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The Question

Consider a linear program (LP):

B(θ) ≡ min
Mx≥c

p′x, where θ = (p,M, c) ∈ Rd × Rq×d × Rq

The value θ0(P) is an identified feature of probability measure P.

We are interested in B(P) = B(θ0(P)).

Key structure:
1 B(P) is a measure-dependent linear program
2 All parameters p,M, c are to be estimated
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Examples of LP estimation

Conditions in the AICM class result in LPs:
• Blundell et al. (2007), Gundersen et al. (2012), Siddique (2013),

De Haan (2017), Cygan-Rehm et al. (2017), among others.

Example 1 (MIV in Manski and Pepper (2000))
E[Y (t)|Z = z] is non-decreasing in z ∈ Z for each t ∈ T .

Example 2 (Roy model in Lafférs (2019))
For each t ∈ T , the individual’s choice is, on average, optimal
E[Y (t)|T = t, Z = z] = max

d∈T
E[Y (d)|T = t, Z = z].

LP often appears outside of AICM class:
• Mogstad et al. (2018), Syrgkanis et al. (2021), Andrews et al. (2023)

among others, see Kline and Tamer (2023) for a review.
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LP discontinuity

B(b) = min
x,y

x s.t. : y ≥ (1 + b)x, y ≤ x, x ∈ [−1; 1],

x

y y ≤ x

y ≥ (1 + b)x

−1 10

x ≤ 1x ≥ −1

Figure: b < 0, B(b) = 0
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LP discontinuity

B(b) = min
x,y

x s.t. : y ≥ (1 + b)x, y ≤ x, x ∈ [−1; 1],

x

y y = x

−1 10

x ≤ 1x ≥ −1

Figure: b = 0, B(b) = −1

Key point: B(·) is discontinuous, B(b) = −1{b ≥ 0}.
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LP discontinuity

Suppose we estimate b as bn = n−1
∑n

i=1 Ui with Ui ∼ U [−1 + 2b; 1] i.i.d.:
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Figure: Comparison of estimators for two measures with b = −0.02 and b = 0, left to
right. Average values over 400 simulations.

Aside: At b = 0 if intercept is noisy B(bn) does not exist w.p. 1/2 ∀n ∈ N
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Contributions

Estimation
• Develop the first generally

√
n-consistent estimator of B(P)

• Develop exact, computationally efficient inference
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Contributions

Estimation
• Develop the first generally

√
n-consistent estimator of B(P)

• Develop exact, computationally efficient inference
• Show that ∄ uniformly consistent estimator absent further conditions
• Formulate the weakest condition (Pδ) for its existence
• Show uniformity of our estimator over Pδ

Identification via LP (not in this talk)
• Provide a general identification result for ‘AICM’: LP sharp bounds

Application (not in this talk)
• Introduce a new condition (cMIV) that tightens classical bounds
• Develop a test for cMIV
• Apply results to estimating returns to education in Colombia
• cMIV yields a lower bound of 5.91% for the return to college education,

classical conditions do not produce an informative bound
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Problematic scenarios

Define ΘI(θ) ≡ {x ∈ Rd|Mx ≥ c}︸ ︷︷ ︸
Identified set

and A(θ) ≡ argmin
ΘI(θ)

p′x

Definition 1
Slater’s condition (SC) asserts that Relint(ΘI(θ0)) ̸= ∅.
Intuition: SC rules out point-identification along a perturbed direction
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Problematic scenarios

Define ΘI(θ) ≡ {x ∈ Rd|Mx ≥ c}︸ ︷︷ ︸
Identified set

and A(θ) ≡ argmin
ΘI(θ)

p′x

Definition 1
Slater’s condition (SC) asserts that Relint(ΘI(θ0)) ̸= ∅.
Intuition: SC rules out point-identification along a perturbed direction

Definition 2
Linear independence constraint qualification (LICQ) asserts that the
submatrix of binding constraints at any x ∈ A(θ0) is full-rank.
Intuition: LICQ rules out over-identification at an optimum

