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The Question

Consider a linear program (LP):

B(6) = min p'z, where 0 = (p, M,c) € R x R7** x R

The value 6, (P) is an identified feature of probability measure P.

We are interested in B(P) = B(0y(PP)).

Key structure:
@ B(P) is a measure-dependent linear program
@® All parameters p, M, ¢ are to be estimated
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Examples of LP estimation

Conditions in the AICM class result in LPs:

e Blundell et al. (2007), Gundersen et al. (2012), Siddique (2013),
De Haan (2017), Cygan-Rehm et al. (2017), among others.

Example 1 (MIV in Manski and Pepper (2000))

E[Y(t)|Z = Z] is non-decreasing in z € Z foreacht € T.

Example 2 (Roy model in Lafférs (2019))

Foreacht € T, the individual’s choice is, on average, optimal
EY®)|T =t,Z =z = max ElY ()T =t,7Z = z].
€

LP often appears outside of AICM class:

e Mogstad et al. (2018), Syrgkanis et al. (2021), Andrews et al. (2023)
among others, see Kline and Tamer (2023) for a review.

UCLA



LP discontinuity

B(b)=minz st:y>1+dbz, y<uz ze[-1;1],
z,Y

Figure: b < 0, B(b) =0
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LP discontinuity

B(b)=minz st:y>1+dbz, y<uz ze[-1;1],
z,Y
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Figure: b < 0, B(b) =0
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LP discontinuity

Bb)=minz st:y>1+bz, y<uz ze€[-1;1],
oy

z>-1 Y e<1 y=e

Figure: b =0, B(b) = —1
Key point: B(-) is discontinuous, B(b) = —1{b > 0}.
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LP discontinuity

Suppose we estimate b as b, =n~* Y., U; with U; ~ U[—1 + 2b; 1] i.i.d.:

0.0 — B plug-in
—— B set expansion
—— B penalty
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Figure: Comparison of estimators for two measures with b = —0.02 and b = 0, left to
right. Average values over 400 simulations.

Aside: At b = 0 if intercept is noisy B(b,,) does not exist w.p. 1/2Vn € N
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Contributions

Estimation
e Develop the first generally \/n-consistent estimator of B(PP)
e Develop exact, computationally efficient inference
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Contributions

Estimation
Develop the first generally \/n-consistent estimator of B(PP)
Develop exact, computationally efficient inference
Show that 7 uniformly consistent estimator absent further conditions
e Formulate the weakest condition (P°) for its existence
e Show uniformity of our estimator over P°
Identification via LP (not in this talk)
e Provide a general identification result for ‘AICM’: LP sharp bounds
Application (not in this talk)
Introduce a new condition (cMIV) that tightens classical bounds
Develop a test for cMIV
Apply results to estimating returns to education in Colombia

cMIV yields a lower bound of 5.91% for the return to college education,
classical conditions do not produce an informative bound
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Problematic scenarios

Define ©;(0) = {x € RY|Mz > ¢} and A(f) = argmin p'z
©1(0)

Identified set

Definition 1
Slater’s condition (SC) asserts that Relint(©1(6y)) # 0.

Intuition: SC rules out point-identification along a perturbed direction

UCLA



Problematic scenarios

Define ©;(0) = {x € RY|Mz > ¢} and A(f) = argmin p'z
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submatrix of binding constraints at any = € A(6y) is full-rank.

Intuition: LICQ rules out over-identification at an optimum
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Problematic scenarios

Define ©;(0) = {x € RY|Mz > ¢} and A(f) = argmin p'z
O1(0)

Identified set

Definition 1
Slater’s condition (SC) asserts that Relint(©1(6y)) # 0.

Intuition: SC rules out point-identification along a perturbed direction

Definition 2
Linear independence constraint qualification (LICQ) asserts that the
submatrix of binding constraints at any = € A(6y) is full-rank.

