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Abstract

The bounds on a parameter of interest in partially identified settings are often
given by the values of linear programs. This paper studies estimation and inference
for the value B(θ) = minMx≥c p′x, where θ = (p, M, c) is estimated. We develop
the first

√
n−consistent estimator that does not require additional restrictions.

Unlike existing methods, our estimator remains valid under point-identification,
over-identifying constraints and solution multiplicity. Exact and computationally
simple inference procedure is developed. Turning to uniform properties, we prove that
there exists no uniformly consistent estimator absent further conditions. We propose
the ‘δ−condition’, under which our estimator is uniformly consistent. δ−condition
does not rule out economically relevant problematic scenarios, covers the unrestricted
set of measures in the limit, and is strictly weaker than all previously proposed
restrictions. We complement our estimation approach with a general identification
result for models described by affine inequalities over conditional moments (AICM),
potentially augmented with relevant almost sure restrictions on the potential outcomes
and missing data conditions. Sharp bounds on affine treatment parameters under
AICM are shown to take the form of B(θ). Our results allow applied work to
employ previously intractable conditions, including arbitrary combinations of existing
restrictions, and conduct sensitivity analysis. We apply our findings to estimating
returns to education. For that, we develop the conditionally monotone IV assumption
(cMIV) that tightens classical bounds. We argue that cMIV remains unrestrictive
relative to the classical conditions and provide a formal test for it. Under cMIV,
university education in Colombia is shown to increase the average wage by at least
5.91%. In contrast, classical conditions fail to produce an informative bound.

1. Introduction

Nonparametric bounds analysis offers a powerful alternative to classical causal inference
methods in the absence of a credibly exogenous instrument. In many cases, sharp bounds

∗Department of Economics, UCLA. Email: avoronin@g.ucla.edu. I am grateful to Andres Santos,
Denis Chetverikov, Rosa Matzkin, Jinyong Hahn, Bulat Gafarov, Tim Armstrong, Kirill Ponomarev,
Shuyang Sheng and Manu Navjeevan as well as to all the participants of the 2024 California Econometrics
Conference and the 2024 European Winter Meeting of the Econometric Society for the valuable discussions
and criticisms.

1

https://drive.google.com/drive/folders/1YWePWyIWTj69OmECbR5a7Ljh6lBZJl8d?usp=share_link
avoronin@g.ucla.edu


on the partially identified parameter of interest are given by the values of linear programs
(LP) that depend on identified functionals of the underlying probability measure. The
bound of interest is a feature of a probability measure, B(P) = B(θ0(P)), of form:

B(θ) ≡ min
Mx≥c

p′x (1)

where θ0(P) is the true value of the parameter θ = (p′, vec(M)′, c′)′, estimated from the
data via a

√
n-consistent estimator θ̂n. In that context, ΘI = {x ∈ Rd : Mx ≥ c} is the

identified set for the partially identified feature x.
The problem (1) exhibits non-regular behavior. The most problematic scenario occurs

when the model is close to point-identification along some feature x. In that case the
quality of existing estimators is severely reduced. This results in an unattractive tradeoff
between identification power and estimation quality for partially identified models. Figure
1 illustrates this.

To address that issue, we develop the debiased penalty function estimator B̂(θ̂n;wn),
where:

B̂(θ;w) ≡ sup
x∈Ã(θ;w)

p′x, Ã(θ;w) ≡ arg min
x∈X

p′x+ wι′(c−Mx)+, (2)

and wn → ∞ is the penalty parameter, with wn <<
√
n. Only assuming that ΘI is non-

empty and contained in a known compact X , we show that B̂(θ̂n;wn) is
√
n−consistent for

any wn satisfying the above conditions1. In contrast, other recently developed estimators
are either not applicable under no further assumptions, or inconsistent for B(θ0). For
example, the plug-in estimator B(θ̂n) is not consistent and may also fail to exist with
arbitrary non-vanishing probability. An alternative estimator that we develop based on
set-expansion theory is only

√
n/κn-consistent for some κn → ∞.
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Figure 1: Comparison of estimators for two measures with the true values of 0 and −1,
left to right. Average values over 400 simulations.

1The selection of this parameter and its relation to uniform properties of the estimator is discussed in
the Appendix in great detail.
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We obtain an asymptotically normal version of our estimator via sample-splitting and
construct confidence regions with exact coverage. The previously suggested resampling
methods applied to B(θ̂n) are shown to be inconsistent for the distribution even when
the model is far from point-identification, while other recently developed procedures are
either not applicable or asymptotically conservative.

Using an equivalence between unconstrained piecewise-linear problems and auxiliary
linear programs, one can compute our exact penalty estimator in polynomial time using a
LP solver. This, combined with the closed-form expression for the asymptotic variance,
makes our inference procedure the most computationally efficient in the existing literature2.

Turning to uniform asymptotic theory, we first establish that there exists no uniformly
consistent estimator of B(P) over the unrestricted set of measures P. We propose to
consider the ‘δ−condition’, restricting P to Pδ - the measures at which the smallest
singular value of a full-rank submatrix MJ∗ of constraints binding at an optimal vertex
is lower bounded by δ > 0. This condition is minimal in a sense that for any measure
P ∈ P there exists δ > 0 such that P ∈ Pδ, i.e. the condition spans the unrestricted set in
the limit:

⋃
δ>0 Pδ = P. In contrast to conditions found in previous work, for reasonable

values of δ, this restriction does not rule out economically relevant problematic scenarios,
such as solution multiplicity, point-identification and over-identification. Our estimator is
shown to be uniformly consistent over Pδ for any fixed δ > 0.

We complement our estimation results by developing a general identification framework
in Section 3. In particular, we derive sharp bounds for a broad class of treatment
parameters of interest3 under arbitrary affine inequalities over conditional moments
(AICM), potentially augmented with affine almost sure restrictions and missing data
conditions. In the simplest case, AICM identifying restrictions have the form:

M∗(E[Y (d)|T = t, Z = z])d,t,z + b∗ ≥ 0 and M̃(Y (d))d + b̃ ≥ 0 a.s., (3)

where (Y (d))d are continuous potential outcomes corresponding to the legs of treatment T
and Z are other covariates. Identified matrices M∗, M̃ and vectors b∗, b̃ are chosen by the
researcher. Our approach accommodates arbitrary combinations of existing ‘nonparametric
bounds’ restrictions, allows to conduct sensitivity analysis, and extends to more complex
conditions where sharp bounds were previously unavailable4. We show that under (3)
the sharp lower (upper) bound on the parameter of interest corresponds to the minimum
(maximum) value of a linear program (LP), whose parameters are learned from the data,
as in (1). In the context of AICM, θ is a function of observed conditional moments
(E[Y |T = t, Z = z])t,z and the identified joint distribution of T,Z, while x collects relevant
unobserved conditional moments.

Finally, we develop an application of our approach to estimating returns to education in
Colombia. To that end, in Section 4 we first introduce a family of conditionally monotone

2Both Gafarov (2024) (BG) and Cho and Russell (2023) (CR) rely on resampling methods, which
require to compute one or multiple LPs at each iteration. Computing a confidence interval for a LP with
32 variables takes 16.81 seconds with the approach of BG and 40.65 seconds with the approach of CR,
according to Cho and Russell (2023). Our approach requires computing a LP once, which takes around
0.0022 seconds on average.

3Including ATE and CATE, among other typically studied parameters, see Section 3.
4For example, cMIV and the mixture of all classical Manski and Pepper (2000) conditions, see below.
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instrumental variables assumptions (cMIV), nested in (3), that impose:

E[Y (t)|T ∈ A,Z = z] − monotone in z,

where (Y (t))t∈T are potential log-wage schedules corresponding to education levels T , and
Z is a proxy of ability based on Saber test scores. Sets A parametrize different versions
of cMIV and are chosen by the researcher5. The conditions we consider result in tighter
bounds than those obtained under the classical monotone instrumental variables (MIV)
assumption of Manski and Pepper (2000), and sharp bounds under cMIV are infeasible
with previously developed methods. We argue that cMIV conditions, however, remain
unrestrictive in many applications, including ours. While empirical literature has visually
examined the monotonicity of the observed conditional moments, i.e. A = {t}, to justify
applying MIV6, we show that such monotonicity is instead equivalent to a particular form
of cMIV given that MIV holds and under a mild regularity condition. The formal test of
cMIV is obtained as an extension of Chetverikov (2019). When estimating the returns
to education in Colombia using cMIV, we find that the effect of obtaining university
education on average wage is at least as large as 5.91%. In contrast, the classical conditions
fail to produce an informative bound.

This paper also contributes multiple auxiliary results. The first one is concerned with
an important special case of (3) - the combination of all classical Manski and Pepper
(2000) conditions. Since such combination possesses the greatest identifying power out of
all classical restrictions, empirical work has attempted to use it even in the absence of a
theoretical justification, obtaining bounds that were either not sharp, or invalid (Lafférs,
2013). Our method yields sharp bounds and a valid estimation procedure for that setting.
Our second auxiliary result is a negative consequence of Le Cam’s binary method. We
show that if the estimand is a discontinuous functional of the probability measure, there
can exist no uniformly consistent estimator. The third auxiliary contribution is relevant to
the control theory literature studying ℓ1-penalized solutions of system of linear inequalities.
It is shown that the ℓ1-deviation ι′(c−Mx)+ from a non-empty and bounded polytope
ΘI = {x ∈ Rd : Mx ≥ c} is bounded from below by d(x,ΘI )κ(ΘI )

d . Here κ(ΘI) is what we
term the condition number of a polytope - the smallest positive singular value across its
vertices.

We briefly note the limitations of our approach. On the identification side, the absence
of restrictions on treatment selection prevents us from studying more granular parameters,
such as marginal treatment responses. Furthermore, our identification results are given for
discrete treatment and instrument. An extension to the continuous case is feasible, but is
outside the scope of this paper7. On the estimation side, while our estimator is pointwise√
n−consistent in general, we only establish

√
n/wn-uniform consistency for a slowly

diverging sequence wn
8. We provide further evidence on the uniform rate of consistency in

Appendix. A theoretically
√
n−uniformly consistent estimator follows from our analysis,

but it depends on an unobserved parameter δ that seems impossible to estimate, so we
5We study various possibilities, e.g. all singletons {d} and the full support T . See Section 4 for details.
6This is true of De Haan (2017), among others.
7Even when continuous identification results are available, in practice estimation is still carried out

with discretized covariates. This is true for all empirical work referenced below.
8Theoretically, wn can diverge arbitrarily slowly. Practical guidance on its selection is provided below.
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do not recommend using it in practice. Finally, while our inference procedure naturally
extends to uniform setup under sufficient regularity conditions, exploring this is left for
future work.

Relationship to literature

The strand of literature relevant to the estimation of (1) is concerned with statistical
inference in the LP estimation framework. Semenova (2023) considers a LP with an
estimated constraint vector c, but a fixed matrix M and a coefficient vector p. Mogstad,
Santos and Torgovitsky (2018) develop a consistent estimator for problems with fixed
constraint sets ΘI . Methods developed under a fixed M assumption cannot be easily
extended to the completely-perturbed setting, as will become evident in Section 2. Syrgka-
nis, Tamer and Ziani (2021) develop a testing procedure for the failure of LP feasibility.
Gafarov (2024) develops uniform inference for a LP described by affine inequalities over
unconditional moments, provided uniform Linear Independence Constraint Qualification
(LICQ) and Slater’s condition hold. This approach is problematic under AICM for three
reasons. Firstly, θ is not a linear function of unconditional moments. Secondly, Slater’s
condition fails close to point-identification along some dimension, which may occur for
a rich enough AICM. Thirdly, LICQ can be violated in the parameter-on-the-boundary
scenario (see Andrews (1999) and Fang and Santos (2018)), which is relevant in the AICM
models and corresponds to over-identification at the optimum. Andrews, Roth and Pakes
(2023) develop uniform inference in a special case of LP estimation framework, which
arises from their model. In their problem, the Slater’s condition always holds and θ has
a particular structure, making their findings hard to generalize. Cho and Russell (2023)
introduce random distortions to the LP and leverage genericity results to establish uniform
Hadamard differentiability of the resulting problem. This allows to derive uniformly
conservative confidence regions for B(P). We do not find this approach satisfactory in our
application for four reasons. Firstly, as the approach of Gafarov (2024), it only applies to
unconditional population moments. Secondly, zero local power may be more problematic
in settings where the identifying power of restrictions is low to begin with, as may be
the case with more robust AICM models. Thirdly, their approach relies on an arbitrarily
selected bound for the support of the generated noise with little practical guidance as to
its selection, and on a single realization of the noise itself, making it very susceptible to
p−hacking. Lastly, the approach of Cho and Russell (2023) is, in fact, only practical in
situations in which the Slater’s condition holds. Otherwise, the procedure is based on
another tuning parameter with no guidance on its selection. Our simulations demonstrate
that this parameter is far from being innocuous, as the performance of the proposed
estimator ranges from very conservative to invalid even in large samples, if that parameter
is adjusted9.

Partially identified models which result in bounds of form (1) are described in the
review article by Kline and Tamer (2023). We discuss a subset of these models to motivate
our approach. The nonparametric bounds analysis was pioneered by Manski (1997) and
Manski and Pepper (2000, 2009). In Blundell et al. (2007) wages are only observed for
employed individuals, prompting an extension of the approach to missing data. Boes

9In fact, this is exactly what motivates us to work under wn → ∞ asymptotics, instead of considering
a fixed w.
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(2009) considered ’parabola-shaped’ IV, Siddique (2013) introduced a non-parametric Roy
model and a simple cMIV in a 2 × 2 × 2 case with random treatment assignment. Kreider
et al. (2012) introduced corrections for under-reporting. De Haan (2017) applied the
classical conditions to estimating the effect of providing secondary schools with additional
resources for low-ability pupils, while Cygan-Rehm, Kuehnle and Oberfichtner (2017)
considered the effect of unemployment on mental health. All of these cases are nested in
AICM framework, and our sharp bounds often improve the bounds derived in these papers.
To compute the bounds, the above papers use the plug-in estimator B(θ̂n) combined
with bootstrap described in Imbens and Manski (2004) for inference. Our results on the
estimation of (1) show that these procedures are only valid under strong assumptions
that do not appear to be justified in these applications. Our estimator B̂(θ̂n;wn) and the
developed inference procedure resolve that issue.

AICM approach complements the method of Mogstad, Santos and Torgovitsky (2018),
who develop identification theory for generalized IV estimators and obtain bounds in
form (1). By virtue of imposing a Heckman and Vytlacil (1999, 2005) treatment selection
mechanism and working in the binary treatment case, they accommodate arbitrary a.s.
restrictions on the shape of the marginal treatment response functions and produce bounds
for a wider family of treatment parameters. Additive separability in treatment selection is
equivalent to the Imbens and Angrist (1994) IV conditions under instrument exogeneity
(Vytlacil, 2002). Even though our approach nests mean-independence conditions, it appears
most useful when an IV is not available. For that reason, a separable selection mechanism
is not justified for AICM10. AICM is not related to the model in Andrews, Roth and Pakes
(2023) other than by virtue of resulting in bounds of form (1). While our inequalities are
imposed over affine combinations of counterfactual conditional moments, the latter work
effectively generalizes the regression framework to moment inequality restrictions on the
error term. We are not aware of conditions, similar to those in Imbens and Angrist (1994),
that would allow to state linear conditional moment inequalities models in the potential
outcomes form.