Definition 3
The notion of flat faces refers to the situation where |A(θ0)| ≠ 1.
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Pointwise assumptions

Assumption (A0: Pointwise setup)
Suppose that at the fixed true parameter θ0:

i ΘI(θ0) ̸= ∅︸ ︷︷ ︸
The model cannot be rejected

and ΘI(θ0) ⊆ X for a known compact X

ii There is a
√
n-consistent estimator θ̂n for θ0

Key: we do not assume SC, LICQ or no-flat-faces - unlike previous work.
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Penalty-function estimator

Fix a w ∈ Rq
++ and introduce the following:

L(x; θ, w) ≡ p′x+ w′(c−Mx)+︸ ︷︷ ︸
Penalty term

B̃(θ;w) ≡ min
x∈X

L(x; θ, w), Ã(θ;w) ≡ argmin
x∈X

L(x; θ, w)

Lemma 1
If ∃λ∗ - KKT vector in the true LP such that w > λ∗, then:

1 optimal values coincide: B(θ0) = B̃(θ0;w)

2 solutions coincide: A(θ0) = Ã(θ0;w)

Proof

• In general, B̃(θ0;w) ≤ B(θ0)
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Consistency of penalty-function estimator

Theorem 1
For any wn → ∞ w.p. 1 as. and wn√

n

p−→ 0, we have:

|B̃(θ̂n;wnι)−B(θ0)| = Op

(
wn√
n

)

Comments:
• At a fixed measure eventually wn > maxj λ

∗
j for some λ∗

• Intuitively, wn√
n

rate from wnι
′(ĉn − M̂nx)

+ = Op(
wn√
n
) for x ∈ ΘI(θ0).

• We can do better by dropping that term.
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√
n-consistency of the debiased estimator

Theorem 2
Suppose A(θ0) ⊆ Int(X ). For any wn → ∞ with wn√

n

p−→ 0:

sup
Ã(θ̂n;wn)

|p′x−B(θ0)| = Op

(
1√
n

)

Intuition:
1 The (biased) estimator selects a correct ‘vertex’ w.p. approaching 1

2 Once we get the ‘vertex’, can drop the penalty

A
√
n−consistent debiased estimator:

B̂(θ̂n;wn) ≡ sup
Ã(θ̂n;wn)

p′x
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Sample splitting for asymptotic normality

Split the data Dn = D(1)
n ∪ D(2)

n randomly, in proportion γ ∈ (0; 1)

1 On D1
n, estimate θ̂

(1)
n , and:

x̂ ∈ argmax
Ã(θ̂

(1)
n ;wn)

p′x, Â ≡ {j ∈ [q] : M̂ (1)′
j x̂ = 0}

v̂ ∈ argmin
v∈R|Â|:||v||≤v

||p− M̂ (1)′
Â
v||2

2 On D(2)
n , simply compute θ̂

(2)
n = (M̂

(2)
n , ĉ

(2)
n )
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Exact inference

Theorem 3
Suppose

√
n(θ̂n − θ0)

d−→ N (0,Σ), and we have an estimator Σ̂n
p−→ Σ < ∞.

Under a non-degeneracy condition, for any wn → ∞ with wn = op(
√
n), for

any α > 0:

P

[ √
n2

σ(Â, v̂, x̂, Σ̂n)

(
v̂′(ĉ(2)Â − M̂ (2)

Âx̂) + p′x̂−B(θ0)
)
≤ z1−α

]
→ 1− α,

Comments:
• Closed-form for σ(·) → no resampling needed

• If explicit Σn is not available, can bootstrap it from θ̂n
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Uniform asymptotic theory

Lemma 2
Suppose the estimand V : (P, || · ||TV ) → (R, | · |) is discontinuous at
P0 ∈ P. Then, there exists no uniformly consistent estimator V̂n = V̂n(X),
which is a sequence of measurable functions of the data X ∼ Pn. Moreover,
if δ > 0 is the jump at P0, then:

inf
V̂n

sup
P∈P

EP[||V (P)− V̂n(X(Pn))||] ≥ δ

2
, ∀n ∈ N,

where infinum is taken over all measurable functions of the data.
Proof

• The Lemma is proven via Le Cam’s binary method.
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Negative result