Intuition: LICQ rules out over-identification at an optimum

Definition 3
The notion of flat faces refers to the situation where |A(6y)| # 1.
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Pointwise assumptions

Assumption (AO: Pointwise setup)
Suppose that at the fixed true parameter 6, :
() ©7(60) #0 and ©;(0y) C X for a known compact X
———
The model cannot be rejected

@ There is a \/n-consistent estimator 0,, for 6,

Key: we do not assume SC, LICQ or no-flat-faces - unlike previous work.
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Penalty-function estimator

Fix aw € R% and introduce the following:

L(z;0,w) = p'x +w'(c — Mz)*
—_————

Penalty term

B(0;w) = min L(z;0,w), A(f;w) = argmin L(z;6,w)
reX TeEX

Lemma 1
If 3IX* - KKT vector in the true LP such that w > \*, then:

© optimal values coincide: B(6y) = B(6y; w)

® solutions coincide: A(0y) = A(0y; w)

e In general, B(fy; w) < B(6y)
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Consistency of penalty-function estimator

Theorem 1
For any w, — oo wp. 1 as. and = L 0, we have:
~ A Wy,
|B(9n§wnL) - B(GO)| = OP %
Comments:

¢ At a fixed measure eventually w,, > max; Aj for some \*

o Intuitively, “2 rate from w, (&, — M,a)* = O,(%2) for z € ©1(0).

e We can do better by dropping that term.
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v/n-consistency of the debiased estimator

Theorem 2
Suppose A(6y) C Int(X). For any w, — co with ¥z 2 0:

n

3

1
sup [p'z — B(6o)| = O, <
-A(én;wﬂ)

n

Intuition:
© The (biased) estimator selects a correct ‘vertex’ w.p. approaching 1
® Once we get the ‘vertex’, can drop the penalty
A /n—consistent debiased estimator:
B(0n;wa) = sup plw

A(Onwn)
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Sample splitting for asymptotic normality

Split the data D,, = DS UD'? randomly, in proportion v € (0;1)

© On D!, estimate 4", and:

ie argmax pz, A={jelq: M(l);@’ =0}
A(é'£11)§11’n)

0 € argmin HP—M(D;ivHQ
veRIAL |v]|<T

® On D, simply compute 07 = (M1, )
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Exact inference

Theorem 3

Suppose \/ﬁ(én —6g) LN N(0,%), and we have an estimator in LY <

Under a non-degeneracy condition, for any w,, — co with w,, = o,(\/n), for
any a > 0:

V2 (3@ — NP #) 4 p'd — B8 )<z_a S1-a,
Ty (0= M 48) 44/ = B(oo)) < =

Comments:

e Closed-form for o(-) — no resampling needed
e If explicit X, is not available, can bootstrap it from 6,
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Uniform asymptotic theory

Lemma 2

Suppose the estimandV : (P, || - ||rv) — (R, | - |) is discontinuous at

Py € P. Then, there exists no uniformly consistent estimator v, = f/n(X ),
which is a sequence of measurable functions of the data X ~ P"™. Moreover,
if5 > 0 is the jump at Py, then:

inf sup Ez[|[V (P) — V, (X (P"))||] >
V, PeP

N>

, VneN,

where infinum is taken over all measurable functions of the data.

e The Lemma is proven via Le Cam’s binary method.
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Negative result

Assumption (UO: Uniform setup)

The functional 6y(-) and the set of measures P are such that:
@ % : (P, |lrv) — (RS, -|2) is a continuous functional
@ 0(P) = {y e R¥ s.t. O1(y) # 0,01(y) C X}

e We have seen that B(¢) is discontinuous
e So, under U0, B o 6, is discontinuous

Theorem 4
Under UQO, there exists no uniformly consistent estimator of B(P).

e |s there a weak condition, under which it exists?

UCLA



The /-condition

Theorem 5
Under A0, 32* € A(by), the associated KKT vector \* and a subset of
binding inequalities J* C {1,...,q} with |J*| = rk(M;~) = d, such that:
¥ = .Z\/.[;}CJ*
Ny =M p
Ae=0,i¢J"

Assumption (U1: é-condition)

For some & > 0, the collection P° and the functional 6, (-) satisfy VIP € P°:

II}IE?:X CTd(]u:]* (00(]}»))) >0,

where J* are defined above.
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Geometry of j/-condition

Miz=c

MéCC = C2

Figure: Optimal vertex J = {1, 2}

LICQ holds, §—condition holds with 6 = oo(M{;2}) >0

UCLA



Geometry of j/-condition

Miz=c
Mix = c3
Mé:c = C2

Figure: Optimal vertex J = {1, 2, 3}

LICQ fails, §—condition holds with § = o2(M{; 2y) > 0
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o-condition in the baseline example

a1 Y z<a yse z>-1Y <1 y==
o 4 Sy>(+be P <
-1 1 -1 1
()b~ 0" =5~ -2 byb>0=5>0
P° P\P? PO
Y I’/////’/;’/’/’//’////}’/;’////////},Q
' b

