity w/o theoretical justification

DGP for Figure 1

$$
Y(t) = c + \alpha t + \beta \eta + g(Z)
$$

\n
$$
T = \mathbb{1}\{\varepsilon + f(Z) \ge 0\}
$$

\n
$$
\eta = \min\{u, \max\{\varepsilon, l\}\}
$$

\n
$$
\varepsilon \sim \mathcal{N}(0, 1)
$$

With:

$$
t = 0
$$

\n
$$
[l, u] = [-4, 2]
$$

\n
$$
z \sim U[-1, 1]
$$

\n
$$
f(z) = -2z^4
$$

\n
$$
g(z) = \ln(z + 1.1)
$$

\n
$$
\beta = 0.1
$$

cMIV-p, cMIV-s sharp bounds

Suppose $\mathcal{Z} = \{z_1, z_2, \ldots, z_N\} \subset \mathbb{R}$, s.t. $z_i < z_j$ for $i < j$ and let $S \equiv N_T(N_T - 1)$ and $x^j \equiv \left(\mathbb{E}[Y(t)|T=d,Z=z_j]\right)_{d \neq t}^{\prime}.$ Using Theorem 1: Under cMIV-s and cMIV-p, sharp bounds on $\mathbb{E}[Y(t)]$ have the form:

$$
\min_{Mx \ge c} \left\{ \sum_{j=1}^{N} P[Z = z_j] \cdot p^{j'} x^j \right\} + \sum_{j=1}^{N} P[T = t, Z = z_j] \mathbb{E}[Y(t)|T = t, Z = z_j]
$$
\n
$$
\le \mathbb{E}[Y(t)] \le
$$
\n
$$
\max_{Mx \ge c} \left\{ \sum_{j=1}^{N} P[Z = z_j] \cdot p^{j'} x^j \right\} + \sum_{j=1}^{N} P[T = t, Z = z_j] \mathbb{E}[Y(t)|T = t, Z = z_j]
$$

Where

$$
M \equiv \begin{bmatrix} -I_S & \dots & 0 & 0 \\ G_N & -G_{N-1} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & G_2 & -G_1 \\ 0 & \dots & 0 & I_S \end{bmatrix}, \quad c \equiv \begin{pmatrix} -K_1 \cdot \iota_S \\ -\Delta c_N \\ \vdots \\ -\Delta c_2 \\ K_0 \cdot \iota_S \end{pmatrix}, \quad x = \begin{pmatrix} x^N \\ \vdots \\ x^1 \end{pmatrix}
$$

 G_j, c_j [- cMIV-p](#page-52-0) G_j

G_j, c_j for cMIV-s

Let
$$
\mathcal{F} \equiv 2^{\mathcal{T}} \setminus \{\{t\}, \emptyset\}
$$
. Let $Q \equiv |\mathcal{F}| = 2^{N_T} - 2$. Fix the ordering of subsets of \mathcal{F} , so that $\mathcal{F} = \{A^1, A^2, \dots A^Q\}$.
\n $\mathbb{E}[Y(t)|T \in A^k, Z = z_j] \geq \mathbb{E}[Y(t)|T \in A^k, Z = z_{j-1}], k = 1, \dots, Q, j = 2, \dots N_Z$
\n $\mathbb{E}[Y(t)|T = d, Z = z_N] \leq K_1, d \in \mathcal{T} \setminus \{t\}$
\n $\mathbb{E}[Y(t)|T = d, Z = z_1] \geq K_0, d \in \mathcal{T} \setminus \{t\}$

The whole set of information given by cMIV-s can be represented as follows:

$$
G_j x^j - G_{j-1} x^{j-1} \ge -\Delta c_j, j = 2, \dots, N_Z
$$

$$
x^N \le K_1 \iota
$$

$$
x^1 \ge K_0 \iota
$$

Where:

$$
G_j \equiv \left(\mathbb{1} \left\{d \in A^k\right\} \frac{P[T = d|Z = z_j]}{P[T \in A^k | Z = z_j]}\right)_{k \in \overline{1, Q}, d \neq t} \in \mathbb{R}^{Q \times (N_T - 1)}
$$

$$
c_j \equiv \left(\mathbb{1} \left\{t \in A^k\right\} \frac{P[T = t | Z = z_j]}{P[T \in A^k | Z = z_j]} \mathbb{E}[Y(t)|T = t, Z = z_j]\right)_{k \in \overline{1, Q}} \in \mathbb{R}^Q
$$

cMIV-p implies:

$$
\mathbb{E}[Y(t)|Z=z_j] \geq \mathbb{E}[Y(t)|Z=z_{j-1}], j=2,\dots N_Z
$$

\n
$$
\mathbb{E}[Y(t)|T=d, Z=z_j] \geq \mathbb{E}[Y(t)|T=d, Z=z_{j-1}], d \in \mathcal{T} \setminus \{t\}, j=2,\dots N_Z
$$