Notation

All vectors are column vectors, and M ′ denotes the transpose of M ∈ Rn×m. If A is a
set, A′ stands for its complement. A collection (x(j))j∈J is a column vector. 2A denotes the
powerset of set A, and m, n is the collection of integers from m to n. × is a Cartesian product
of sets, while ⊗ is the Kronecker product. The sign ⊔ denotes a disjoint union. Signs ∧ and
∨ stand for logical ‘and’ and ‘or’ operators respectively. If M is a m × n matrix and A ⊆ 1, n,
MA is the |A| × n submatrix of the rows with indices in A. If j ∈ 1, n, write Mj ≡ M ′

{j}.
R(M) stands for the range of M , and σd(M) is the d−th largest singular value of M . The
distance between a point x and a set A is written as d(x, A) ≡ inf{||x − a|| : a ∈ A}, and
dH(A, B) ≡ max{supb∈B d(b, A), supa∈A d(a, B)} is the Hausdorff distance between sets A, B in
a normed space. For a subset A of normed space S, Aε ≡ {s ∈ S : d(s, A) < ε} is its open
expansion. Int(A) and Cl(A) are the interior and closure of A, while Cone(A) is its convex cone.

10Thus, if one is faced with i) a binary treatment setup, ii) has a valid IV and iii) no outcomes’ data is
missing, the method of Mogstad, Santos and Torgovitsky (2018) may be used. If any of these conditions
fail, our approach is an alternative.
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If A is a matrix, Cone(A) ≡ Cone(R(A)). s(x, A) = max
a∈A

x′a for a compact A ⊆ Rd and x ∈ Rd

is a support function. For v = (vj)
j∈1,d

, define v+ ≡ (max{vj , 0})
j∈1,d

. For v, u ∈ Rd vector
inequalities v > u and v ≥ u mean vi > ui ∀i ∈ 1, d and vi ≥ ui ∀i ∈ 1, d respectively. ιd ∈ Rd

is a vector of ones, Id ∈ Rd×d is the identity matrix, and the subscript is dropped occasionally.
Operator EP is the expectation under a measure P ∈ P, and the subscript is dropped whenever
it does not cause confusion.

2. LP estimation framework

Parameters of interest can be represented as a value of a LP in many applications,
most prominently in partial identification (see Mogstad, Santos and Torgovitsky (2018)
and Andrews, Roth and Pakes (2023), among others). As shown in Section 2, that is
also true for the sharp bounds on treatment parameters under the general class of AICM
assumptions. This section develops asymptotic theory for such problems. We derive
asymptotic results under the most general conditions, so that our estimation procedures
remain useful even outside our identification framework. Throughout this section, we
study the parameter of interest B(θ) of the following type:

B(θ) ≡ min
Mx≥c

p′x (4)

where θ ≡ (p′, c′, vec(M)′)′ denotes the vector of all parameters of the initial linear
program. Here M is a q×d matrix, c ∈ Rq and p ∈ Rd. The true value of these parameters
at a fixed true measure will be denoted by θ0 ∈ RS , where S = qd+ q + d. The value of
interest is therefore B(θ0).

Remark. Notice that (4) does not rule out equality constraints. That is because Ax =
b ⇐⇒ Ax ≥ b ∧ −Ax ≥ −b.

We denote the constraint set by ΘI(θ) ≡ {x ∈ Rd|Mx ≥ c} and omit the argument
when θ0 is concerned. In the context of identification results in Section 3 of this paper
and in other applications (e.g. Mogstad, Santos and Torgovitsky (2018)), the set ΘI is
the identified set for an unobserved feature x of the underlying distribution.

Assumption A0 is maintained throughout this section, while the rest of the conditions
are spilled out explicitly.

Assumption A0 (Pointwise setup). Suppose that at the fixed true parameter θ0:

i) The identified set is non-empty, ΘI(θ0) ̸= ∅, and ΘI(θ0) ⊆ X for a known compact X

ii) There is a
√
n-consistent estimator θ̂n ≡ (p̂′

n, ĉ
′
n, vec(M̂n)′)′:

||θ̂n − θ0|| = Op(1/
√
n)

Our baseline setup therefore assumes that at the fixed true parameter θ0 the identified
set ΘI for the feature x is non-empty. Intuitively, this means that the underlying model
cannot be rejected, and does not imply that the identifying restrictions are correctly
specified. Existence of a fixed known compact X that contains ΘI is a mild restriction,
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which is usually warranted in applications. Similarly, a
√
n−consistent estimator for θ0

typically follows from CLT and the Delta-Method11.
The following two solution sets will prove useful in the further discussion:

A(θ) ≡ arg min
Mx≥c

p′x, Λ(θ) = arg max
M ′λ=p

c′λ.

Let us first introduce some terminology.

Definition. Slater’s condition (SC) is the assertion that Int(ΘI) ̸= ∅.12

Intuitively, SC demands that there be no point-identification along any dimension of
the identified set. This, of course, also precludes the situation of exact point-identification,
in which ΘI is a singleton. It can be shown that an ‘approximate’ failure of SC may also
be a problem for the existing methods in finite samples, so that a stronger version of SC
is usually imposed, see Gafarov (2024).

Definition. Linear independence constraint qualification (LICQ) is the assertion that
the submatrix of binding constraints at any optimum is full-rank.

LICQ precludes the existence of overidentifying constraints. It can be problematic
in rich AICM models, for example, if more than d constraints coincide at the optimum.
Alternatively, one may think that it rules out the parameter-on-the-boundary scenario in
Andrews (1999).

Definition. The notion of flat faces refers to the situation where |A(θ0)| ≠ 1.

Intuitively, this corresponds to solution multiplicity, namely the situation in which the
bound on the parameter of interest is achieved at multiple partially identified features x.

Remark. Assumption A0 does not impose LICQ, nor SC and does not rule out the flat
faces. These typically imposed conditions are discussed as a motivation for our approach.

Estimation and inference for a LP value are complicated by the fact that under
assumption A0 the value function B(·) may not be continuous at the true parameter value
if SC fails. The plug-in estimator is therefore not necessarily pointwise-consistent.

Proposition 1. If SC fails for ΘI(θ0), B(θ̂n) is not, in general, consistent for B(θ0).
Moreover, B(θ̂n) may fail to exist with non-vanishing probability asymptotically.

Proof. We provide a simple example. Suppose:

B(b) = min
x,y

x s.t. : y ≥ (1 + b)x, y ≤ x, x ∈ [−1; 1],

11The
√

n-consistency requirement straightforwardly generalizes to rn-consistency for some rn → ∞.
We focus on the former case for clarity.

12Although our approach nests equality constraints, this definition of SC does not account for it. While
it is done for simplicity, we note that in the presence of ‘true’ equalities Ax = b, the definition of SC
should be stated in terms of Relint. In other words, point-identification along ‘true’ equalities is not
problematic. The same disclaimer applies to LICQ.
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Figure 2: The first example in Proposition 1, minimizing x s.t. the constraints.

with b estimated via bn = 1
n

∑n
i=1 Ui and Ui ∼ U [−1; 1] i.i.d. Here, θ = b and θ̂n = bn.

In the population, the optimal value is −1 attained at x = −1, y = −1. It is, however,
straightforward to see that the plug-in estimator collapses to:

B(bn) = −I{bn ≥ 0} ↛ −1 in probability

For the second part, consider:

B(a) = min
x,y

x s.t. : y ≥ x+ a, y ≤ x, x ∈ [−1; 1], (5)

where a is estimated via an = 1
n

∑n
i=1 Ui with Ui as before. For the realisations with

an > 0, the estimator does not exist. That happens with probability 1/2. ■

Figure 2 illustrates the Proposition 1. In this section we attempt to address this finding
by first developing two novel consistent estimators of the value function of a random
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LP under A0. Section 2.1 proposes the penalty function estimator that is shown to be√
nw−1

n -consistent for any diverging wn = o(
√
n). We then construct the debiased penalty

estimator that achieves
√
n-consistency in general. The estimator based on set expansions

à la Chernozhukov, Hong and Tamer (2007) is also developed, but it is shown to converge
only at

√
nκn for κn → 0+, κ−1

n = o(
√
n).

Turning to inference in Section 2.2, we observe that even if SC holds, it is only under
further assumptions of LICQ and solution uniqueness that the plug-in estimator combined
with bootstrap, as used in practice, is consistent for the distribution. This is because
empirical literature applied the approach of Imbens and Manski (2004) to the estimation of
AICM models without justifying Assumption 1.i) in that paper. This assumption actually
fails when LICQ fails or in the presence of flat faces, because B(θ) is only Hadamard
directionally differentiable in θ. If θ̂n is asymptotically normal, Theorem 3.1 from Fang
and Santos (2018) establishes that bootstrap is not consistent for the distribution. We
then construct a robust exact inference procedure based on the debiased penalty function
estimator using sample splitting. A closed-form expression for the asymptotic variance is
provided.

In Section 2.3 we proceed to show that under a uniform version of Assumption A0 there
exists no uniformly consistent estimator, because the value function viewed as a functional
from the space of probability measures has a discontinuity at some measure. As in certain
contexts the Slater’s and LICQ conditions typically used to warrant the continuity of
B(θ) may be too strong, we characterize a broader class of probability measures under
which a uniformly consistent estimator exists. The proposed δ−condition is strictly weaker
than either a uniform Slater’s condition or a uniform LICQ (e.g. in Gafarov (2024)). In
Section 2.4 it is shown that even the biased penalty function approach is

√
nw−1

n -uniformly
consistent over the class of DGPs satisfying it for any diverging wn = o(

√
n), whereas the

plug-in still fails to be pointwise consistent. The debiased estimator is shown to enjoy
a uniform rate of at least

√
nw−1

n under a mild regularity condition in Section 2.5. An
investigation as to whether the pointwise

√
n-rate is achievable uniformly is provided

in the Appendix. As to the selection of wn, in Appendix we leverage the insights from
random matrix theory (Tao and Vu, 2010) to suggest a reasonable candidate that balances
finite-sample performance and uniform validity and performs well in our simulations.

2.1. Consistent estimators

2.1.a. Penalty function approach. We now derive a consistent penalty functions-based
estimator. The idea is to restate (4) as an unconstrained penalized problem, so let us
define:

B̃(θ;w) ≡ min
x∈X

L(x; θ, w), Ã(θ;w) ≡ arg min
x∈X

L(x; θ, w), (6)

L(x; θ, w) ≡p′x+ w′(c−Mx)+.

B̃(·) is our preliminary estimator, which we term the biased penalty function estimator.
Note that L(x; θ, w) = p′x at any x, such that Mx− c ≥ 0, i.e. the penalized function is
equal to the objective function whenever the constraint in (4) holds.
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We consider the following preliminary estimator:

B̃n ≡ min
x∈X

L̂n(x), L̂n(x) = p̂nx+ w′(ĉn − M̂nx)+.

Assumption A1 (Penalty parameter). The vector of penalties w ∈ Rq is such that at
θ0 in the initial L.P. ∃λ∗ ∈ RQ

+ - a vector of Lagrange multipliers at the optimum, such
that:

wi > max
j

{λ∗
j }, i ∈ 1, q

Remark. Note that it is not necessary for w to be component-wise larger than all
Lagrange multipliers at the optimum of the initial L.P. Further note that in cases where it
is known that i) B(θ0) < K for some K > 0 and ii) c > c > 0 for some c > 0, Assumption
A1 is satisfied by w = ιK/c.

Condition A1 ensures that, at the true value of θ0 the unconstrained minimum of L(·)
coincides with the value of the original linear program:

Lemma 1. In general, the biased penalty function is conservative in the sense that:

B̃(θ;w) ≤ B(θ) ∀w ∈ R+,∀θ ∈ RS . (7)

Moreover, for (θ0, w) satisfying A1: i) (7) holds with an equality, and ii) optimal solutions
coincide, Ã(θ0;w) = A(θ0).

Proof. In the Appendix. ■

The deterministic result in Lemma 1, combined with the observation that the value function
converges uniformly establish that the biased penalty function estimator is consistent
under A1:

Proposition 2. Under Assumption A1, B̃n is consistent, i.e.:

B̃n
p−→ B(θ0) = min

Mx≥c
p′x

Proof. In the Appendix. ■

It might therefore seem that w should be selected to be as large as possible. However,
this yields a generally inconsistent estimator if SC fails. Let us return to the first example
in Proposition 1 for illustration. Suppose we set w > 1. In light of Lemma 1, the penalty
estimator selects an incorrect optimum of 0 when bn < 0 and w > |b−1

n |, because the
sample Lagrange multiplier is proportional to b−1

n in this case. So, although for any fixed
w at a large enough sample size |1/bn| will exceed it with high probability and the correct
minimum of −1 will be selected, it is not the case in finite samples. This observation
justifies the need for a careful consideration of w → ∞ asymptotic theory.

We now observe that the penalty parameter can in fact be allowed to diverge at the
rate dominated by

√
n. Consider a non-decreasing wn > 0, and substitute it instead of
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the fixed w, so that:

B̃n(θ̂n, wn) ≡ min
x∈X

p̂′
nx+ wnι

′(ĉn − M̂nx)+

We obtain the following result:

Theorem 1. For any wn → ∞ w.p. 1 as. with wn√
n

p−→ 0, we have:

|B̃n(θ̂n, wn) −B(θ0)| = Op

(
wn√
n

)
Proof. In the Appendix. ■

Remark. By wn → ∞ w.p. 1 as. we mean that ∀M > 0 P[wn > M ] → 1.

Remark. Theorem 1 provides a generally pointwise-consistent estimator for B(θ0). The
only condition for consistency is our baseline Assumption A0.

The discussion of uniform asymptotic theory that follows sheds further light on the
issue of selecting the level of wn. Based on it, we develop a practical approach to its
selection in the Appendix.

Careful investigation of the proofs above reveals that the rate at which the penalty
function estimator converges is determined by the Op(1/

√
n) penalty term multiplied by

an exploding sequence wn. Therefore, a reasonable question to ask is whether
√
n−rate

could be restored by dropping that term. We show that this can be done. Before we
proceed, let us make the following simplification. Without loss of generality, suppose:

p̂n = p − non-random. (8)

To see why this is possible, note that one can in general put p = e1 - the first basis vector,
adding an auxiliary variable for the value of the problem in the first position of x. See
Gafarov (2024) for details.