(c) Set of b satisfying a d-condition
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Properties of the §-condition

The usual uniform conditions are:

pslaterie = [P ¢ P|Volume (O (A(P))) > ¢}
PLICQ:: _ (P e PIM(v) € Rdxd,ad(/\/l(v)) >e Vv e V(P)},

V— all vertices of ©;, M(-)— matrix of binding constraints

@ lim pSlatersi/n |y pLICQ:L/n - p — iy PL/" the inclusion is strict

n— oo n—roo

@ PLICQe  Pdforany § < e, the inclusion is strict

® If M is normalized, Ve > 0, 3 § s.t. PSlaterse « P the inclusion is strict

UCLA



B, is uniformly consistent over P’

Theorem 6 )
Suppose: i) 36 > 0: P* C PO, i) 6,(-) — 0o(-) at rate \/n uniformly. Setting
wy, = ||pn]|6~1 + ¢ for any globally fixed ¢ > 0 yields, Ve > 0 and r,, < \/n:

lim sup P[sup 7| B (O, wm) — B(0o(P))| > ] = 0. (1)

N=Opcpr  m>n

Moreover, (1) holds at rate l\f—f for any w,, — oo wit % — 0.
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Uniform consistency

Put differently, for any w,, — oo with “’\/—% — 0, for B, there is:

vn uniform consistency under U1: sup lim sup P[...] =0
W, §>0 7R peps

No uniform consistency under UO:  lim sup sup P[...] #0
N0 50 PePs
————’

sup
PePpP

Comments:
e The debiased estimator converges at least u\/}—f uniformly over P° (*)

e B, actual uniform rate appears to be \/n, unless SC, LICQ, NFF all fail
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Simulations

0.0 = 1 —— B plug-in
—— B set expansion
—— B penalty
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Figure: Left: b = —0.02 (oo = 0.12) & SC holds; Right: b = 0 (o = 0.75) & SC fails.
Parameters: Ng;p, = 400, w, = 4
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minz St:y>Q4+by)z+kn, y<A+C)z+Cn, € [—1—kn; 1+ Knl

z,y

bp =b+UP K, = U", ¢, = US with U} ~ U[—0.5;0.5] i.i.d. across i, ¢
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Q&A

Thank you for your attention!
avoronin@ucla.edu

I am grateful to Andres Santos, Denis Chetverikov, Bulat Gafarov, Zhipeng
Liao, Jinyong Hahn, Rosa Matzkin, Tim Armstrong, Shuyang Sheng, Kirill
Ponomarev, Manu Navjeevan and Daniel Ober-Reynolds as well as all the
participants of the 2024 California Econometrics Conference for the
valuable discussions and criticisms.
All mistakes are mine.
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Identification result in this paper

Outcome: Y € Y C R, treatment: T € T C R, covariates: Z € Z C R%z

T=0UU:ifT e€lU,Y -unobserved. For the talk, 7 = O.

Y =) 1{T =t}Y(t)

teT

Potential outcomes Y = (Y (t))ie7 € RNT
— conditional moments m(P) = (Ep[Y|T =d, Z = z|)aeT 2c2

Target: 5*(P) = p*(P)'m(PP) for identified n* (e.g. ATE)
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Identification result in this paper

For identified matrices: A*, A, vectors: b*, b, the model is:

P* = {P € PIA*(P)m(P) + b*(P) > 0, A(P)Y + b(P) > 0 P-a.s.}

Split m(-) into identified T and counterfactual moments z:
T=(EYW)|T =t,Z=2]).r, o2=EYQ)|T=d,Z=2])., t+a
e A* Aand Fr , — identified M
e b*,band Frz — identified ¢
e u* and Fr z — identified p, p
For any M*, b* and relevant M, b, sharp identified set for 3* is:

B*={BeR| inf px <B-p7 < sup p'x}
Mzx>c Mz>c
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Returns to education in Colombia

Data: 664633 observations from Colombian labor force

Variables: Saber test results (Z), average wages (Y'), schooling (S)
Split Z into deciles

e Education levels T': primary, secondary, high school and university

ATE(3,2) ATE(2,1) ATE(1,0)

Difference in log-wages

01 0.00 0.00 4
cMIV-s MV cMIV-w MV MIVs MV cMIV-w Miv MIVs  cMIV-p  cMIV-w MV

—— Bounds WM 95%Cl =--- ETS

e AICM: (c)MIV + bounded outcomes + MTR (Y (¢') > Y (t) if ¢’ > ¢)
e Result: university education — average wage 1 by > 5.91%
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Testing cMIV