\n
$$
\mathbb{E}[Y(t)|T=d, Z=z_N] \leq K_1, d \in \mathcal{T} \setminus \{t\}
$$

\n
$$
\mathbb{E}[Y(t)|T=d, Z=z_1] \geq K_0, d \in \mathcal{T} \setminus \{t\}
$$

The whole set of information given by cMIV-s can be represented as follows:

$$
G_j x^j - G_{j-1} x^{j-1} \ge -\Delta c_j, j = 2, \dots, N_Z
$$

$$
x^N \le K_1 \iota
$$

$$
x^1 \ge K_0 \iota
$$

Recall that $p^j \equiv (P[T = d | Z = z_j])_{d \neq t}$ and we have:

$$
G_j \equiv \begin{pmatrix} p^{j\prime} \\ I_{N_T-1} \end{pmatrix} \in \mathbb{R}^{N_T \times (N_T-1)}
$$

$$
c_j \equiv \begin{pmatrix} P[T = t | Z = z_j] \mathbb{E}[Y(t) | T = t, Z = z_j] \\ 0_{N_T-1} \end{pmatrix} \in \mathbb{R}^{N_T-1}
$$

Analytical sharp bounds under cMIV-w

Denote ℓ_j, ℓ_j^{-t} - s.l.b. for $\mathbb{E}[Y(t)|Z=z_j]$ and $\mathbb{E}[Y(t)|T \neq t, Z=z_j]$, then: If i) cMIV-w holds or ii) $T \in \{0, 1\}$ and cMIV-s holds, then $\ell_1^{-t} = K_0$, $\ell_1 = P[T = t | Z = z_1] \mathbb{E}[Y(t)|T = t, Z = z_1] + P[T \neq t | Z = z_1]K_0$ and for $j > 2$:

$$
\Delta \ell_j = \left(\Delta P[T \neq t | Z = z_j] \ell_{j-1}^{-t} + \delta_j \right)^{+}
$$
\n(20)

$$
\Delta \ell_j^{-t} = \frac{1}{P[T \neq t | Z = z_j]} \left(\Delta P[T \neq t | Z = z_j] \ell_{j-1}^{-t} + \delta_j \right) \tag{21}
$$

Where:

$$
\delta_j \equiv \Delta \left\{ P[T = t | Z = z_j] \mathbb{E}[Y(t) | T = t, Z = z_j] \right\}
$$
\n(22)

Sharp upper bounds u_i, u_i^{-t} are obtained analogously. Moreover,

$$
\sum_{i=1}^{N} P[Z = z_i] \ell_i(t) \le \mathbb{E}[Y(t)] \le \sum_{i=1}^{N} P[Z = z_i] u_i(t)
$$
\n(23)

In the absence of additional information, these bounds are sharp. [Return](#page-44-0)

Simultaneous equations

$$
q^{k}(p) = \alpha^{k}(p) + \beta^{k}(p)Z + \gamma^{k}(p)\eta + \kappa^{k}(p)\varepsilon^{k}, \ k \in \{s, d\}
$$

$$
P \in \{p \in \mathbb{R}|\mathbb{E}[q^{s}(p)|Z, \eta] = \mathbb{E}[q^{d}(p)|Z, \eta]\},\
$$

where η is unobserved with $\mathbb{E}[\eta | Z=z]=0,$ and $\mathbb{E}[\varepsilon^k]=0,$ $\varepsilon^k \perp\!\!\!\perp (\eta,Z,\varepsilon^{-k}).$

- All functions are continuous, support is full (for illustrative purposes)
- Define $\delta_z(p) \equiv \beta^s(p) \beta^d(p)$ and $\delta_{\eta}(p)$, with $\delta_p(p) \equiv \alpha^s(p) \alpha^d(p)$
- The model is *complete* and *coherent* iff:
	- $\mathbf{0}$ $\delta_p(p)$ is strictly increasing;
	- 2 $\delta_n(p)$ and $\delta_Z(p)$ are constant
- For concreteness, $\beta^{s}(p), \gamma^{s}(p) > 0$, and we want to estimate $\mathbb{E}[q^{s}(p)]$

$$
(MIV): \beta^{s}(p) \ge 0, \ \forall p
$$

$$
(cMIV): (MIV) + \left| \frac{\beta^{s}(p) - \beta^{d}(p)}{\beta^{s}(p)} \right| \le \left| \frac{\gamma^{s}(p) - \gamma^{d}(p)}{\gamma^{s}(p)} \right| \vee sgn(\delta_{\eta}) \ne sgn(\delta_{z})
$$

Same idea: cMIV requires the instrument to be relatively weak and strongly monotone^{creturn}