Assumption (U0: Uniform setup)
The functional θ0(·) and the set of measures P are such that:

i θ0 : (P, || · ||TV ) → (RS , || · ||2) is a continuous functional
ii θ0(P) = {y ∈ RS s.t. ΘI(y) ̸= ∅,ΘI(y) ⊆ X}

• We have seen that B(θ) is discontinuous
• So, under U0, B ◦ θ0 is discontinuous

Theorem 4
Under U0, there exists no uniformly consistent estimator of B(P).

• Is there a weak condition, under which it exists?
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The δ-condition

Theorem 5
Under A0, ∃x∗ ∈ A(θ0), the associated KKT vector λ∗ and a subset of
binding inequalities J∗ ⊆ {1, . . . , q} with |J∗| = rk(MJ∗) = d, such that:

x∗ = M−1
J∗ cJ∗

λ∗
J∗ = M−1

J∗
′p

λ∗
i = 0, i /∈ J∗

Assumption (U1: δ-condition)
For some δ > 0, the collection Pδ and the functional θ0(·) satisfy ∀P ∈ Pδ:

max
J∗

σd(MJ∗(θ0(P))) > δ,

where J∗ are defined above.
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Geometry of δ-condition

M ′
1x = c1

M ′
2x = c2

M ′
3x = c3

Figure: Optimal vertex J = {1, 2}

LICQ holds, δ−condition holds with δ = σ2(M{1,2}) ≫ 0
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Geometry of δ-condition

M ′
1x = c1

M ′
2x = c2

M ′
3x = c3

Figure: Optimal vertex J = {1, 2, 3}

LICQ fails, δ−condition holds with δ = σ2(M{1,2}) ≫ 0
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δ-condition in the baseline example

x

y y ≤ x

y ≥ (1 + b)x

−1 10

x ≤ 1x ≥ −1

(a) b ≈ 0− ⇒ δ ≈ − b
2

x

y y = x

−1 10

x ≤ 1x ≥ −1

(b) b ≥ 0 ⇒ δ ≫ 0

b

0
P \ PδPδ Pδ

(c) Set of b satisfying a δ-condition
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Properties of the δ-condition

The usual uniform conditions are:

PSlater;ε ≡ {P ∈ P|Volume(ΘI(θ(P))) > ε}
PLICQ;ε ≡ {P ∈ P|M(v) ∈ Rd×d, σd(M(v)) > ε ∀v ∈ V(P)},

V− all vertices of ΘI , M(·)− matrix of binding constraints

1 lim
n→∞

PSlater;1/n ∪ PLICQ;1/n ⊂ P = lim
n→∞

P1/n, the inclusion is strict

2 PLICQ;ε ⊂ Pδ for any δ ≤ ε, the inclusion is strict

3 If M is normalized, ∀ε > 0, ∃ δ s.t. PSlater;ε ⊂ Pδ, the inclusion is strict
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B̃n is uniformly consistent over Pδ

Theorem 6
Suppose: i) ∃δ > 0: P∗ ⊆ Pδ, ii) θ̂n(·) → θ0(·) at rate

√
n uniformly. Setting

wn = ||p̂n||δ−1 + ζ for any globally fixed ζ > 0 yields, ∀ε > 0 and rn ≪
√
n:

lim
n→∞

sup
P∈P∗

P[ sup
m≥n

rm|B̃(θ̂m, wm)−B(θ0(P))| ≥ ε] = 0. (1)

Moreover, (1) holds at rate
√
n

wn
for any wn → ∞ with wn√

n
→ 0.
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Uniform consistency

Put differently, for any wn → ∞ with wn√
n
→ 0, for B̃n there is:

√
n

wn
uniform consistency under U1: sup

δ>0
lim

n→∞
sup
P∈Pδ

P[. . . ] = 0

No uniform consistency under U0: lim
n→∞

sup
δ>0

sup
P∈Pδ︸ ︷︷ ︸

sup
P∈P

P[. . . ] ̸= 0

Comments:
• The debiased estimator converges at least

√
n

wn
uniformly over Pδ (*)

• B̂n actual uniform rate appears to be
√
n, unless SC, LICQ, NFF all fail
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Simulations
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Figure: Left: b = −0.02 (α = 0.12) & SC holds; Right: b = 0 (α = 0.75) & SC fails.
Parameters: Nsim = 400, wn = δ−1

0.15
ln lnn

ln ln 100
,
√
κn = ln lnn
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min
x,y

x s.t. : y ≥ (1 + bn)x+ κn, y ≤ (1 + ζn)x+ ζn, x ∈ [−1− κn; 1 + κn]

bn = b+ Ub, κn = Uκ, ζn = Uζ with U t
i ∼ U [−0.5; 0.5] i.i.d. across i, t
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(a) b = 0
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(b) b = −0.1 (angle 3◦)
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Q&A

Thank you for your attention!
avoronin@ucla.edu

I am grateful to Andres Santos, Denis Chetverikov, Bulat Gafarov, Zhipeng
Liao, Jinyong Hahn, Rosa Matzkin, Tim Armstrong, Shuyang Sheng, Kirill
Ponomarev, Manu Navjeevan and Daniel Ober-Reynolds as well as all the

participants of the 2024 California Econometrics Conference for the
valuable discussions and criticisms.

All mistakes are mine.
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Identification result in this paper

Outcome: Y ∈ Y ⊆ R, treatment: T ∈ T ⊆ R, covariates: Z ∈ Z ⊆ RdZ

T = O ⊔ U : if T ∈ U , Y - unobserved. For the talk, T = O.

Y =
∑
t∈T

1{T = t}Y (t)

Potential outcomes Y ≡ (Y (t))t∈T ∈ RNT

→ conditional moments m(P ) ≡ (EP [Y|T = d, Z = z])d∈T ,z∈Z

Target: β∗(P) = µ∗(P)′m(P) for identified µ∗ (e.g. ATE)
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Identification result in this paper

For identified matrices: A∗, Ã, vectors: b∗, b̃, the model is:

P∗ ≡ {P ∈ P|A∗(P )m(P ) + b∗(P ) ≥ 0, Ã(P )Y+ b̃(P ) ≥ 0 P -a.s.}

Split m(·) into identified x and counterfactual moments x:

x ≡ (E[Y (t)|T = t, Z = z])z,t, x ≡ (E[Y (t)|T = d, Z = z])z, t ̸=d

• A∗, Ã and FT,Z → identified M

• b∗, b̃ and FT,Z → identified c

• µ∗ and FT,Z → identified p, p

For any M∗, b∗ and relevant M̃, b̃, sharp identified set for β∗ is:

B∗ = {β ∈ R| inf
Mx≥c

p′x ≤ β − p′x ≤ sup
Mx≥c

p′x}
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Returns to education in Colombia

• Data: 664633 observations from Colombian labor force
• Variables: Saber test results (Z), average wages (Y ), schooling (S)
• Split Z into deciles
• Education levels T : primary, secondary, high school and university
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• AICM: (c)MIV + bounded outcomes + MTR (Y (t′) ≥ Y (t) if t′ > t)
• Result: university education → average wage ↑ by ≥ 5.91%
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Testing cMIV

1 2 3 4 5 6 7 8 9 10
Zi decile

8.35

8.40

8.45

8.50

8.55

8.60

8.65

E[
Y(

t)|
T

=
t,

Z
=

z i
]

t = 0
t = 1
t = 2
t = 3

(a) Estimated conditional moments

t Rst
t Rcrit

t;0.1 p-value nt

0 0.98 2.33 0.34 274295
1 -1.17 2.17 0.95 143299
2 -1.51 2.30 1.00 216336
3 1.86 2.38 0.08 30703