The following theorem, although its statement appears similar to that of Theorem
1, is perhaps the most mathematically challenging contribution of this paper. Its proof
requires a careful examination of the finite-sample behavior of a penalty function estimator
and leverages multiple eqiuvalences between the penalty-function estimator and auxiliary
piecewise-linear and linear programs.

Theorem 2. Suppose A(θ0) ⊆ Int(X ). For any wn → ∞ w.p. 1 as. with wn√
n

p−→ 0:

sup
x∈A(θ̂n,wn)

|p′x−B(θ0)| = Op

(
1√
n

)

Proof. In the Appendix. ■

Intuitively,
√
n−consistency follows because with high probability asymptotically the

penalty function estimator manages to select ‘a correct face’ of the polytope in some sense.

12



We proceed to show that any ‘correct face’, which is not necessarily a vertex nor an actual
face of the true polytope, converges at the rate of

√
n in some metric.

Remark. The result in Theorem 2 is uniform over the argmin set, so in the context of
lower bound estimation one may use supÃ(θ̂n;wn) p

′x to obtain the tightest bound.

The latter observation motivates us to define the debiased penalty function estimator
as follows:

B̂(θ̂n;wn) ≡ max
x∈Ã(θ̂n;wn)

p′x.

The next subsection explores an alternative approach to constructing a consistent LP
estimator. However, the estimator it produces has a conservative rate, and we therefore
advocate using B̂(·) for estimation instead.

2.1.b. Set expansions approach. Proposition 1 highlights that the plug-in estimator fails
whenever the constraint set has an empty interior. For completeness of our argument, we
develop a natural alternative to the penalty function estimator - the set-expansion approach.
The idea here is to enlarge ΘI by relaxing each inequality constraint with a sequence κn

13.
The resulting estimator has the flavor of the approach in Chernozhukov, Hong and Tamer
(2007). Intuitively, it enforces SC at the cost of producing a potentially conservative
estimate. We show that, in general, this estimator can indeed have a conservative rate,
and thus we do not advocate its use in practice.

The approach in this section is first to prove that the appropriately extended identified
set converges to the population identified set in Hausdorff distance, and then use uniform
continuity of the criterion function as well as its resemblance to the support function to
establish the convergence of the estimator itself.

Consider the following criterion function and its sample analogue:

Q(x) ≡ ||(Mx− c)−||2, Q̂n(x) ≡ ||(M̂nx− ĉn)−||2

Denote the identified set as ΘI ≡ {x ∈ X |Q(x) = 0} = {x ∈ X |Mx− c ≥ 0}.

Lemma 2. ||Q̂n(x) −Q(x)||∞
p−→ 0, where || · ||∞ is over ΘI .

Proof. See Appendix. ■

Analogously to the proof of Lemma 3, one shows that because both ĉn and M̂n are√
n-consistent from A0, we have:

sup
X

(Q− Q̂n)+ = Op(1/
√
n), sup

ΘI

Q̂n = Op(1/n).

The plug-in estimator of the identified set, {x ∈ X |Q̂n = 0} = ΘI(θ̂n), may not ‘cover’
the true asymptotically, as discussed in Chernozhukov, Hong and Tamer (2007) (CHT).

13In the presense of ‘true equality’ constraints Ax = b, the corresponding inequalities need not be
expanded.
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To address that, consider the following class of set estimators:

{x ∈ X |nQ̂n(x) ≤ κn}

Fix κn such that P [κn ≥ supΘI
nQ̂n] → 1 and κn

n

p−→ 0. Let Θ̂n ≡ {x|M̂nx− ĉn ≥ −
√

κn√
n
ι}.

It is the set that we want to prove consistent for the population identified set.
The issue is that the set Θ̂n is not a criterion-based set, so the results in CHT is

not directly applicable. However, we can define Θn ≡ {x|Q̂n(x) ≤ κn

n } ⊆ Θ̂n and
Θn ≡ {x|Q̂n(x) ≤ q κn

n } ⊇ Θ̂n.
We then wish to ’sandwich’ Θ̂n between a smaller set that asymptotically covers ΘI

and a bigger set that is asymptotically covered by ΘI . The following simple lemma is an
analogue of ‘sandwich theorem’ for sets.

Lemma 3. Consider ΘI ⊆ X and suppose the random set Θ̂n ⊆ Θ can be sandwiched
between two sets: Θn ⊆ Θ̂n ⊆ Θn, such that:

sup
x∈Θn

d(x,ΘI) = op(1)

sup
x∈ΘI

d(x,Θn) = op(1)

Then:

dH(Θ̂n,ΘI) = op(1)

Proof. Writing out the definitions and applying CMT yields the result. ■

The only thing that remains to show consistency of the set-estimator is to prove that the
inequalities in Lemma 3 hold in our case. The derivation below follows the usual CHT
logic. The first equality is established through:

P [ sup
x∈Θn

d(θ,ΘI) ≤ ε] = P [Θn ⊆ Θε
I ] = (9)

P [Θn ∩ X \ Θε
I = ∅] ≥ P [ sup

x∈Θn

Q(θ) < inf
x∈X \Θε

I

Q(θ)]

Then, by uniform continuity and by the construction of Θn:

sup
x∈Θn

Q(θ) = sup
x∈Θn

Q̂n(θ) + op(1) = q
κn

n
+ op(1) = op(1)

By construction of ΘI and continuity of Q(θ), ∃δ > 0: inf
x∈X \Θε

I

Q(θ) > δ. Thus, the RHS

of (9) goes to 1. So, sup
x∈Θn

d(x,ΘI) = op(1).

The other side follows, as by construction sup
x∈ΘI

Q̂n(x) ≤ κn

n =⇒ ΘI ⊆ Θn. So,

P [ sup
x∈ΘI

d(θ,Θn) ≤ ε] ≥ P [ sup
x∈ΘI

Q̂n(x) ≤ κn

n
] p−→ 1
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Therefore, using Lemma 3, we conclude that:

dH(Θ̂n,ΘI) p−→ 0

The next step is to recall that if we have two convex, compact sets, A,B, the following
holds:

dH(A,B) = max
||y||≤1

|s(y,A) − s(y,B)|,

where s(y, S) ≡ max
t∈S

y′t - the support function.
Using uniform convergence of the value function and combining all the results:

| min
x∈Θ̂n

p̂′
nx− min

x∈ΘI

p′x| = | min
x∈Θ̂n

p′x− min
x∈ΘI

p′x| + op(1) =

= |s(−p,ΘI) − s(−p, Θ̂n)| + op(1) ≤ ||p||dH(ΘI , Θ̂n) + op(1) p−→ 0

This establishes the following proposition:

Proposition 3. Let κn : P [κn ≥ supΘI
nQ̂n] → 1 and κn

n

p−→ 0. Then the following
estimator is consistent for the sharp lower bound:

B̌n ≡ min
M̂nx−ĉn≥−

√
κn
n ι

p̂′
nx

p−→ min
Mx−c≥0

p′x

In practice, Chernozhukov, Hong and Tamer (2007) suggest to select some κn that diverges
sufficiently slowly with the sample size. Simulations in Figure 2 use κ = ln ln lnn. Under
the Slater’s condition the naive estimator is consistent, i.e. one could set κn = 0.

Although it seems intuitive that B̌n should converge at the rate
√
nκ−1

n , deriving
that result is outside the scope of this paper, because we do not advocate its use. It is
immediate to see, however, that B̌n can converge as slowly as

√
nκ−1

n . For that, consider
the example in Proposition 1 without the inequality y ≤ x and setting bn = 0. The
minimum is attained at −1 −

√
κn

n .
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Figure 3: Averages for 400 simulations of the example in Proposition 5 with bi ∼ U [−1; 1 + 2b]. Penalty
wn = δ−1

0.15 × ln ln n/ ln ln 100 and set expansion κn = (ln ln n)2 Left: b = −0.02 (α = 0.12), Slater’s
holds; Right: b = 0 (α = 0.75), Slater’s fails. See Appendix for the definition of δα and the details on wn

selection.

In practice, the set-expansion estimator can be quite conservative. Figure 3 illustrates
that issue. Although its performance at the measure indexed by b = −0.02 may be
improved by selecting a smaller κn parameter, this will harm the performance of the
estimator at the measure with b = 0. The debiased penalty function estimator with wn

chosen according to the procedure developed in the Appendix appears to perform well
across the two measures.

2.2. Inference

This section develops an inference procedure for a general LP estimator, in which all
parameters are inferred from the data. This procedure nests special cases in which some
parameters remain fixed, as in Semenova (2023) and Mogstad, Santos and Torgovitsky
(2018).

2.2.a. Bootstrap fails even under SC. To justify the need for our approach, we first
examine the properties of the plug-in estimator combined with bootstrap. Using bootstrap
for inference on interval bounds was proposed in Imbens and Manski (2004) and widely
used in the empirical literature applying AICM conditions, absent a necessary theoretical
justification of the assumptions in the referenced paper. We show that even if SC holds,
which may be justified in some applications where an explicit form for B(θ) exists, this
approach fails unless one further rules out both solution multiplicity and LICQ. We begin
by defining the Hadamard directional derivative:

Definition. Let D and E be Banach spaces, and f : Df ⊆ D → E. The map f is said to
be Hadamard directionally differentiable at υ ∈ Df tangentially to D0 ⊆ D, if there is a
continuous map f ′

υ : D0 → E, s.t.:

lim
n→∞

||f(υ + tnhn) − f(υ)
tn

− f ′
υ(h)||E = 0,
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for all sequences {hn ⊂ D} and {tn} ⊂ R+ such that tn → 0+, hn → h ∈ D0 as n → ∞
and υ + tnhn ∈ Df for all n. If, moreover, f ′

v(h) is linear in h, the map f is said to be
fully Hadamard differentiable.

It will be convenient to break the vector of parameters into components: θ0 =
(p′, c1, . . . cq,M

′
1 . . .M

′
q)′ ∈ RS .

Assumption B1 (Asymptotic normality). There is an estimator θ̂n, such that:

rn(θ̂n − θ0) L−→ G0 ∼ N (0,Σ)

With Σ < ∞.

The following result is not novel, but is provided here for reference:

Lemma 4. Under SC, B(·) is Hadamard directionally differentiable at θ0. The directional
derivative is given by:

B′
θ0

(h) = inf
x∈A(θ0)

sup
λ∈Λ(θ0)

h′
px+

Q∑
i=1

λi(hci
− h′

Mi
x), (10)

where h = (h′
p, hc1 , . . . , hcq

, h′
M1
, . . . , h′

Mq
)′ is the direction of the increment corresponding

to θ0.

Proof. Duan et al. (2020), Theorem 4.1 with second-order terms’ coefficients set to 0. ■

Hadamard directional differentiability of B(θ) is sufficient to guarantee convergence in
distribution:

Proposition 4. Under SC and assumption B1, we have:

rn(B(θ̂n) −B(θ0)) L−→ B′
θ0

(G0)

Proof. Fang and Santos (2018) Theorem 2.1. combined with Lemma 5. ■

However, the form of (10) suggests that B′
θ0

(G0) is not normal unless there is full
Hadamard differentiability, i.e. B′

θ0
(h) is linear in h. This violates the necessary condition

for bootstrap consistency given by Assumption 1.i) in Imbens and Manski (2004). Theorem
3.1 from Fang and Santos (2018) also establishes that bootstrap is, in fact, inconsistent
when B′

θ0
(h) fails to be linear. Given that θ̂n is asymptotically Gaussian, the simple

bootstrap procedure, employed in Blundell et al. (2007), Kreider et al. (2012), Gundersen,
Kreider and Pepper (2012), Siddique (2013), De Haan (2017), and Cygan-Rehm, Kuehnle
and Oberfichtner (2017) is not consistent for the distribution absent further restrictive
assumptions:
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Proposition 5. If Assumption B1 holds and the support of G0 is a vector subspace of D,
the simple bootstrap is consistent for the distribution of B(θ̂n), i.e.:

sup
f∈BL1(R)

|E[f(rn(B(θ∗
n) −B(θ̂n)))|{Xi}n

i=1] − E[f(B′
θ0

(G0))]| = op(1),

if and only if: i) SC holds, ii) there are no flat faces, iii) LICQ holds.

Proof. In the Appendix. ■

One way to obtain a consistent estimator for the distribution of a plug in under SC is to
combine the Functional Delta Method of Fang and Santos (2018) with the Numerical Delta
Method given in Hong and Li (2015). We further show that the biased penalty function
estimator, B̃(θ;w), is always H.d.d. and thus one can theoretically perform inference on it
using the same approach. This method, however, relies on an arbitrarily selected sequence
ϵn. It is also not practical, because an appropriate fixed w is not known. We thus confine
this discussion to the Appendix, where we also point out that conservative inference can
be derived for the set-expansion estimator.

The approach we advocate instead is to rely on the asymptotically normal version of
the debiased penalty estimator with wn → ∞, resulting in confidence regions with exact
coverage and rate

√
n. The next section discusses this procedure.

2.2.b. Exact inference on a debiased estimator. We now show how to perform exact
statistical inference on the basis of our debiased estimator B̂n. In this section, we suppose
that we have a dataset Dn ≡ {W1,W2, . . . ,Wn}, where Wi are i.i.d. and θ̂n = θ̂n(Dn).

For x ∈ Rqd we define the inverse-vectorization operator:

vec−1
q×d(x) = (vec(Id)′ ⊗ Iq) (Id ⊗ x).

We further define selector matrices Cc and CM that select the c and M components of θ
respectively, i.e.:

Ccθ = c, CMθ = vec(M).

Moreover, for an arbitrary subset A ⊆ {1, 2, . . . , q}, define the selector matrix C(A) that
yields:

C(A)M = MA, C(A)c = cA.

We randomly split Dn into two disjoint, collectively exhaustive folds D(f)
n of size nf

for f = 1, 2, with n1 = ⌊αn⌋ and n2 = n− ⌊αn⌋ for some fixed α ∈ (0; 1). For f = 1, 2,
we also denote the estimator computed over D(f)

n as θ̂(f) = (p′, vec(M̂ (f))′, ĉ(f)′)′.

Assumption B2. B1 holds and there exists an estimator Σ̂n:

Σ̂n
p−→ Σ

Assumption B2 requires the researcher to possess a consistent estimator for the
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asymptotic variance of θ̂n. If θ̂n = g( 1
n

∑n
i=1 Wi) for some appropriately smooth and

known g(·), such estimator can be obtained using the traditional Delta-method. In more
complicated scenarios, bootstrap on θ̂n may be employed. Further discussion of how to
obtain Σ̂n is of little theoretical interest and is thus omitted.