=tZ=2)

EM(OIT

Z; decile

(a) Estimated conditional moments

R

t Ry p-value ny

0 0.98 2.33 0.34 274295
1 1147 217 0.95 143299
2 -151 230 1.00 216336
3 186 238 0.08 30703

(b) Results of the monotonicity test. Columns:
2. estimated Chetverikov (2019) test-statistic;
3. 10% critical values, corresponding to 2.6%
individual critical value; 3. p-value against the
individual null. The overall p-value is 29%.
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Selecting a reasonable §

Impossible to estimate, but can select a reasonable "conservative” §

Theorem 7 (Tao and Vu (2010))

Let =, be a sequence of d x d matrices with [E4);; ~ &;, independently
across i, j where &;; are such that E[¢] = 0, Var(¢) = 1 and E[|¢|°°] < o for
some sufficiently large Cy, then:

\/aO'd(Ed) i> 11 (2)

The distribution of &;; is any: possibly discrete, not identical.
Normalize the matrix: ||M.;|| = 1 for each row, or M — M /6(M)

vV1-2In(l—a)— 2
Pick § = ( — \(/13 ) 1) - the a—quantile of IT (we use oo = 0.2)

Set w,, = [[pu|[6~" 2 for some k,, — 00, ki = o(y/12).
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Proof of Lemma 2

Proof.
Let § > 0 be a jump at Ps. Construct a sequence {P,} C P such that for some
0<9 <1t

IPo — Ppllry < dn”* 3)
While ||V (Po) — V(Py)|| > ¢. Recall that:
I[P5 — Prllzv < n||Po — Pullrv (4)
It follows that:
PG — Pollry <9 (5)

Using the binary Le Cam’s method', one obtains Vn:

inf sup Ep[||V (P) — Vi, (X (B™))]]] > @
Vn PEP

(6)

Recalling that 0 < ¥ < 1 and § were chosen arbitrarily and taking supremum over §
as well as sending ¥ — 0 yields the result. O
m UCLA



Proof of Lemma 1.i

If w in the linear penalty function is component-wise larger than the KKT
vector A at a local minimum of the original problem, then this local minimum
is also a local minimum of the penalized unconstrained problem (see
Bertsekas (1975)). The claim then follows from the fact that any local
minimum of a convex program is also global.
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Proof of Lemma 1.ii

Suppose that (A, w) are the KKT vector and the penalty vector that satisfy
Assumption AQ and 7 is the associated optimum of the initial LP and

B = p'z. Note that one direction of ii) is trivial, since any 7 that is optimal in
the initial problem yields the same value in the penalized problem.

For another direction, suppose z* is a local (global) minimum of the
penalized problem. If z* is feasible, it is also an optimum of the initial
problem. Suppose it is not feasible. By the assumption on (w, A):

pa* +w'(c— Maz*)" > pa* +X/(C—M’:C*) (7)
The definition of a KKT vector in Rockafellar (1970) also requires that:
B= inf pr+X(c—Maz)<pz*+N(c— Mz (8)
zERN(S-1)
Therefore,
B=pa*+w(c—Mz*)>pz*+N(c—Mz*)>B 9)

Which yields a contradiction, so there can be no such z*. Thus, the sets of

optimal solutions coincide.
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Three forms of cMIV

Consider Z € R and bounded outcomes Y (t) € [Ky, K;] a.s.
Assumption (cMIV-s)
Suppose thatforanyt € T,ACT and z,2' € Z s.t. 2/ > z we have:

EY()|T € A, Z =2 >E[Y(t)|T € A, Z = 2] (10)

Assumption (cMIV-w)
Suppose MIV holds and for anyt € T and z,z' € Z s.t. 2/ > z we have:

{(EYWIT #t,2 = > EY ()T #1,2 =] (11)

Assumption (cMIV-p)

Suppose MIV holds and foranyt € T,d € T\ {t} andz,2' € Z s.t. 2/ > 2
we have:

E[Y()|T =d,Z = z] — monotone (12)
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cMIV bounds are tighter than MIV

=z]

Ev0)|z

1,Z=2z]

Evo)T

Sharp bounds:

100 -075 -050 -025 000 025 050 075 100

4] — cMIV
MIV
2 -=- Avor=1.z=2]
S R ———
-2 4 e
4]