(b) Results of the monotonicity test. Columns:
2. estimated Chetverikov (2019) test-statistic;
3. 10% critical values, corresponding to 2.6%
individual critical value; 3. p-value against the
individual null. The overall p-value is 29%.
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Selecting a reasonable δ

Impossible to estimate, but can select a reasonable ”conservative” δ

Theorem 7 (Tao and Vu (2010))
Let Ξd be a sequence of d× d matrices with [Ξd]ij ∼ ξij , independently
across i, j where ξij are such that E[ξ] = 0, V ar(ξ) = 1 and E[|ξ|C0 ] < ∞ for
some sufficiently large C0, then:

√
dσd(Ξd)

d−→ Π (2)

• The distribution of ξij is any: possibly discrete, not identical.

• Normalize the matrix: ||M̂·j || = 1 for each row, or M̂ → M̂/σ̂(M̂)

• Pick δ =

(√
1−2 ln(1−α)−1

)2

√
d

- the α−quantile of Π (we use α = 0.2)

• Set wn = ||p̂n||δ−1 κn

κ100
for some κn → ∞, κn = o(

√
n).

UCLA



Proof of Lemma 2

Proof.
Let δ > 0 be a jump at P0. Construct a sequence {Pn} ⊂ P such that for some
0 < ϑ < 1:

||P0 − Pn||TV < ϑn−1 (3)

While ||V (P0)− V (Pn)|| > δ. Recall that:

||Pn
0 − Pn

n||TV ≤ n||P0 − Pn||TV (4)

It follows that:

||Pn
0 − Pn

n||TV ≤ ϑ (5)

Using the binary Le Cam’s method1, one obtains ∀n:

inf
V̂n

sup
P∈P

EP[||V (P)− V̂n(X(Pn))||] ≥ δ(1− ϑ)

2
(6)

Recalling that 0 < ϑ < 1 and δ were chosen arbitrarily and taking supremum over δ
as well as sending ϑ→ 0 yields the result.
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Proof of Lemma 1.i

If w in the linear penalty function is component-wise larger than the KKT
vector λ at a local minimum of the original problem, then this local minimum
is also a local minimum of the penalized unconstrained problem (see
Bertsekas (1975)). The claim then follows from the fact that any local
minimum of a convex program is also global.
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Proof of Lemma 1.ii

Suppose that (λ,w) are the KKT vector and the penalty vector that satisfy
Assumption A0 and x is the associated optimum of the initial LP and
B ≡ p′x. Note that one direction of ii) is trivial, since any x̃ that is optimal in
the initial problem yields the same value in the penalized problem.

For another direction, suppose x∗ is a local (global) minimum of the
penalized problem. If x∗ is feasible, it is also an optimum of the initial
problem. Suppose it is not feasible. By the assumption on (w, λ):

p′x∗ + w′(c−M ′x∗)+ > p′x∗ + λ
′
(c−M ′x∗) (7)

The definition of a KKT vector in Rockafellar (1970) also requires that:

B = inf
x∈RN(S−1)

p′x+ λ
′
(c−M ′x) ≤ p′x∗ + λ

′
(c−M ′x∗) (8)

Therefore,

B = p′x∗ + w′(c−M ′x∗) > p′x∗ + λ
′
(c−M ′x∗) ≥ B (9)

Which yields a contradiction, so there can be no such x∗. Thus, the sets of
optimal solutions coincide. Return
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Three forms of cMIV

Consider Z ∈ R and bounded outcomes Y (t) ∈ [K0,K1] a.s.