To develop our inference procedure, we first work on D(1)
n . We begin by finding the

set of optimal vertices of the LP formulation of the penalty estimator evaluated at θ̂(1),
Vx(θ̂(1)) (see the proof of Proposition 12)14. The value p′x can vary over x ∈ Vx(θ̂(1)). To
see that, note that L̃(x; θ̂(1), wn) is constant over x ∈ Ã(θ̂(1);wn) ⊇ Vx(θ̂(1)), but it is not
necessarily true that p′x+C = L̃(x; θ̂(1), wn) for a fixed C ∈ R and any x ∈ Ã(θ̂(1);wn) if
some constraints of the original LP are violated. Still, the result in Proposition 12 applies
uniformly over Vx(θ̂(1)) and we can, for example, choose some x̂ that satisfies15:

x̂ ∈ arg max
x∈Vx(θ̂(1))

p′x

Accordingly, we estimate the set of all constraints binding at that vertex:

Â ≡ {j ∈ {1, 2, . . . , q}|M̂ (1)
j x̂ = ĉ

(1)
j }

For an arbitrary subset of indices A ⊆ {1, 2, . . . , q}, consider two conditions:

∃x ∈ A(θ0) : MAx = cA (11)
p ∈ R(M ′

A) (12)

Further, let:

A ≡ {A ∈ 21,q|A satisfies (11) and (12)}

Condition (12) equivalently postulates that there exists a solution to the equation:

p = M ′
Av

For a given A, we let SA ≡ {v ∈ R|A| : p = M ′
Av} denote the set of all such solutions.

From the proof of Proposition 12 it follows that Â ∈ A with probability 1 asymptotically.
By definition, Â ∈ A implies that ∃v ∈ SÂ such that ||v|| ≤ max

A∈A
min
v∈SA

||v||, or:

inf
v∈R|Â|:||v||≤ṽ

||p−M ′
Â
v||2 = 0

for any ṽ ≥ max
A∈A

min
v∈SA

||v||. Consider some globally fixed, large enough v.

Assumption B3. v ≥ max
A∈A

min
v∈SA

||v||

14Although we assume this set is estimated precisely, the results do not change if one is only able to
estimate a subset of Vx(θ̂(1)). This may occur if numerical errors do not allow the LP-solver to find all of
the LP solutions.

15In practice, it is very likely that the solution of the sample LP will be unique and one will have
Vx(θ̂(1)) = Ã(θ̂(1); wn).
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We can estimate an element of SÂ as:

v̌ ∈ arg min
v∈R|Â|:||v||≤v

||p− M̂ (1)′
Â
v||2

To avoid dealing with changing dimension, we let v̂ ∈ Rq be such that C(Â)v̂ = v̌ and v̂

is 0 otherwise. By the usual M -estimation argument it then follows that there exists a
random sequence {ṽk}∞

k=1 ∈ SÂ, which is obtained as a measurable function of v̌, Â, and:

||ṽn − v̌|| = Op

(
1√
n

)
Once again, to avoid dealing with the changing dimension of ṽn, we construct vn such
that vn = C(Â)ṽn and 0 otherwise. We thus also have:

||v̂ − vn|| = Op

(
1√
n

)
Before we proceed to the second fold, let us provide the following simple lemma that
justifies our construction.

Lemma 5. Suppose Â ∈ A. Then:

ṽ′
ncÂ = B(θ0) (13)
ṽ′

nMÂx̂ = p′x̂ (14)

Proof. If Â ∈ A, condition (11) holds for some x ∈ A(θ0) such that MÂx = cÂ. Since such
x is a minimizer, it follows that p′x = B(θ0). As ṽn ∈ SÂ, we have p = M ′

Â
ṽn. Taking

transpose and multiplying by x̂ yields (14). To show (13), write:

p′x = ṽ′
nMÂx = ṽ′

ncÂ (15)

■

Equipped with v̂, Â and x̂, we can now move onto the second fold. Consider the
following expressions:

Hn ≡
√
n2

σ̂(Â, v̂, x̂)
v̌′
(
ĉ

(2)
Â

− cÂ − (M̂ (2)
Â

−MÂ)x̂
)

Gn ≡
√
n2

σ̂(Â, v̂, x̂)
(v̌ − ṽn)′(cÂ −MÂx̂)

Applying Lemma 5 yields that:
√
n2

σ̂(Â, v̂, x̂)

(
v̌′(ĉ(2)

Â
− M̂

(2)
Â
x̂) + p′x̂−B(θ0)

)
= Hn −Gn

The rest of the construction consists in showing, heuristically speaking, that Gn = op( 1√
n

)
and thus the confidence intervals constructed based on Hn are also valid for Hn − Gn
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asymptotically.
Letting Z(2)

n ≡ √
n2(θ̂(2) − θ0), we can then write:

√
n2v̌

′
(
ĉ

(2)
Â

− cÂ − (M̂ (2)
Â

−MÂ)x̂
)

= v̌′C(Â)
(
CcZ

(2)
n − vec−1

q×d(CMZ(2)
n )x̂

)
(16)

It is straightforward to observe that, due to bilinearity of the Kronecker product, (16) is
linear in Z

(2)
n and therefore, for fixed Â, x̂, v̂, converges to:

√
n2v̌

′
(
ĉ

(2)
Â

− cÂ − (M̂ (2)
Â

−MÂ)x
)

d−→ N (0, σ(Â, x̂, v̂,Σ))

Lemma 6. At fixed A, x, v:

σ(A, x, v,Σ) = J1ΣJ ′
1 − 2J2(Id ⊗ CM ΣJ ′

1)x+ J2 (xx′ ⊗ CM ΣC ′
M ) J ′

2 (17)

Proof. In the Appendix, along with the definitions of J1, J2. ■

Assumption B4 (Non-degeneracy). Suppose σ(A, x, v,Σ) > 0 for any optimal triplet
A, x, v.

By assumption B4 we then have, for fixed Â, x̂, v̂:
√
n2

σ(Â, v̂, x̂,Σ)
v̌′
(
ĉ

(2)
Â

− cÂ − (M̂ (2)
Â

−MÂ)x̂
)

d−→ N (0, 1) (18)

Theorem 3. Suppose wn → ∞ and wn = op(
√
n) and Assumptions B1, B3, B4 hold.

Moreover,

σ̂n(A, v, x) p−→ σ(A, v, x,Σ)

for any fixed A, v, x, which holds for σ̂n(A, v, x) = σ(A, v, x, Σ̂n) under Assumption B2.
Then, for any α > 0:

P
[ √

n2

σ̂n(Â, v̂, x̂)

(
v̌′(ĉ(2)

Â
− M̂

(2)
Â
x̂) + p′x̂−B(θ0)

)
≤ z1−α

]
= 1 − α+ o(1)

Proof. In the Appendix. ■

2.3. Uniform asymptotic theory

Random LP problems are challenging to study under no further assumptions, since
they feature instability with respect to arbitrary parameters’ perturbations, as shown in
Proposition 5. We now note that this not only leads the plug-in to fail pointwise, but also
precludes the existence of uniformly consistent estimators in general.

The following auxiliary result highlights that there exists no uniformly consistent
estimator for any functional from a space of probability measures equipped with the total
variation norm that is discontinuous at some measure.
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Lemma 7. Suppose a functional V : (P, || · ||T V ) → (R, | · |) is discontinuous at P0 ∈ P.
Then, there exists no uniformly consistent estimator V̂n = V̂n(X), which is a sequence of
measurable functions of the data X ∼ Pn. Moreover, if δ > 0 is the jump at P0, then for
all n:

inf
V̂n

sup
P∈P

EP[||V (P) − V̂n(X(Pn))||] ≥ δ

4 ,

where infinum is taken over all measurable functions of the data.

Proof. In the Appendix. ■

We shall understand the parameter θ0 as a functional of the underlying probability
measure P ∈ P. We then make the following assumption on the pair θ0(·),P:

Assumption U0 (Uniform setup). The functional θ0(·) and the set of underlying
probability measures P are such that:

i) θ0 : (P, || · ||T V ) → (RS , || · ||2) is a continuous functional

ii) θ0(P) = {y ∈ RS s.t. ΘI(y) ̸= ∅,ΘI(y) ⊆ X } for a known and fixed compact X

Combining U0, Lemma 3 and the results in the previous sections, we establish that no
uniformly consistent estimator of B(θ0(P)) exists absent further restrictions on P .

Theorem 4. Under U0 there exists no uniformly consistent estimator B̂n of B(θ0).

Given this negative result, we may instead ask over which set of measures the penalty
function estimator yields uniform consistency. Intuitively, the penalty function estimator
is problematic whenever the vertices of the population polygon at the optimum are too
sharp, meaning that the associated Lagrange multipliers are too large. The condition that
ensures uniform consistency of our estimator thus controls that sharpness. Consider:

(P ) : B(θ) = min
x

p′x s.t. : Mx ≥ c

Form Lagrangean:

L ≡ p′x+ λ′(c−Mx)

Because X is a compact, whenever the problem has a solution, it must be that there is
also a solution λ∗, x∗ at which ∃J ⊆ {1, 2, . . . , q} with |J | = k:

MJx
∗ = cJ ,

where MJ ∈ Rk×d is a matrix of full column rank, i.e. rk(MJ) = d. Define the set of
inactive constraints I ≡ {1, 2, . . . , q} \ J where:

MIx
∗ > cI

It follows that λ∗
I = 0.
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Theorem 5. In the problem (P) there exists a solution x∗ and the associated vector of
KKT multipliers λ∗ such that for some index subset J∗ ⊆ {1, . . . , q} with |J∗| = d, MJ∗

is invertible and:

x∗ = M−1
J∗ cJ∗

λ∗
J∗ = M−1

J∗
′p

λ∗
i = 0, i /∈ J∗

Proof. Consider the solution x∗ of the original problem at the vertix where the binding
constraints are defined by the set J with rk(MJ) = d. Notice that the KKT condition
that:

p = M ′
JλJ

for some λJ ≥ 0 means that p ∈ Cone(M ′
J ). By the conical hull version of Caratheodory’s

Theorem, it follows that ∃J∗ ⊆ J such that |J∗| = r ≤ d and p ∈ Cone(M∗
J

′) and,
moreover, the vectors M ′

J∗ are linearly independent. If the Caratheodory number r is
strictly smaller than the dimension of x, i.e. r < d, then we shall complement J∗ with
d− r vectors from M ′

J such that we obtain rk(MJ∗) = d, setting the appropriate λ∗
i to 0.

By necessity and sufficiency of KKT for LP problems, this constitues a solution. ■

Assumption U1 (δ-condition). The set P of probability measures is such that ∀P ∈ P
we have θ(P ) = θ such that:

max
J∗

σd(MJ∗(θ)) > δ, (19)

where sets J∗ with |J∗| = d are those defined in Theorem 4. Moreover, the objective
function vector is bounded on P, i.e. for some p ∈ R+:

sup
P∈P

||p(P)|| < p

Remark. The boundedness condition on p may always be imposed through redefining
the variables in the objective linear program.

The δ-condition is weaker than the conditions usually imposed to establish uniform
consistency of LP estimators. To formalise this notion, let us introduce three families of
measures. Firstly, we shall denote the family of measures satisfying U1 by Pδ. We say
that the measure satisfies a uniform ε-Slater’s condition if P ∈ PSlater;ε where:

PSlater;ε ≡ {P ∈ P|V olume(ΘI(θ(P ))) > ε}

Similarly, a measure satisfies a uniform ε-LICQ condition as in Gafarov (2024) if P ∈
PLICQ;ε, where:

PLICQ;ε ≡ {P ∈ P|M(v) ∈ Rd×d, σd(M(v)) > ε ∀v ∈ V(P)},

23



where the set V(P) consists of all vertices of the polygon ΘI evaluated at θ(P), while the
operator M(v) for a vertex v constructs the matrix of all binding constraints.

Proposition 6. The following hold:

1. lim
n→∞

PSlater;1/n ∪ PLICQ;1/n ⊂ P = lim
n→∞

P1/n, where the inclusion is strict

2. PLICQ;ε ⊂ Pδ for any δ ≤ ε, where the inclusion is strict

3. If, in addition to U0, ∀P ∈ P we have σ1(MJ∗(P)) < σ for some σ > 0, which is
the case if the matrix M0(P) is normalized by row, then: ∀ε > 0, ∃ δ such that
PSlater;ε ⊂ Pδ and the inclusion is strict

Intuitively, the δ > 0 in assumption U1 merely parametrizes the degree of irregularity
that the researcher is willing to allow for the constraint set over the considered set
of measures. The resulting family of measure sets ’covers’ the whole set of measures
asymptotically as δ is allowed to decrease to 0. Other typically used conditions, however,
restrict the set of measures even asymptotically. Moreover, for any there always exists a set
of measures from the δ-condition family that strictly contains both of the above formulated
conditions at fixed ε. In this sense, assumption U1 appears minimal for achieving uniform
consistency.

2.4. Uniform consistency of penalty function estimator

Demanding uniform consistency for an arbitrarily small value of δ is not feasible,
since this requires an arbitrarily large value of wn, which will lead to poor finite-sample
performance at some of the considered measures. We investigate this further in the
Appendix.

Theorem 6. Suppose i) the set of measures P satisfies the δ − condition for some δ > 0,
and ii) θ̂n converges to θ(P) a.s. uniformly over P, i.e. for any ε > 0:

lim
n→∞

sup
P∈P

P[ sup
m≥n

||θ̂m − θ(P)|| ≥ ε] = 0 (20)

Then, the penalty function estimator B̃(θ̂n, wn) with wn = ||p̂n||δ−1 + ζ for any globally
fixed ζ > 0 is uniformly consistent in the sense of a.s. convergence, i.e., for any ε > 0:

lim
n→∞

sup
P∈P

P[ sup
m≥n

|B̃(θ̂m, wm) −B(θ(P ))| ≥ ε] = 0 (21)

Moreover if convergence in (20) is at rate rn, (21) holds for any wn → ∞ with wn

rn
→ 0.

Proof. In the Appendix. ■

In our context, θ0 is linear in population moments of interactions of Y (t) with treatment
indicators and linear or hyperbolic in joint probabilities of T = t, Z = z (moments of
indicators). Thus, condition ii) in Theorem 6 is established by, firstly, imposing that:

lim
C→∞

sup
P∈P

EP||Y||I{||Y|| > C} = 0,
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which, for example, holds whenever bounded outcomes are assumed. We shall also
strengthen the full-support assumption to:

P[T = t, Z = z] > C

for some C > 0, for all t, z ∈ T × Z and P ∈ P . Under these conditions, θ(·) is a uniformly
continuous function of population moments. Combining this and the LLN uniform in
probability measure (see Proposition A.5.1 on p. 456 of Van Der Vaart et al. (1996))
yields condition (ii). Moreover, if one additionally assumes that:

lim
C→∞

sup
P∈P

EP||Y||2I{||Y|| > C} = 0,

the rate in Theorem 6 is rn =
√
n (see Proposition A.5.2 on p. 457 of Van Der Vaart et al.

(1996)).