100 -075 -050 —-025 000 025 050 075 100

Figure: Sharp bounds for a @ satisfying cMIV
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cMIV in words

Let Y(¢) be the individual’s wage, T € {0, 1} - college degree, and Z - ability
(e.g. 1Q).
MIV assumption implies that:

e 'Smarter’ individuals can do better both with and without a college
degree on average: E[Y (t)|Z = z] - monotone

cMIV additionally assumes:

e Among those who have a college degree, a 'smarter’ individual could
have done relatively better than their counterpart if both did not have it:
E[Y(0)|Z = z,T = 1] - monotone

e Among those who do not have a college degree, a 'smarter’ individual
could have done relatively better than their counterpart if both had it:
E[Y(1)|Z = z,T = 0] - monotone
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Example: education selection (1)

Suppose there is an innate 'effort’ level 5 s.t. n 1L Z. Roy model:
Y(t) = Bo(t) + b1(t)Z + Ba(t)n + £(t) (13)
T ={E[Y (1) - Y(0)[Z,n] +v > 0} (14)
where e(t) IL (Z,T,n)and v 1L (Z,n,e(-)).
Let . = 1(1) — £1(0) and 6,, = B2(1) — 52(0) - the differential effects of Z, 7.
MIV:

B£1(t) >0,t=0,1 (15)
cMIV: MIV and
B1(0)z + B2(0)E[n|d.2 + &,n + 7 > 0] —increasing (16)
N——
direct effect selection given T' = 1
B1(1)z + B2(1)E[n|d.z + d,n + v < 0] —increasing (17)
——

direct effect selection given T' = 0
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Example: education selection (2)

cMIV: (15) and

B1(0)z + B2(0)E[n|d.z + d,n + v > 0] —increasing (18)
——

direct effect selectiongiven T' = 1
B1(1)z + B2(1)E[n|d.z + d,n + v < 0] —increasing (19)
——

direct effect selection given T' = 0

Suppose S1(t), B2(t) >0, t =0,1
e {7 and J,, have different signs — cMIV implied by MIV
e ¢z and §,, have the same sign — cMIV requires 3 (t) to be larger

Takeaway:
e Z has to affect the potential outcomes directly and strongly enough
e In the presence of unobserved heterogeneity n with sgn(é,) = sgn(dz),
Z’s direct effect relative to its effect on selection must be greater than
that for n
In other words, Z should be relatively weak and strongly monotone
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Example: education selection (3)

@ Suppose education — jobs where ability Z gives a comparative
advantage 0z > 0, no education — jobs that are more effort-intensive
d, < 0.

Positive conditional association b/w Z, n:

® GivenT =0, Z T as else a higher Z-person would selectinto 7' =1

® GivenT=1,Z7 gl as else a higher n-person would select into 7' = 0

® Suppose to get a degree one needs to be either hardworking or of high
ability:
T=1{n+ 2 >0}

Negative conditional association b/w Z, n:

® GivenT =0, Z ~mnasa higher Z person would have gotten a degree, if

not for lower effort
® GivenT'=1, Z ~ n as at higher Z one does not need to be as

hardworking to get a degree

Simulateneous equations
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Testing cMIV-p

Y(t) = f(t,Z,T,n,&) where n is an unobs. r. vector, noise £ 1L (T, Z,n)
Homogeneity of f(-) + MIV — cMIV-p is testable:

Proposition 1

Suppose thata): i) Y (t) = g(t, &) + h(t)y¥(Z,n), h(t) # 0 and ii) MIV, strictly for zome
2,2 ;0rb): ) Y(t) = g(t,&,T) + h(t)¢(Z,n), i) 115 > 0Vt,d € T and iii) MIV. Then
Assumption cMIV-p holds iff E[Y (t)|T = t, Z = z] are all monotone.

e MP (2009) discusses HLR: Y (¢) = 8t 4+ n under MIV = a.i) or b.i)

Using regression monotonicity (Chetverikov, 2019), will test:

Ho :E[Y (¢)|T =t,Z = z] — monotone in z
He :0/w

e If Ho is not rejected and we believe in homogeneity - can assume cMIV
e Applied work has inspected this monotonicity w/o theoretical justification
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DGP for Figure 1

Y(t)=c+at+ pn+g(2)
T=1{e+ f(Z) >0}
7 = min{u, max{e, }}

e ~N(0,1)
With:
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cMIV-p, cMIV-s sharp bounds