Assumption (cMIV-s)
Suppose that for any t ∈ T , A ⊆ T and z, z′ ∈ Z s.t. z′ > z we have:

E[Y (t)|T ∈ A,Z = z′] ≥ E[Y (t)|T ∈ A,Z = z] (10)

Assumption (cMIV-w)
Suppose MIV holds and for any t ∈ T and z, z′ ∈ Z s.t. z′ > z we have:{

E[Y (t)|T ̸= t, Z = z′] ≥ E[Y (t)|T ̸= t, Z = z] (11)

Assumption (cMIV-p)
Suppose MIV holds and for any t ∈ T , d ∈ T \ {t} and z, z′ ∈ Z s.t. z′ > z
we have:

E[Y (t)|T = d, Z = z]− monotone (12)

NB: |T | = 2 → cMIV-s ⇐⇒ cMIV-w ⇐⇒ cMIV-p
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cMIV bounds are tighter than MIV

Figure: Sharp bounds for a DGP satisfying cMIV

Sharp bounds:
• cMIV-p and cMIV-s → using Theorem 1: Corollary 1

• cMIV-w → simpler analytical form: Proposition 1
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cMIV in words

Let Y (t) be the individual’s wage, T ∈ {0, 1} - college degree, and Z - ability
(e.g. IQ).

MIV assumption implies that:
• ’Smarter’ individuals can do better both with and without a college

degree on average: E[Y (t)|Z = z] - monotone

cMIV additionally assumes:
• Among those who have a college degree, a ’smarter’ individual could

have done relatively better than their counterpart if both did not have it:
E[Y (0)|Z = z, T = 1] - monotone

• Among those who do not have a college degree, a ’smarter’ individual
could have done relatively better than their counterpart if both had it:
E[Y (1)|Z = z, T = 0] - monotone
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Example: education selection (1)

Suppose there is an innate ’effort’ level η s.t. η ⊥⊥ Z. Roy model:

Y (t) = β0(t) + β1(t)Z + β2(t)η + ε(t) (13)
T = 1{E[Y (1)− Y (0)|Z, η] + ν ≥ 0} (14)

where ε(t) ⊥⊥ (Z, T, η) and ν ⊥⊥ (Z, η, ε(·)).

Let δz ≡ β1(1)− β1(0) and δη ≡ β2(1)− β2(0) - the differential effects of Z, η.

MIV:

β1(t) ≥ 0, t = 0, 1 (15)

cMIV: MIV and

β1(0)z︸ ︷︷ ︸
direct effect

+β2(0)E[η|δzz + δηη + ν̃ ≥ 0]︸ ︷︷ ︸
selection given T = 1

−increasing (16)

β1(1)z︸ ︷︷ ︸
direct effect

+β2(1)E[η|δzz + δηη + ν̃ ≤ 0]︸ ︷︷ ︸
selection given T = 0

−increasing (17)
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Example: education selection (2)

cMIV: (15) and

β1(0)z︸ ︷︷ ︸
direct effect

+β2(0)E[η|δzz + δηη + ν̃ ≥ 0]︸ ︷︷ ︸
selection given T = 1

−increasing (18)

β1(1)z︸ ︷︷ ︸
direct effect

+β2(1)E[η|δzz + δηη + ν̃ ≤ 0]︸ ︷︷ ︸
selection given T = 0

−increasing (19)

Suppose β1(t), β2(t) ≥ 0, t = 0, 1

• δZ and δη have different signs → cMIV implied by MIV
• δZ and δη have the same sign → cMIV requires β1(t) to be larger

Takeaway:
• Z has to affect the potential outcomes directly and strongly enough
• In the presence of unobserved heterogeneity η with sgn(δη) = sgn(δZ),
Z ’s direct effect relative to its effect on selection must be greater than
that for η

In other words, Z should be relatively weak and strongly monotone
UCLA



Example: education selection (3)

1 Suppose education → jobs where ability Z gives a comparative
advantage δZ > 0, no education → jobs that are more effort-intensive
δη < 0.