Remark. Note that the existence of a uniformly consistent estimator over P implies
that B(·) is continuous over θ0(P). However, as we have seen in Proposition 5, it is not
necessarilly continuous over the whole support of θ̂n and, in fact, θ0(P) ̸= Supp(θ̂n) in
general (where, of course, the support may vary over P). It is straightforward to see that
the example in Proposition 5 satisfies the δ-condition for a relatively large δ, but the
plug-in estimator is still pointwise inconsistent at such measure.

In light of the findings in this section, we develop an approach to selecting the penalty
parameter wn. It leverages random matrix theory and is given in Appendix.

2.5. Uniform consistency of the debiased penalty function estimator

2.5.a. Geometry of polytope projections. We need to introduce the following two objects,
which we call the condition numbers.

Definition (The face condition number). For a k-face of a polytope, f , which is described
by binding constraints A ⊆ 1, q with |A| ≥ d − k such that rk(MA) = d − k, define the
face condition number to be:

κ̃(f) ≡ min
B⊆A: rk(MB)=d−k

σd−k(MB) (22)

Definition (Polytope condition number). For a polytope Θ, define the polytope condition
number as:

κ(Θ) = min
f−face of Θ

κ̃(f) = min
f−vertex of Θ

κ̃(f) (23)

Remark. Any full-rank matrix at a k-face f for k > 0 can be obtained by removing k
vectors from a full-rank matrix at some vertex (0−face) f∗, to which f belongs, so the
condition number of f is greater or equal than that of f∗ by the submatrix inequality for
singular values.

Assumption U2 (Polytope δ-condition). The class of measures P satisfies the polytope
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δ−condition, if, for some δ > 0:

inf
P∈P

κ(ΘI(P)) ≥ δ (24)

Remark. The polytope δ−condition has the same flavor as the δ-condition, but essentially
imposes it for all vertices of the polytope and all full-rank matrices at these vertices. It
similarly just parametrizes the whole unconstrained set of probability measures, since at
any fixed P we always have κ(ΘI(P)) > 0 by definition.

The following theorem appears to be mathematically novel.

Theorem 7. For any non-empty and bounded polytope Θ = {x ∈ Rd|Mx ≥ c}:

ι′(c−Mx)+ ≥ d(x,Θ)κ(Θ)
d

(25)

Proof. If x ∈ Θ, the inequality holds trivially. Consider x such that d(x,Θ) = ε > 0.
We construct a projection of x onto the polytope. It must be a solution of the following
program:

min
y∈Θ

1
2(y − x)′(y − x) (26)

Construct Lagrangean:

L = (y − x)′(y − x) + λ′(c−My) (27)

FOCs:

y − x−M ′λ = 0 (28)
λj(M ′

jy − cj) = 0 (29)
My ≥ c (30)

This problem is convex and thus has a global minimum characterized by the KKT
conditions. Let that minimum be y∗. Denote the subset of binding equalities:

J ≡ {j ∈ 1, q|M ′
jy

∗ = cj} (31)

Suppose y∗ belongs to at least k∗-face f∗, meaning that face f∗ is given by:

f∗ =
⋂

f−face of ΘI : y∈f

f, (32)

with the associated set of binding equalities J such that |J | ≥ d−k∗ and rk(MJ ) = d−k∗.
By construction:

y − x ∈ Cone(M ′
J), (33)

Therefore, by Caratheodory’s Conical Hull theorem, there exists a subset J∗ ⊆ J such
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that |J∗| = r ≤ d− k∗ and a corresponding λ∗
J∗ > 0:

y − x = M ′
J∗λ∗

J∗ (34)

Forming λ∗ as (λ∗)J∗ ≡ λ∗
J∗ and setting λ∗

j = 0 for j /∈ J∗, one can observe that y∗, λ∗

solve the above of KKT conditions. Moreover, if r < d− k∗, we can complement J∗ with
d − k∗ − r linearly independent constraints from J \ J∗ to obtain J∗∗ ⊇ J∗, such that:
|J∗∗| = rk(MJ∗∗) = d− k∗. Finally, setting λ∗∗ ≡ λ∗

J∗∗ , we get:

y∗ − x = M ′
J∗∗λ∗∗ (35)

From where it follows that:

λ∗∗ = (MJ∗∗M ′
J∗∗)−1MJ∗∗(y∗ − x) (36)

Recall that ||y∗ − x|| = ε > 0, and note that, because (MJ∗∗M ′
J∗∗)−1MJ∗∗ is the left

inverse of M ′
J∗∗ :

||(MJ∗∗M ′
J∗∗)−1MJ∗∗ || ≤ σ−1

d−k∗(MJ∗∗) ≤ κ−1(ΘI) (37)

By Cauchy-Schwarz, we then obtain:

||λ∗∗|| ≤ εκ−1(ΘI) (38)

Since ||λ∗∗||∞ ≤ ||λ∗∗||, it also follows that:

||λ∗∗||∞ ≤ εκ−1(ΘI) (39)

Further, since MJ∗∗y∗ = cJ∗∗ by construction, multiplying both sides of (35) by MJ∗∗

yields:

cJ∗∗ −MJ∗∗x = MJ∗∗M ′
J∗∗λ∗∗ (40)

And plugging (35) into the value function, one gets:

ε2 = λ′
J∗∗MJ∗∗M ′

J∗∗λ∗∗ = λ′
J∗∗(cJ∗∗ −MJ∗∗x) (41)

Combining (41), the fact that at least one of the components of λ∗
J∗∗ is positive from

y∗ − x ̸= 0 and (35), as well as 0 ≤ λ∗
J∗∗ ≤ ιεκ−1(ΘI) λ′

J from the definition and the
bound on ||λ∗||∞, one observes that:

∃j ∈ J∗∗ : (c−MJ∗∗x)j ≥ κ(ΘI)ε
d− k∗ (42)

It then follows that:

ι′(c−Mx)+ ≥ κ(ΘI)ε
d− k∗ (43)

Taking the minimum over k∗ yields the claim of the proposition. ■
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2.5.b. The debiased estimator is at least
√

n
wn

uniformly consistent.. Recall that the
original penalty is uniformly consistent at rate

√
n

wn
under the δ-condition.

Theorem 8. If P satisfies Assumption U2 for some δ > 0, the debiased estimator
converges uniformly at the rate of at least

√
n

wn
.

Proof. Note that:

p′x∗
n −B(θ0) ≥ min

x∈Θd(x∗
n,ΘI )

I

p′x− min
x∈ΘI

p′x = (44)

1
||p||

(
s

(
p

||p||
,Θd(x∗

n,ΘI )
I

)
− s

(
p

||p||
,ΘI

))
≥ (45)

− 1
||p||

max
||y||≤1

∣∣∣s(y,Θd(x∗
n,ΘI )

I

)
− s (y,ΘI)

∣∣∣ = (46)

−
dH

(
Θd(x∗

n,ΘI )
I ,ΘI

)
||p||

≥ −dι′(c−Mx∗
n)+

κ(ΘI)||p|| (47)

Thus:

Op(1) =
√
n

wn

(
p′x∗

n −B(θ0) + wnι
′(ĉn − M̂nx

∗
n)
)

= (48)
√
n

wn
(p′x∗

n −B(θ0) + wnι
′(c−Mx∗

n)) +Op(1) ≥ (49)

√
n(1 − 1

wn

d

κ(ΘI)||p|| )ι
′(c−Mx∗

n)+ +Op(1) (50)

From where it follows that:

ι′(c−Mx∗
n)+ = Op

(
1√
n

)
(51)

Using:
√
n

wn

(
p′x∗

n −B(θ0) + wnι
′(ĉn − M̂nx

∗
n)+

)
≥

√
n

wn
(p′x∗

n −B(θ0)) ≥ (52)

−1
wn

d
√
nι′(c−Mx∗

n)+

κ(ΘI)||p|| (53)

One deduces that p′x∗
n − B(θ0) is Op( wn√

n
). All arguments above are uniform if the

convergence of θ̂n is uniform and as κ(ΘI) ≥ δ for some δ > 0. ■

3. Identification results

Let Y ∈ R denote the outcome of interest16, T ∈ R stand for the treatment, and
Z ∈ RdZ be the candidate instrument. We denote the supports of these variables as Y , T

16Univariate case is considered for simplicity of exposition, but the extension to multivariate outcomes
is immediate.
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and Z respectively. The reader seeking an economic intuition may interpret this in line
with the classical example from Manski and Pepper (2000), treating Y as the wage, T as
an indicator of educational degree and Z as the level of ability.

In the considered context, treatment is defined to be any variable which effect on Y we
attempt to infer, whereas the term instrument merely refers to an auxiliary variable that
allows us to (partially) identify the treatment effect of interest. This latter distinction is
important: although our approach nests the usual IV condition on Z, it is more general
and allows the researcher to impose arbitrary linear inequality restrictions on conditional
moments of potential outcomes.

Throughout this paper we consider the case of continuous outcomes and discrete
treatment and instrument, namely Y is uncountable, while NT ≡ |T | < ∞ and NZ ≡
|Z| < ∞. In non-parametric bounds literature it is rather conventional to employ a
discrete instrument at the estimation stage (see Manski and Pepper (2009)). While our
main identification result could be extended to continuous Z, we make the discreteness
assumption early on to avoid unnecessary technical complications.

Our setup accommodates missing observations of the dependent variable Y . Namely,
we split the set of treatments into two disjoint subsets T = O ⊔ U . Whenever T ∈ O, the
researcher observes Y, T, Z, whereas if T ∈ U , only the covariates T,Z are observed. For
example, in Blundell et al. (2007) the wage is observed only if an individual is employed.
Corresponding to the legs of the treatment are the potential outcomes Y (t), t ∈ T :

Y =
∑
t∈O

I{T = t}Y (t) +
∑
t∈U

I{T = t}Y (t)

Continuing the wages and education example, the value of Y (t) for a fixed t ∈ T may
then correspond to the potential wage that an individual with the associated random
characteristics would get, had she obtained education t.

Let us collect the potential outcomes in the vector Y ≡ (Y (t))t∈T ∈ RNT . Variables
(Y, T, Z, Y ) are jointly defined on the true probability space (P,Ω,S) and we let P denote
the considered collection of probability measures on (Ω,S), such that P ∈ P. We impose
the following conditions on the space of considered measures throughout the paper:

Assumption (Conditions on P). Set of probability measures P is such that P ∈ P if:

i) Identification: P generates FT,Z(·) and {FY |T =t,Z(·)}t∈O

ii) Full support of T,Z: P [T = d, Z = z] > 0 ∀d, z ∈ T × Z

iii) Finite conditional moments: |EP [Y (t)|T = d, Z = z]| < ∞ for all z ∈ Z and t, d ∈ T

Part i) of the Conditions formalizes the assumed identification pattern. It says that
the joint distribution of T,Z is always identified and the researcher also observes the
joint distribution of Y, T, Z whenever T ∈ O. Parts ii) and iii) of the Conditions are the
technical assumptions that ensure that all conditional expectations and probabilities are
well-defined and finite17. In particular, this assumption implies that all moments of form
E[Y (t)|T ∈ A,Z ∈ B] for some A ∈ 2T \ {∅}, B ∈ 2Z \ {∅} and t ∈ T are well-defined and
finite.

17Similar identification results can still be obtained if one relaxes the full-support condition for some
known pairs from Z × T . Note that it can also be verified in the data.
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Remark. Under no missing data, i.e. T = O, condition i) is equivalent to P generating
the identified joint distribution FY,T,Z(·).

Let m ∈ RN2
T NZ be a vector collecting all elementary conditional moments of potential

outcomes. For P ∈ P:

m(P ) ≡ (EP [Y|T = d, Z = z])d∈T ,z∈Z

In general, m = m(P ) is a functional of the probability measure, however, we omit this
dependence whenever it does not cause confusion. We suppose that the researcher is
interested in the following target parameter:

β∗ = µ∗′m(P) (54)

Where µ∗ ∈ RN2
T NZ is an identified vector chosen by the researcher. It parametrizes the

choice of the outcome of interest, as the following remark clarifies.

Remark. Average treatment effect ATEtd = E[Y (t)−Y (d)] for some t, d ∈ T ; conditional
average treatment effect CATEtd,A,B = E[Y (t) − Y (d)|T ∈ A,Z ∈ B] for given t, d ∈
T , A ⊆ T , B ⊆ Z, as well as average potential outcomes E[Y (t)] can all be represented in
the form (54).

Some clarifications regarding the relationship of our approach to the literature are in
order. Firstly, our setup corresponds to fully non-parametric potential outcomes as we do
not assume any form of treatment selection mechanism, unlike the literature following
Heckman and Vytlacil (1999, 2005). Whenever Z is a usual IV, additive separability
of treatment selection is meaningful as it is equivalent to the LATE independence and
monotonicity assumptions (see Vytlacil (2002)). The present paper instead focuses on
the instruments that are merely auxiliary variables and are not necessarily required to
be independent or mean-independent of the potential outcomes. It is therefore not clear
why a generalized version of the Heckman-Vytlacil treatment selection should hold in our
scenario18. Secondly, unlike Mogstad, Santos and Torgovitsky (2018), we do not restrict
ourselves to the case of binary outcomes19 The greater generality that we are willing to
allow on the modelling side naturally limits the set of options for the target parameter,
β∗. While accommodating ATE, CATE, and the means of potential outcomes, we are not
able to consider, for example, marginal treatment effects.

3.1. Affine inequalities over conditional moments

We now introduce the general class of restrictions under study in this paper. One
of our main contributions is an observation that many commonly employed identifying
assumptions take the form of shape restrictions that restrict the set of admissible measures
to P∗:

P∗ ≡ {P ∈ P|M∗m(P ) + b∗ ≥ 0} (55)
18The nonparametric Roy model is, however, nested in our approach as a potential identifying restriction.
19The setup of Mogstad, Santos and Torgovitsky (2018) allows to accommodate some monotonicity

conditions by virtue of selecting the appropriate model set M. Notably, it can accommodate MTR (Y (t) -
increasing in t), but not monotone instruments.
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Where a R× 1 identified vector b∗ and a R×N2
TNZ identified matrix M∗ are chosen

by the researcher. These parametrize the choice of R ∈ N identifying inequalities on
conditional moments of potential outcomes.

Section 2.2 demonstrates that identification results for the family P∗ may be extended
to a bigger family of restrictions P∗∗. We may also allow for almost sure linear restrictions
on potential outcomes:

P∗∗ ≡ {P ∈ P|M∗m(P ) + b∗ ≥ 0 ∧ M̃Y + b̃ ≥ 0 a.s.} (56)

Where a R̃× 1 vector b̃ and a R̃×NT identified matrix M̃ are chosen by the researcher
and parameterize the choice of R̃ ∈ N almost sure inequalities on the potential outcomes.

The family of models that can be written in the form (56) is very rich, as illustrated
by the following examples.

Example 3.1. MIV with Z ∈ R (Manski and Pepper, 2000) imposes that for each t ∈ T
and z, z′ ∈ Z, z′ ≥ z =⇒ E[Y (t)|Z = z′] ≥ E[Y (t)|Z = z]. It is nested for an appropriate
choice of matrix M∗ = MZ

MIV and b∗ = 0. MTS from (Manski and Pepper, 2000) obtains
when Z = T .