Suppose Z = {z1,22,...,2n} CR, st 2; < zj fori < jandletS = Np(Nr — 1) and
2 =EY®)|IT=d,Z= zj])’d#. Using Theorem 1:
Under cMIV-s and cMIV-p, sharp bounds on E[Y (¢)] have the form:

Azmn {ZP[Z—z

N
PZ—

Where

N
pﬂ’xﬂ} +D PIT=t7Z=2%E[Y®)|T =t,Z = z]
Jj=1

<E[Y ()] <

pﬂ’xﬂ} + Z PIT =t,7Z = z]E[Y(@#)|T = ¢, Z = 2]

0 0 —Ki s
0 —Acy N
. , C= . , T =
Gy -Gy —Aca x!
0 Is Ko -tg
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G, c; for cMIV-s

Let F = 27 \ {{t},0}. Let @ = |F| = 27 — 2. Fix the ordering of subsets of
F,sothat F = {A} A% ... AQ}.

EY(W)|T € AF,Z = 2] >ElY ()T € A* Z = 2; 4], k=1,...,Q, j =2,... Ny
EY()|T =d,Z = 2y] < Ky,d € T\ {t}
EY()|T =d,Z = z] > Ko, d € T\ {t}
The whole set of information given by cMIV-s can be represented as follows:
Gja? — G137 > —Acj,j=2,...,Ny

2N < Ky
x> Kot
Where:
6= (1{ae ) g =) & ROX(Ve-1)
P[T € A*Z = 2] ) yetg.ame
PIT =t|Z = zj]
ci=(1{teAr 3 JE[Y(t)|T=t,Z:z»]) € RY
7 ( { }P[TeAk|Z:Z]] / kel,Q

P oo UCLA



G, c; for cMIV-p

cMIV-p implies:

EY(t)|Z = 2] > EY(#)|Z = zj—1], j =2,...Nz
EYW)|T=d,Z=z]>EYW)|T=d,Z=zj_1], de T\{t}, 7=2,...Ng
EY()|T =d,Z = 2ny) < Ky,d € T\ {t}

ElY®)|T =d,Z =2z]> Ko, de T\ {t}
The whole set of information given by cMIV-s can be represented as follows:
ijj — Gj,lxj_l > —Acj,j=2,...,Nz
2N < K
x> Kot
Recall that p’ = (P[T = d|Z = z;])az: and we have:
G, = <I]\I;:1) c RNTx(Nr—1)

(P =02 =S EYOIT = 0.2 = 5]\ _ gy,
T Onp—1
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Analytical sharp bounds under cMIV-w

Denote ¢;,£; " - s.lb. for E[Y ()| Z = z;] and E[Y (¢)|T # t, Z = z], then:

If i) cMIV-w holds or ii) ' € {0, 1} and cMIV-s holds, then ¢, ¢ = Ko,
=P[T =¢tZ==xEY(®)|T =¢,Z = z1]+ P[T # t|Z = z1]Kp and for j > 2:

Al = (AP[T;ﬁﬂZ:zJ]e t1+5) (20)
—t__ _ -t AN
AL BT ez =5 (APIT #1412 = 2167, +4;) (21)
Where:
;= APIT = t|Z = Z]E[Y ()IT = t, Z = 2]} (22)

Sharp upper bounds u;, u; * are obtained analogously. Moreover,

N

Z PlZ = z]t:(t) <E[Y (1) < > P[Z = zi]ui(t) (23)

=1

In the absence of additional information, these bounds are sharp. [ Rourn J
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Simultaneous equations

q"(p) = " (p) + B*(P)Z + " (p)n + K" (p)e*, k € {s,d}
P € {p € RIE[¢*(p)|Z, n] = E[¢"(»)|Z,n]},
where 7 is unobserved with E[|Z = 2] = 0, and E[¢¥] = 0, ¢ 1L (, Z,e7%).

e All functions are continuous, support is full (for illustrative purposes)

o Define &.(p) = 6°(p) — B%(p) and 6, (p), with 5,(p) = a*(p) — a’(p)
e The model is complete and coherent iff:

© I, (p) is strictly increasing;

® 4,(p) and 6z (p) are constant
e For concreteness, 5°(p), v (p) > 0, and we want to estimate E[¢°(p)]

(MIV):p°(p) >0, ¥p

(eMIV): (MIV)+

B ) = B0) | o |7 (@) =7 (p)
p(p) ’S )|V s9n(On) # sgn(d:)

Same idea: cMIV requires the instrument to be relatively weak and strongly

monotone. GEID
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