Positive conditional association b/w Z, η:
• Given T = 0, Z ∼

+
η as else a higher Z-person would select into T = 1

• Given T = 1, Z ∼
+
η as else a higher η-person would select into T = 0

2 Suppose to get a degree one needs to be either hardworking or of high
ability:

T = 1{η + Z ≥ 0}

Negative conditional association b/w Z, η:
• Given T = 0, Z ∼

−
η as a higher Z person would have gotten a degree, if

not for lower effort
• Given T = 1, Z ∼

−
η as at higher Z one does not need to be as

hardworking to get a degree
Simulateneous equations
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Testing cMIV-p

Y (t) = f(t, Z, T, η, ξ) where η is an unobs. r. vector, noise ξ ⊥⊥ (T,Z, η)

Homogeneity of f(·) + MIV → cMIV-p is testable:

Proposition 1
Suppose that a): i) Y (t) = g(t, ξ) + h(t)ψ(Z, η), h(t) ̸= 0 and ii) MIV, strictly for zome
z, z′; or b): i) Y (t) = g(t, ξ, T ) + h(t)ψ(Z, η), ii) h(t)

h(d)
> 0 ∀t, d ∈ T and iii) MIV. Then

Assumption cMIV-p holds iff E[Y (t)|T = t, Z = z] are all monotone.

• MP (2009) discusses HLR: Y (t) = βt+ η under MIV =⇒ a.i) or b.i)

Using regression monotonicity (Chetverikov, 2019), will test:

H0 :E[Y (t)|T = t, Z = z]− monotone in z

Ha :o/w

• If H0 is not rejected and we believe in homogeneity - can assume cMIV

• Applied work has inspected this monotonicity w/o theoretical justification
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DGP for Figure 1

Y (t) = c+ αt+ βη + g(Z)

T = 1{ε+ f(Z) ≥ 0}
η = min{u,max{ε, l}}

ε ∼ N (0, 1)

With:

t = 0

[l, u] = [−4, 2]

z ∼ U [−1, 1]

f(z) = −2z4

g(z) = ln(z + 1.1)

β = 0.1

Return
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cMIV-p, cMIV-s sharp bounds

Suppose Z = {z1, z2, . . . , zN} ⊂ R, s.t. zi < zj for i < j and let S ≡ NT (NT − 1) and
xj ≡ (E[Y (t)|T = d, Z = zj ])

′
d ̸=t. Using Theorem 1:

Under cMIV-s and cMIV-p, sharp bounds on E[Y (t)] have the form:

min
Mx≥c


N∑

j=1

P [Z = zj ] · pj ′xj

+
N∑

j=1

P [T = t, Z = zj ]E[Y (t)|T = t, Z = zj ]

≤ E[Y (t)] ≤

max
Mx≥c


N∑

j=1

P [Z = zj ] · pj ′xj

+
N∑

j=1

P [T = t, Z = zj ]E[Y (t)|T = t, Z = zj ]

Where

M ≡


−IS . . . 0 0
GN −GN−1 . . . 0

...
. . .

. . .
...

0 . . . G2 −G1

0 . . . 0 IS

 , c ≡


−K1 · ιS
−∆cN

...
−∆c2
K0 · ιS

 , x =

 xN

...
x1



Gj, cj - cMIV-p Gj, cj - cMIV-s Return
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Gj, cj for cMIV-s

Let F ≡ 2T \ {{t}, ∅}. Let Q ≡ |F| = 2NT − 2. Fix the ordering of subsets of
F , so that F = {A1, A2, . . . AQ}.

E[Y (t)|T ∈ Ak, Z = zj ] ≥ E[Y (t)|T ∈ Ak, Z = zj−1], k = 1, . . . , Q, j = 2, . . . NZ

E[Y (t)|T = d, Z = zN ] ≤ K1, d ∈ T \ {t}
E[Y (t)|T = d, Z = z1] ≥ K0, d ∈ T \ {t}

The whole set of information given by cMIV-s can be represented as follows:

Gjx
j −Gj−1x

j−1 ≥ −∆cj , j = 2, . . . , NZ

xN ≤ K1ι

x1 ≥ K0ι

Where:

Gj ≡
(
1
{
d ∈ Ak

} P [T = d|Z = zj ]