Example 3.2. IV with Z ∈ R imposes that for each t ∈ T and z, z′ ∈ Z, E[Y (t)|Z =
z′] = E[Y (t)|Z = z]. It is nested for an appropriate choice of matrix MIV that can, for

example, be constructed as M∗ = MIV =
(
MZ

MIV

M−Z
MIV

)
and b∗ = 0.

Example 3.3. MTR (Manski and Pepper, 2000) imposes that for each t, t′ ∈ T : t′ > t,
Y (t′) ≥ Y (t) a.s. It is nested for an appropriate choice of matrix M̃ = M̃MT S with b̃ = 0.

Example 3.4. Roy model (Lafférs, 2019) imposes that for each t ∈ T , the individual’s
choice is, on average, optimal E[Y (t)|T = t, Z = z] = max

d∈T
E[Y (d)|T = t, Z = z]. It is

nested for an appropriate choice of matrix M∗ = MROY and b∗ = 0.

Example 3.5. Missing data. Blundell et al. (2007) derives bounds on F (w|x) - the cdf
of wages evaluated at some w, with the wages observed if the individual is employed,
E = 1, and unobserved otherwise, if E = 0. Introduce O = {1} and U = {0}. Let
Y (t) ≡ I{W ≤ w}, so that E[Y (t)|X = x] = F (w|x). Our approach allows to accommodate
all identifying conditions in the original paper by appropriately choosing M∗, b∗ and M̃, b̃.

We omit the construction of the respective matrices here, but we briefly note that
assumptions of form (56) can accommodate the commonly imposed almost sure bounds
on potential outcomes of form Y (t) ∈ [K0;K1] a.s. for t ∈ T and known K0,K1 ∈ R with
K0 < K1.

Combinations of various assumptions can be straightforwardly obtained by stacking
the respective matrices, as in Example 2.3. Furthermore, formulations (55) and (56)
allow to perform sensitivity analysis through an appropriate choice of b∗. For example,
E[Y (t)|Z = z′] − E[Y (t)|Z = z] ≥ −δ(z, z′) for all z, z′ ∈ Z with z′ > z and t ∈ T , for a
collection of non-negative {δ(z, z′)}z,z′ chosen by the researcher, yields a relaxation of
MIV. In applications one could focus on the range of potentially problematic instrument
values. For instance, in De Haan (2017) the shape of observed moments may suggest
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a potential failure of instrument monotonicity near the boundaries. Selecting positive
δ(z, z′) for values of z, z′ close to the boundaries can therefore constitute a meaningful
robustness check.

3.2. Sharp bounds

The identification procedure that we propose applies to general linear inequality
restrictions on conditional moments of potential outcomes, as formulated in (55). To that
end, let us construct the vector that collects counterfactual pointwise conditional moments
and the vector of those moments that are identified:

x ≡ (E[Y (t)|T = d, Z = z])z∈Z∧(t,d∈T :t ̸=d∨t,d∈U :t=d), x ≡ (E[Y (t)|T = t, Z = z])z∈Z,t∈O

Denote the dimension of x as Nx and note that for known selector matrices Pm, Pm, one
can decompose m as:

m = Pmx+ Pmx

Define the identified set for β∗ under P∗ as:

Θ∗ ≡ {β ∈ R|∃P ∈ P : β = µ∗′m(P ) ∧ b∗ +M∗m(P ) ≥ 0}

We are now ready to state our main identification result.

Theorem 9. Under non-empty P∗, the sharp identified set for β∗ is given by:

Θ∗ = {β ∈ R|p′x+ inf
x:Mx≥b

p′x ≤ β ≤ p′x+ sup
x:Mx≥b

p′x} (57)

Where:

p ≡ P
′
mµ

∗, p ≡ P ′
mµ

∗ (58)
M ≡ M∗Pm b ≡ −b∗ −M∗Pmx (59)

Proof. In the Appendix. ■

Theorem 1 establishes that under any restriction which can be restated in the form (55),
the sharp bounds on the parameter of interest β∗ can be obtained as the value of a simple
linear program. We now wish to obtain a similar representation for the bounds under the
more general restrictions of form (56). To that end, let us define the identified set under
P∗∗ as:

Θ∗∗
I ≡ {β ∈ R|∃P ∈ P : β = µ∗′m(P ) ∧ b∗ +M∗m(P ) ≥ 0 ∧ M̃Y ≥ b̃ a.s.}

Notice that for any pair of d ∈ T , z ∈ Z, M̃Y + b̃ ≥ 0 a.s. implies:

M̃E[Y|T = d, Z = z] + b̃ ≥ 0
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Which can be equivalently restated as:

(INT NZ
⊗ M̃)m(P ) + ιNT NZ

⊗ b̃ ≥ 0, (60)

where ⊗ is the Kronecker product. Let the matrix M∗∗ and the vector b∗∗ combine the
conditional restrictions and the implications of the almost sure restrictions. Formally:

M∗∗ ≡

(
INT NZ

⊗ M̃

M∗

)
, b∗∗ ≡

(
ιNT NZ

⊗ b̃

b∗

)
(61)

It then directly follows that:

Θ∗∗
I ⊆ {β ∈ R|∃P ∈ P : β = µ∗′m(P ) ∧ b∗∗ +M∗∗m(P ) ≥ 0}, (62)

The inverse inclusion does not hold in general20. It does, however, hold in three scenarios
that appear to be the most relevant in practice. Whenever applied work using non-
parametric bounds augments the conditional inequalities by almost sure ones, it usually
does so by imposing outcome boundedness, the Monotone Treatment Response condition
or both (Blundell et al. (2007), Kreider et al. (2012), Gundersen, Kreider and Pepper
(2012), Siddique (2013)). These restrictions are then transformed into a restriction on
conditional moments21, as in (60). Since the general approach has not been available, sharp
bounds have only been obtained for some combinations of these almost sure restrictions
and the conditional inequalities. For those combinations of almost sure and conditional
restrictions that have been studied and for which sharp bounds are available, our approach
also attains sharpness.

A notable setup in which, to the best of our knowledge, no such result exists in the
continuous outcomes case is the combination of MIV, MTR and MTS conditions22. This
combination of assumptions is practically relevant because it allows for the tightest bounds
under the classical monotonicity restrictions. Consequently, it has been applied even when
the theoretical foundation was missing, resulting in the bounds that were not sharp or not
theoretically valid.

20See the Appendix for a counter-example.
21Which is also the approach of Manski and Pepper (2000) in the MIV + MTR and MTR + MTS cases.
22See Lafférs (2013) for a review of the methods that have been used to obtain bounds under this

combination, and the related fallacies.
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Theorem 10. For arbitrary M∗, b∗, if one assumes that either:

1. MTR holds, Y (t1) ≥ Y (t0) a.s. ∀t1, t0 ∈ T s.t. t1 > t0:

M̃ = M̃MT R ≡


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
. . . . . .

...
...

0 0 0 . . . −1 1

 , b̃ = 0NT −1 (63)

2. Outcomes are bounded, Y (t) ∈ [K0;K1], ∀t ∈ T a.s. for known K1 > K0:

M̃ = M̃b ≡

(
INT

−INT

)
, b̃ = b̃b ≡

(
−K0 · ιNT

K1 · ιNT

)
(64)

3. MTR holds, outcomes are bounded and (Ω,S) can support a U [0; 1] r.v.:

M̃ =
(
M̃MT R

M̃b

)
, b̃ =

(
b̃MT R

0NT −1

)
(65)

Then the converse of (62) holds and under non-empty P∗∗ the sharp identified set for β∗

is given by:

Θ∗∗ = {β ∈ R|p′x+ inf
x:Mx≥b

p′x ≤ β ≤ p′x+ sup
x:Mx≥b

p′x}, (66)

where M ≡ M∗∗Pm and b ≡ −b∗∗ −M∗∗Pm with M∗∗, b∗∗ defined in (61).

Proof. In the Appendix. ■

The additional requirement of a U [0; 1] random variable existence if MTR and bounded
outcomes are assumed is a technical condition needed to establish Lemma 7 in the
Appendix. Intuitively, it requires the underlying space of elementary outcomes and the
sigma-algebra to be rich enough. If it does not hold, the space may simply not support
certain candidate Y (t), which may result in narrower bounds, but which is clearly not a
suitable assumption in practice.

Theorems 1 and 2 show that our approach results in sharp bounds under arbitrary con-
ditional moment inequalities, possibly augmented with almost sure outcome boundedness
and/or the MTR condition.

Remark. Theorem 2 yields sharp bounds for the MIV + MTS + MTR combination.

Since the emphasis of this paper is on the use of conditional moment inequalities,
as opposed to almost sure inequalities on potential outcomes, we do not seek to obtain
sharp bounds under general almost sure constraints. This is because it does not seem
feasible to study the inverse inclusion in (62) in the continuous case for general M̃ and b̃

without imposing any further assumptions. For example, Mogstad, Santos and Torgovitsky
(2018) accommodate almost sure constraints on the potential outcomes by virtue of both
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restricting the analysis to the binary case and imposing the Heckman and Vytlacil (2005)
selection mechanism, which allows to define the marginal treatment response functions.
Our approach is highly complementary, because, unlike Mogstad, Santos and Torgovitsky
(2018), we accommodate arbitrary linear inequalities on conditional moments.

Since the bounds in Theorems 1 and 2 are sharp, they are equivalent to sharp bounds
obtained in some special cases by Manski and Pepper (2000), Blundell et al. (2007), Boes
(2009), Siddique (2013) and others. The analysis in this paper, however, also extends to
the cases in which such bounds cannot be derived analytically. For example, it allows the
researcher to combine various identifying assumptions, to introduce arbitrary relaxations
of the usually employed conditions and to consider more complicated setups. Theorems 1
and 2 thus present a unifying theory of identification under shape restrictions over linear
combinations of conditional moments and commonly used almost sure linear inequalities.

Notably, our formulation solves the identification problem in the space of conditional
moments instead of searching over all possible joint probability distributions. The latter
technique is not applicable whenever potential outcomes are continuous, because the
corresponding program becomes infinite-dimensional23.

An important special case of Theorem 2 obtains under the conditional monotonicity
family of assumptions. The more complicated structure of cMIV conditions has precluded
previous research from obtaining the analytical sharp bounds. As Section 4 explains,
under some versions of cMIV these bounds can only be obtained in the LP form, which
additionally motivates the more general approach of Theorems 1 and 2.

4. cMIV assumptions

A particular family of identifying conditions that can be written in the form (56) is the
conditional monotonicity class of assumptions. These impose that potential outcomes are
mean-monotone in the instrument even within some treatment subgroups. While more
restrictive than the conventional MIV, conditionally monotone instrumental variables
(cMIV) allow to sharpen the bounds on the outcomes of interest. Throughout this section,
we assume that outcomes are bounded Y (t) ∈ [K0;K1] a.s. for K0,K1 ∈ R, K0 < K1 and
the bounds are known. We also suppose that there are no missing data24, i.e. T = O.

We argue that cMIV assumptions are reasonable in classical applications, provide
examples to illustrate the difference between MIV and cMIV and develop a formal
testing strategy for a particular version of cMIV. This testing procedure relies on the
observed outcomes’ monotonicity, which has been typically used in applied work to justify
applying MIV. Our results show that if such monotonicity is observed and the researcher
is comfortable with MIV, the cMIV assumption is inexpensive, and can be applied to
sharpen the bounds on the outcomes of interest. In some applications, as is the case in
Section 5, cMIV allows to obtain informative bounds on the parameters of interest even
though the MIV assumption does not.

23Making the problem infinite-dimensional complicates estimation and inference up to a point where no
’good’ methods seem to be available; albeit an identification result may be obtained in the continuous
case, the estimation stage will likely need to be discrete.

24Although it is hopefully clear from our general approach how cMIV conditions extend to the missing
data case.
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We now present three versions of conditional monotonicity assumptions. While we
only consider these three variations, we should note that the class of such assumptions is
richer25 and Theorem 2 applies in any such conditional and unconditional monotonicity
frameworks.

Assumption cMIV-s. Suppose that for any t ∈ T , A ⊆ T : A ̸= {t} and z, z′ ∈ Z s.t.
z′ > z we have:

E[Y (t)|T ∈ A,Z = z′] ≥ E[Y (t)|T ∈ A,Z = z] (67)

i.e. the potential outcomes are, on average, non-decreasing in Z for any treatment subgroup.

The strong conditional monotonicity assumption possesses the greatest identifying
power across all cMIV conditions. The sharp bounds for it, however, can only be obtained
as value functions of linear programs in Theorem 2. To see that Assumption cMIV-s
implies MIV, set A = T in the above definition.

Assumption cMIV-w. Suppose MIV holds and for any t ∈ T and z, z′ ∈ Z s.t. z′ > z

we have:

E[Y (t)|T ̸= t, Z = z′] ≥ E[Y (t)|T ̸= t, Z = z] (68)

i.e. the potential outcomes are, on average, non-decreasing in Z for the non-treated
subgroup and for the whole population.

The weak conditional monotoncity assumption allows for closed-form expressions for
sharp bounds that are easy to compute and perform inference on.

Assumption cMIV-p. Suppose MIV holds and for any t ∈ T , d ∈ T \ {t} and z, z′ ∈ Z
s.t. z′ > z we have:

E[Y (t)|T = d, Z = z′] ≥ E[Y (t)|T = d, Z = z] (69)

i.e. the potential outcomes are, on average, non-decreasing in Z conditional on any
counterfactual level of treatment.

The pointwise conditional monotonicity assumption, as we shall see in Section 3.2,
allows for the cleanest mathematical intuition. The test of this form of monotonicity is
also derived in Section 3.3.

We call Z a strong (weak) conditionally monotone instrument (for brevity, strong
(weak) cMIV) if it satisfies Assumption cMIV-s and cMIV-w respectively. If Z satisfies
cMIV-p, we call it a pointwise conditionally monotone instrument.

Conditional monotonicity restrictions differ in the collection of treatment subsets over
which monotonicity in the instrument is assumed. The strong conditionally monotone
instruments are such that, among individuals from any given counterfactual treatment
subgroup, higher values of Z are, on average, associated with higher potential outcomes.
The weak conditional monotonicity restriction only imposes the same mean-monotonicity

25One can consider the class of conditional restrictions E[Y (t)|T ∈ A, Z = z′] ≥ E[Y (t)|T ∈ A, Z =
z], ∀A ∈ Ft for all t ∈ T where subcollections Ft ⊆ T are chosen by the researcher.
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on the whole population and on the untreated, whereas the pointwise form assumes it
over the entire population as well as conditional on each counterfactual level of treatment.

Remark. All cMIV assumptions imply MIV. Moreover, cMIV-w, cMIV-p are implied by
cMIV-s. If treatment is binary, cMIV-s, cMIV-w and cMIV-p are equivalent.

While this is possible for the general apporach of form (55), cMIV conditions avoid
assuming monotonicity over the observed treatment subset {T = t}. This is because
such monotonicity is identified. If it holds, it should not add any identifying power to
our conditions in theory. In practice, imposing such monotonicity may render the LP
infeasible, because under noisy data it may fail in finite samples, even if it holds in the
population. On the other hand, large violations of the observed outcomes’ monotonicity
will lead the test developed in Section 3.3 to reject cMIV-p and cMIV-s.

The following observation motivates the use of cMIV assumptions.

Proposition 7. Manski and Pepper (2000) MIV bounds are not sharp under either
cMIV-s, cMIV-w or cMIV-p.

Proof. Consider a binary treatment T and three levels of the instrument Z ∈ {z0, z1, z2}
with z0 < z1 < z2. Suppose for a fixed t ∈ {0, 1}, we have E[Y (t)|T = t, Z = zi] = 0, with
P [T ̸= t|Z = z0] = 0.125, P [T ̸= t|Z = z1] = 0.5, P [T ̸= t|Z = z2] = 0.25. Further impose
−K0 = K1 = 1. The no-assumptions bounds on E[Y (t)|Z = zi] are:

[−0.125; 0.125], [−0.5; 0.5], [−0.25; 0.25]

The MIV lower bounds ’iron’ the no-assumptions bounds:

−0.125, −0.125, −0.125

Which also implies the following lower bounds on E[Y (t)|T ̸= t, Z = zi]:

−1, −0.25, −0.5

Under cMIV assumptions, one can ’iron’ the above array to improve the lower bound for
z2 up to −0.25, so that the lower bound on E[Y (t)|Z = z2] becomes −1/16 > −1/8. ■

Sharp bounds for all versions for cMIV follow from Theorem 2. We also show that under
cMIV-w the bounds can be characterized explicitly, which is especially convenient if the
treatment is binary, so that all cMIV assumptions coincide. For didactic purposes, we
further provide the detailed construction of the triplet M, c, p from Theorem 2 under
cMIV-s and cMIV-p. All details on the identification under cMIV are provided in the
Appendix 7.5.

4.1. Discussion of cMIV

This section illustrates the difference between MIV and cMIV assumptions by consid-
ering two parametric examples with classical applications. Any restrictions imposed for
this purpose do not apply to the rest of the paper.
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4.1.a. Education selection. To better illustrate the distinction between MIV and cMIV,
consider the following empirical setup. Suppose T is an indicator of whether or not an
individual has a university degree, Y (t) are potential log wages and Z is an observed
indicator of ability.

The usual MIV assumption on Z implies that more able individuals can do better
both with and without a college degree on average: E[Y (t)|Z = z] - monotone in z. cMIV
additionally imposes that: i) among those who have a college degree, a smarter individual
could have done relatively better on average than their counterpart if both did not have
it: E[Y (0)|Z = z, T = 1] - monotone in z; and ii) among those who do not have a college
degree, a smarter individual could have done relatively better on average than their
counterpart if both had it: E[Y (1)|Z = z, T = 0] - monotone in z.

We now consider a parametric example. Suppose that η measures how diligent one
is from birth and is ex-ante mean-independent of Z. While Z is observed by both the
employers and the econometrician (e.g. observing an IQ score), the employer additionally
observes a noisy signal of diligence by virtue of knowing the employee’s effort level: η + ε

and ε |= (Z, T, η). Suppose V ar(Z) = V ar(η) = 1 and E[Z] = E[η] = E[ε] = 0.
Consider a stylized Roy selection model with:

Y (t) = β0(t) + β1(t)Z + β2(t)η + ε(t), T = I{E[Y (1) − Y (0)|Z, η] + ν ≥ 0},

where ν |= (Z, η, ε) and we let ε(t) ≡ β2(t)ε. In this case MIV collapses to:

(MIV) : β1(t) ≥ 0

MIV postulates that the direct effect of ability on potential earnings is positive. It seems
reasonable to suppose that βi(t) ≥ 0, i = 1, 2, t = 0, 1, i.e. both diligence and ability
increase potential wages.

Letting δz ≡ β1(1) − β1(0) and δη ≡ β2(1) − β2(0) denote the differential in the effects
of ability and effort respectively on the potential wage schedule, the additional requirement
of cMIV is that:

β1(0)z︸ ︷︷ ︸
direct effect

+β2(0)E[η|δzz + δηη + ν̃ ≥ 0]︸ ︷︷ ︸
selection given T = 1

−increasing (70)

β1(1)z︸ ︷︷ ︸
direct effect

+β2(1)E[η|δzz + δηη + ν̃ ≤ 0]︸ ︷︷ ︸
selection given T = 0

−increasing, (71)

where ν̃ ≡ β0(1) − β0(0) + ν.
Notice that if δz and δη are of different signs, for example because the jobs that one

may apply for with a college degree are more ability-intensive (δz > 0), whereas those
which are available otherwise are more skill-intensive (δη < 0), the additional conditional
monotonicity requirements (70)-(71) are less strict than MIV. This is because, conditional
on both having a degree and not having it, ability and effort are positively associated.

Intuitively, among those who do not have a degree (T = 0), people of higher ability
must have had stronger incentives to forgo college. This should have been because a higher
level of diligence gives them a comparative advantage in effort-intensive jobs. Among
those with a degree, higher ability implies a comparative advantage in ability-intensive
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occupations, which explains their willingness to select into this option (T = 1). It does
not, therefore, signal as low an effort level as it would for a less capable individual.

Now consider the same setup with26:

T = I{η + Z ≥ 0}

This selection mechanism can be explained by the fact that to get a degree one needs
to be either hard-working or of high ability. The requirement of MIV is unchanged, and
cMIV necessitates that:

β1(0)z + β2(0)E[η|η ≥ −z] − increasing (72)
β1(1)z + β2(1)E[η|η ≤ −z] − increasing (73)

In this case, conditional on each level of education, effort level η and ability Z are
negatively associated, so the conditional selection terms in (72)-(73) make cMIV a stricter
assumption than MIV.

Intuitively, a more able individual with a college degree did not need to work as hard
to get it relative to her counterpart with a lower ability. Similarly, if an individual is
capable, but does not have a degree, she has to be of rather low effort as otherwise she
would have selected into education.

Even if MIV holds, cMIV can fail if employer prefers effort over ability to the extent
that the negative association between the two conditional on having or not having a degree
outweighs the direct impact of ability on wages as well as any ex-ante positive correlation
between the employer-observed signal of diligence and the ability.

An examination of equations (70) and (71) suggests that cMIV is more likely to hold
whenever δz is small relative to δη, while β1(·) is large relative to β2(·). This means that Z
should be relatively weak in the parlance of the classical IV models, and strongly monotone.
cMIV is also more likely to hold the more noisy is the selection mechanism. This is because
a greater variance of the idiosyncratic component27 ν̃ makes the conditional link between
Z and η more loose.

Overall, it seems reasonable to use a proxy for the level of ability as a conditionally
monotone instrument in the estimation of returns to schooling. One would be inclined
to think that while Z does enter selection, it affects the potential outcomes directly and
strongly enough, so that there are no subgroups by schooling for which a higher value of
ability would correspond to lower potential wages on average.

4.1.b. Simultaneous equations. As some aspects of mathematical intuition may be muted
in discrete models, we also consider a simple continuous setup to confirm the insights
derived from the previous analysis. For illustrative purposes, drop the boundedness and
discreteness assumptions and consider the demand and supply simultaneous equations:

qk(p) = αk(p) + βk(p)Z + γk(p)η + κk(p)εk, k ∈ {s, d}
26Setting δz = δη > 0 and ν̃ = 0.
27This holds formally in jointly normal case.
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The observed log-price P clears the market:

P ∈ {p ∈ R|E[qs(p)|Z, η] = E[qd(p)|Z, η]}, (74)

where η, Z are continuous unobserved and observed random variables respectively, with
E[η|Z = z] = 028 and E[εk] = 0 with εk |= (η, Z, ε−k) for k ∈ {s, d}. Further assume that
all functions of p are continuous.

Potential price p indexes the potential outcomes, giving rise to the demand and supply
schedules. Suppose we aim to identify the supply elasticity, so that the relevant potential
outcomes are qs(p). Z is a considered monotone instrument, while P can be interpreted as
treatment. η is unobserved heterogeneity and εk are random violations from the market
clearing condition or measurement errors independent of the rest of the model. For an
individual realization of market clearing an econometrician observes {P, {qk(P )}k, Z},
but does not observe the schedules at other prices {qk(p)}k for p ̸= P , nor disturbances
{η, {εk}k}.

Define δz(p) ≡ βs(p)−βd(p) and similarly for η, with δp(p) ≡ αs(p)−αd(p). As stated,
the model is potentially incomplete or incoherent, as for a given vector (Z, η) equation
(74) may have multiple or no solutions. To avoid that, so long as that the support of
Z, η, εk is full, it is necessary that δz(p), δη(p) be constant. We shall assume that for
simplicity. Provided that δp(p), which determines the excess supply at fixed (Z, η), is
strictly increasing and has full image, the model is complete and coherent and:

P = δ−1
p (−δzZ − δηη) (75)

Equation (75) introduces a deterministic linear relationship between Z and η conditional
on each given value of P . As we saw in the previous example, this constitutes the worst-
case scenario for cMIV, if δz and δη have the same sign. A noisier selection mechanism
would relax the conditional link between Z and η, and would thus weaken the conditional
selection channel.

Note that the reduced-form error is u ≡ γs(P )η + κs(P )εs and there is a simultaneity
bias:

E[Pu] = E[Pγs(P ) E[η|δzZ + δηη = P ]︸ ︷︷ ︸
simultaneity/ommited variable

] ̸= 0

In this setup, MIV requires:

(MIV) : βs(p) ≥ 0, ∀p ∈ R

Whereas cMIV additionally imposes that:

βs(p)z + γs(p)E[η|δzz + δηη = −δp(d)] ≥ 0 − increasing in z, ∀p, d ∈ R : d ̸= p (76)
28Note that, once again, mean independence is not restrictive, as otherwise we could always redefine

the data generating process in an observationally equivalent way.
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Suppose that δz, δη ̸= 0 to rule out uninteresting cases. (76) rewrites as:

βs(p) ≥ γs(p)β
s(p) − βd(p)
γs(p) − γd(p) (77)

For concreteness, consider two positive supply shocks, i.e. βs(p), γs(p) > 0. Equation
(77) then says that either η and Z affect the reduced-form equilibrium price in different
directions (recall the comparative advantage example), or the effect of Z on the equilibrium
price relative to its effect on the supply schedule is smaller than that of η:

sgn(δη) ̸= sgn(δz) or
∣∣∣∣βs(p) − βd(p)

βs(p)

∣∣∣∣ ≤
∣∣∣∣γs(p) − γd(p)

γs(p)

∣∣∣∣ (78)

Under sgn(δη) = sgn(δz), equation (78) once again requires that Z be strongly
monotone and relatively weak. The logic we described may help the researcher navigate
the potential economic forces in a given application to decide whether cMIV is a suitable
assumption.

For example, consider estimating the supply elasticity in the market for plane tickets
in the early days of Covid-19 pandemic. Suppose Z is an inverse Covid-stringency index
for the economy, while η may be interpreted as residual cost shocks, defined to be mean-
independent of Z. It is likely that δη ≈ γs, i.e. residual cost shocks affect mainly the
supply in that sector, and not the demand. It is also likely that either supply is less
responsive to Z than demand (so that cMIV is implied by MIV), or the effects are of the
same order of magnitude. Z is therefore likely to be a conditionally monotone instrument.

4.2. Testing cMIV

One could argue that cMIV-s or cMIV-p can be rejected whenever E[Y (t)|T = t, Z = z]
fails to be monotone in the data. In general, the power of that test is not immediately
clear, for example if the outcomes fail to be conditionally mean-monotone on some other
subset of the support. There is, however, a special case when cMIV can be tested directly,
given that the researcher believes in MIV. In some applications one may conjecture that
the potential outcomes’ functions Y (t), either in the reduced or in the structural form, are
such that the relative effects of Z and the unobserved variable(s) η, potentially correlated
with Z, are unchanged across outcome indices t.

In practice, researchers often impose even stricter versions of this homogeneity assump-
tion. For example, Manski and Pepper (2009) discuss MIV-driven identification under
HLR assumption, which amounts to imposing Y (t) = βt+ η. Conditions in Proposition
4 relax HLR to an arbitrary shape of response of a potential outcome to treatment and
allow for a generally heteroscedastic/treatment-specific response to unobserved variables
and instrument, so long as the relative effects are unchanged across potential outcomes.

Recalling that E[Y (t)|T = t, Z = z] is identified, testing the counterfactual part of
Assumption cMIV-p becomes equivalent to testing the monotonicity of E[Y (t)|T = t, Z = z]
given that MIV holds:
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Proposition 8. Suppose that a): i) Y (t) = g(t, ξ)+h(t)ψ(Z, η), h(t) ̸= 0 with ξ |= (T,Z, η)
and ii) MIV holds, strictly for some z, z′ ∈ Z with z′ > z; or b): i) Y (t) = g(t, ξ, T ) +
h(t)ψ(Z, η) with ξ |= (T,Z, η), ii) h(t)

h(d) > 0 ∀t, d ∈ T ; and iii) MIV holds. Then Assumption
cMIV-p holds iff E[Y (t)|T = t, Z = z] are all monotone.

Proof. In the Appendix. ■

Clearly, in case treatment is binary, the same holds for cMIV-s and cMIV-w. Further
note that whether or not h(t) ̸= 0 is observable in the data for case (a) and whether or
not h(t)/h(d) > 0 is also identified for (b).

cMIV is testable in the Example 3.2.2, because the reduced form expression has the
form b) : i). It also becomes testable in the Example 3.2.1 if instead of separately observing
η, Z, employers on average observe a mixed signal of ability and effort, s ≡ aZ + bη for
some a, b ∈ R.

It is important to note that in practice the monotonicity of observed outcomes has
been routinely used to motivate the use of MIV (e.g. De Haan (2017)). Here we have
shown that under a homogeneity condition the same observed monotonicity establishes
cMIV-p under MIV.

Under the conditions in Proposition 4, a test of cMIV-p is thus the test of all ft(z) ≡
E[Y (t)|T = t, Z = z] being monotone. Formally, we test the following null hypothesis:

H0 : ft(z) − increasing in z, ∀t ∈ T (79)

For this purpose, we may extend the testing procedure developed in Chetverikov (2019) to
accommodate the test of joint monotonicity of the conditional moments29. Denote the set
of all observations with treatment level t as It ≡ {i ∈ 1, n : Ti = t} with nt ≡ |It|. Suppose
ϕt

nt
is the corresponding Chetverikov’s regression monotonicity test (or a corresponding

parametric test for discrete Z) with the confidence level αt ∈ (0; 0.5). We define the joint
test as:

ϕn ≡ max
t∈T

ϕt
nt

(80)

Denote PC to be the set of probability measures, such that for all P ∈ PC and all
t ∈ T the conditional probability measure given T = t that P generates satisfies the
regularity conditions in Theorem 3.1 in Chetverikov (2019). Similarly, let PC

t be the set
of all the conditional probability measures given T = t that measures from PC generate.
In the proposition below, we interpret H0 as a set of such measures that satisfy (79).