P [T ∈ Ak|Z = zj ]

)
k∈1,Q,d̸=t

∈ RQ×(NT−1)

cj ≡
(
1
{
t ∈ Ak

} P [T = t|Z = zj ]

P [T ∈ Ak|Z = zj ]
E[Y (t)|T = t, Z = zj ]

)
k∈1,Q

∈ RQ

Return
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Gj, cj for cMIV-p

cMIV-p implies:

E[Y (t)|Z = zj ] ≥ E[Y (t)|Z = zj−1], j = 2, . . . NZ

E[Y (t)|T = d, Z = zj ] ≥ E[Y (t)|T = d, Z = zj−1], d ∈ T \ {t}, j = 2, . . . NZ

E[Y (t)|T = d, Z = zN ] ≤ K1, d ∈ T \ {t}
E[Y (t)|T = d, Z = z1] ≥ K0, d ∈ T \ {t}

The whole set of information given by cMIV-s can be represented as follows:

Gjx
j −Gj−1x

j−1 ≥ −∆cj , j = 2, . . . , NZ

xN ≤ K1ι

x1 ≥ K0ι

Recall that pj ≡ (P [T = d|Z = zj ])d̸=t and we have:

Gj ≡
(

pj ′

INT−1

)
∈ RNT×(NT−1)

cj ≡
(
P [T = t|Z = zj ]E[Y (t)|T = t, Z = zj ]

0NT−1

)
∈ RNT−1

Return
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Analytical sharp bounds under cMIV-w

Denote ℓj , ℓ
−t
j - s.l.b. for E[Y (t)|Z = zj ] and E[Y (t)|T ̸= t, Z = zj ], then:

If i) cMIV-w holds or ii) T ∈ {0, 1} and cMIV-s holds, then ℓ−t
1 = K0,

ℓ1 = P [T = t|Z = z1]E[Y (t)|T = t, Z = z1] + P [T ̸= t|Z = z1]K0 and for j ≥ 2:

∆ℓj =
(
∆P [T ̸= t|Z = zj ]ℓ

−t
j−1 + δj

)+
(20)

∆ℓ−t
j =

1

P [T ̸= t|Z = zj ]

(
∆P [T ̸= t|Z = zj ]ℓ

−t
j−1 + δj

)−
(21)

Where:

δj ≡ ∆ {P [T = t|Z = zj ]E[Y (t)|T = t, Z = zj ]} (22)

Sharp upper bounds ui, u
−t
i are obtained analogously. Moreover,

N∑
i=1

P [Z = zi]ℓi(t) ≤ E[Y (t)] ≤
N∑
i=1

P [Z = zi]ui(t) (23)

In the absence of additional information, these bounds are sharp. Return

UCLA



Simultaneous equations

qk(p) = αk(p) + βk(p)Z + γk(p)η + κk(p)εk, k ∈ {s, d}

P ∈ {p ∈ R|E[qs(p)|Z, η] = E[qd(p)|Z, η]},

where η is unobserved with E[η|Z = z] = 0, and E[εk] = 0, εk ⊥⊥ (η, Z, ε−k).

• All functions are continuous, support is full (for illustrative purposes)
• Define δz(p) ≡ βs(p)− βd(p) and δη(p), with δp(p) ≡ αs(p)− αd(p)

• The model is complete and coherent iff:
1 δp(p) is strictly increasing;
2 δη(p) and δZ(p) are constant

• For concreteness, βs(p), γs(p) > 0, and we want to estimate E[qs(p)]

(MIV ) : βs(p) ≥ 0, ∀p

(cMIV ) : (MIV ) +

∣∣∣∣βs(p)− βd(p)

βs(p)

∣∣∣∣ ≤ ∣∣∣∣γs(p)− γd(p)

γs(p)

∣∣∣∣ ∨ sgn(δη) ̸= sgn(δz)

Same idea: cMIV requires the instrument to be relatively weak and strongly
monotone. Return
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