29This test is developed for continuous Z, which is used in our application. Although the instrument is
discretized at the estimation stage, the monotonicity of E[Y (t)|T = t, Z = z] for continuous Z clearly implies
the monotonicity of the discretized moments. The procedure we describe straightforwardly accommodates
testing discrete instruments. As noted in Chetverikov (2019), for discrete conditioning variable the test is
a simple parametric problem, since the conditional moment function can be

√
n−consistently estimated

at each point from the support.
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Proposition 9. If Πt∈T (1 − αt) ≥ 1 − α, then:

inf
P ∈PC ∩H0

P [ϕn = 0] ≥ 1 − α+ o(1) (81)

as n → ∞.

Proof. Notice that each ϕt
nt

is a function of the observations from It only. Since It are
mutually exclusive by construction and because the data are i.i.d., we have P [ϕn = 0] =
Πt∈T P [ϕt

nt
= 0].

By standard optimization arguments:

Πt∈T inf
P ∈PC

t

P [ϕt
nt

= 0] ≤ inf
P ∈PC

Πt∈T P [ϕt
nt

= 0] (82)

Theorem 3.1 from Chetverikov (2019) and Πt∈T (1 −αt) ≥ 1 −α then yield the result. ■

Remark. One may set αt = 1 − (1 − α)1/NT as a baseline. If the domain knowledge
suggests that for some treatments monotonicity is more likely to hold, one can set a higher
αt for them, so long as Πt∈T (1 − αt) ≥ 1 − α. This may improve the power of the test.

We implement this test when studying the returns to education in Colombia, see
Section 5.

5. Returns to education in Colombia

Our data is comprised of 861492 observations from Colombian labor force. The sample
represents a snapshot of those individuals who could be matched across the educational,
formal employment and census datasets in 202130. For 664633 individuals from this dataset
we observe their average lifetime wages, education level and Saber 5 or Saber 11 scores for
Mathematics and Spanish language tests31.

The outcome variable we consider (Yi) is a log-wage, and Ti is the education level.
We distinguish four education levels: primary, secondary and high school as well as
’university’32. Our measure of ability is constructed as a CES aggregator, which is then
split into deciles:

Zi ≡ (MATH
1/2
i + SPANISH

1/2
i )2

30Educational dataset was assembled by the testing authority Instituto Colombiano para la Evalu-
ación de la Educación (ICFES), formal employment dataset comes from social security data based on
Planilla Integrada de Liquidación de Aportes (PILA), whereas census data is handled by Departamento
Administrativo Nacional de Estadística (DANE). The data was merged and anonymized by ICFES.

31Saber 5 and 11 tests are taken at different ages, but designed to be comparable between each other,
which justifies merging them.

32Ti is based on the number of years of schooling, Si. If Si < 9, set Ti ≡ 0 meaning the individual only
graduated from primary school. Si ∈ [9; 11) and Ti ≡ 1 correspond to completing compulsory education
(secondary school), Si = 11 and Ti ≡ 2 means that the individual is a high-school graduate, whereas
Si > 11 with Ti ≡ 3 means university education. Unfortunately, Si is capped at 17 years in our sample,
making it impossible to distinguish between those who continued to graduate education and those who
just finished the 6−years degree.
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Figure 4: Estimated conditional moments of log-wages given ability and education level.

We first test whether cMIV is a reasonable assumption in our setup by implementing
the test discussed in Section 3.3. To that end, we use the parameters and kernel functions
recommended by Chetverikov (2019) and focus on the theoretically most powerful proce-
dure, the step-down approach. The estimated p-value of the test is 0.29, see Table 1. We
thus conclude that cMIV-p is a credible assumption provided that MIV holds.

t Rst
t Rcrit

t;0.1 p-value nt

0 0.98 2.33 0.34 274295
1 -1.17 2.17 0.95 143299
2 -1.51 2.30 1.00 216336
3 1.86 2.38 0.08 30703

Table 1: Results of the monotonicity test, see Section 3.2. Second column gives the estimated Chetverikov
(2019) test-statistic, third column contains the α = 0.1 critical values, corresponding to αt = 1 − (1 −
0.1)1/4 ≈ 0.026 individual critical value. The last column gives a p-value against the individual null for
each t. The overall p-value is 0.29.

The data we study is rather noisy. One would expect a considerable measurement
error in the construction of both treatment levels and the outcome variable33. In line with
that, the strongest form of cMIV is not sufficient to provide identification in the absence
of further assumptions. While the resulting bounds are tighter than that under MIV, they
remain uninformative.

To achieve identification, we augment our assumptions with the MTR condition. While
MIV and cMIV-w remain uninformative, both cMIV-p and cMIV-s result in positive lower
bounds on the ATEs. Under cMIV-p the effect of obtaining a ’university education’ is
estimated to be at least as large as 3.62%, and 5.91% under cMIV-s. This is consistent
with previous evidence. Causal estimates for the US (Card (1993), Brand and Xie (2010)

33In particular, age is self-reported when filling an online questionnaire and appears to be of low quality,
so we are forced to merge multiple cohorts.
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and Angrist and Chen (2011)) report the return of at least 10% for a 4−year college
degree. Recent evidence suggests that this number may be substantially lower for Colombia
(Gomez, 2022).
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Figure 5: Estimation results for the monotonicity assumptions augmented with MTR. CI
constructed according to Proposition 11. The exogenous treatment selection estimates
(ETS) are ATEET S

t,d ≡ E[Y (t)|T = t] − E[Y (d)|T = d]

We also find significantly positive effects at other education stages, see Figure 5. Further
details on data construction and estimation as well as robustness checks are available in
the Appendix.
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6. Appendix

6.1. Proof of Lemma 1

Proof. To see why (7) holds, note that any minimum of the LP is feasible for the penalized
unconstrained problem and it yields the same value B(θ).

Now consider the second part. It is a well-known result in the theory of penalty
functions that if w in a linear penalty function is component-wise larger than the vector of
Lagrange multipliers λ at a local optimum (subject to restrictions on the initial problem),
then the local minimum corresponding to that λ is also a local minimum of the penalized
unconstrained problem (e.g. Bertsekas (1975)). i) then follows from the fact that any
local minimum of a convex program is also global.

Now consider the claim ii). Suppose that (λ,w) are the KKT vector and the penalty
vector that satisfy Assumption A1 and x is the associated optimum of (4) and B ≡ p′x.
Note that one direction of ii) is trivial, since any x̃ that is optimal in the initial problem
yields the same value in the penalized problem. For another direction, suppose x∗ is a local
(global) minimum of the penalized problem (6). If x∗ is feasible, it is also an optimum of
the initial problem. Suppose it is not feasible. By the assumption on (w, λ):

p′x∗ + w′(c−M ′x∗)+ > p′x∗ + λ
′(c−M ′x∗) (83)

The definition of a KKT vector in Rockafellar (1970) also requires that:

B = inf
x∈RN(S−1)

p′x+ λ
′(c−M ′x) ≤ p′x∗ + λ

′(c−M ′x∗) (84)

Therefore,

B = p′x∗ + w′(c−M ′x∗) > p′x∗ + λ
′(c−M ′x∗) ≥ B (85)

Which yields a contradiction, so there can be no such x∗. Thus, the sets of optimal
solutions coincide. ■

6.2. Proof of Theorem 1

Proof. The following Lemma is a well-known result, provided here for reference:

Lemma 8. For Θ ⊂ Rn - compact, and for random sequences fn(·), f(·) : Θ → R, the
following holds:

sup
θ∈Θ

|fn(θ) − f(θ)| p−→ 0 =⇒ sup
θ∈Θ

|f+
n (θ) − f+(θ)| p−→ 0

sup
θ∈Θ

|fn(θ) − f(θ)| p−→ 0 =⇒ sup
θ∈Θ

|f−
n (θ) − f−(θ)| p−→ 0

Proof. |f+
n (θ) − f+(θ)| ≤ |fn(θ) − f(θ)| ■

From Lemma 1 we have B(θ0) = B̃(θ0;w), so proving consistency is equivalent to proving:

B̃n
p−→ B̃(θ0;w) (86)
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Now, it is straightforward to see that Ln(x), L(x) ∈ C[X ]. Thus, |L̂n(x) − L(x)| p−→ 0
∀x ∈ X by A0 and CMT, so there is pointwise convergence. To establish uniform
convergence, first apply Cauchy-Schwarz and triangle inequality:

|L(x) − L̂n(x)| ≤ ||p̂n − p|| · ||x|| + ||w|| · ||(ĉn − M̂nx)+ − (c−Mx)+|| (87)

For the second term, dropping the positive value functions, Cauchy-Schwarz and triangle
inequality yield:

||ĉn − M̂nx− (c−Mx)|| ≤ ||ĉn − c|| + ||M − M̂n|| · ||x|| (88)

So that ||ĉn − M̂nx− (c−Mx)||∞
p−→ 0 by A0 and CMT. Applying Lemma 8, we get:

||(ĉn − M̂nx)+ − (c−Mx)+||∞
p−→ 0 (89)

Combining with (87) and noting that the first term converges uniformly:

||L̂n − L||∞
p−→ 0 (90)

It then immediately follows that:

|B̃n − B̃(θ0;w)| = |min
x∈X

{L̂n(x)} − min
x∈X

{L(x)}| p−→ 0 (91)

■

6.3. Proof of Lemma 2

Proof.

|Q̂n(x) −Q(x)| =

∣∣∣∣∣∣
∑

j

(
[M̂nx− ĉn]−j

)2
−
(
[Mx− c]−j

)2

∣∣∣∣∣∣ = (92)

=

∣∣∣∣∣∣
∑

j

([M̂nx− ĉn]−j − [Mx− c]−j )([M̂nx− ĉn]−j + [Mx− c]−j )

∣∣∣∣∣∣ ≤ (93)

≤
∑

j

|[M̂nx− ĉn]−j − [Mx− c]−j | · |[M̂nx− ĉn]−j + [Mx− c]−j | ≤ (94)

≤
(

max
j

[M̂nx− ĉn]−j + [Mx− c]−j
)∑

j

∣∣∣∣[(M̂n −M)x+ c− ĉn

]
j

∣∣∣∣ (95)

Where (95) uses the fact that |(y0)− − (y1)−| = | max{0,−y0} − max{0,−y1}| ≤ |y0 −
y1| ∀y0, y1 ∈ R. We now show that the last line converges to 0 is supremum over
x ∈ X . Note that, since M̂n

p−→ M, ĉn
p−→ c, the estimator asymptotically lies in

any δ-vicinity of the true population parameter. In other words, ∀δ > 0, we have
(ĉ′

n, vec(M̂n)′)′ ∈ Bδ((c′, vec(M)′)′) w.p. 1 asymptotically.
Since X is a compact and because of the former result, both M̂nx− ĉn and Mx− c
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are bounded w.p. 1 asymptotically, so there exists K > 0 - large enough:34:

sup
x∈X

max
j

[M̂nx− ĉn]−j + [Mx− c]−j ≤ K + op(1) (96)

Note that by Cauchy-Schwarz,
∑

j

∣∣∣∣[(M̂n −M)x+ c− ĉn

]
j

∣∣∣∣ ≤ |Ft| · ||(M̂n −M)x+c− ĉn||.

Further using (95), (96) and noting that for nonnegative f, g one has supA fg ≤ supA f ·
supA g, we get:

||Q̂n(x) −Q(x)||∞ ≤ (K + op) · |Ft| · sup
x∈X

||(M̂n −M)x+ c− ĉn|| ≤ (97)

≤ (K̃ + op) ·
(

||M̂n −M || · ||x||∞ + ||c− cn||
)

= op(1) (98)

The proof is complete. ■

6.4. Proof of Proposition 5

First, notice that the iff result for the following conditions: i) SC holds and ii) A(θ0) and
Λ(θ0) are both singletons follows from Theorem 3.1 in Fang and Santos (2018) combined
with Lemma 4 and Proposition 4. Then, observe that A(θ0) and Λ(θ0) are both singletons
if and only if both LICQ hold and there are no flat faces.

6.5. Inference for LP under SC and the biased penalty function estimator

6.5.a. LP under Slater’s condition. We now consider inference for the original LP
estimator under Slater’s condition. Proposition 5 showed that, in the absence of this
condition, the plug-in may fail to be consistent, because the value function is not continuous
in the parameter θ0

35.

Assumption B2 (Slater’s condition). Int(ΘI) ̸= ∅

The following lemma establishes Hadamard directional differentiability of a linear
program under Assumption B2.

There is no apparent reason to suppose that ii) should hold in practice, and therefore
we do not endorse applying Proposition 9. Instead, it is intended to illustrate the difficulty
with inference on general LP value functions even under the Slater’s condition.

Corollary 1. Under assumption B2, Proposition 6 holds with κn = 0, i.e. the naive
estimator is consistent.

One way to obtain a consistent estimator is to employ the procedure developed in
Hong and Li (2015). Let:

B̃′
n(Z∗

n) ≡ B(θ̂n + ϵnZ∗
n) −B(θ̂n)
ϵn

(99)

34In the cMIV setup all terms of M̂n, ĉn are known to be bounded, so asymptotic arguments are not
necessary. We consider a more general case here.

35Although Slater’s condition is not necessary for duality in the case of LP, its failure allows for
unboundedness of the dual solution set at θ0, see Wright (1997). As shown in Meyer (1979), this will
imply that the optimal value function is not continuous with respect to perturbations in c.
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For ϵn → 0 with rnϵn → ∞, we have the following proposition:

Proposition 10. If Assumptions B1, B2 hold, and the bootstrapped Z∗
n satisfies the

measurability conditions in Hong and Li (2015):

sup
f∈BL1(R)

|E[f(B̃′
n(Z∗

n)))|{Xi}n
i=1] − E[f(B′

θ0
(G0))]| = op(1) (100)

Assumption B2 is rather strong, and one may not be comfortable imposing it directly.
This is especially true in cases where many inequality restrictions are involved, such as
under cMIV-s, because one would be concerned that the defined system may be close to
point-identification. An even more serious problem in practice is that, even if an open ball
is contained in ΘI at θ0, the radius of that ball is not inconsequential in finite samples.
A thinner identified set leads the bootstrap iterations of the N.D.M. to fail more often,
as the constraint set turns empty at perturbed parameter values. Dropping the failed
iterations introduces an unknown bias to the estimates, and so is not advised.

One potential solution would be to use the set-expansion estimator as in Section 4.2.
Indeed, as long as the true system is feasible, expanding the set from the RHS renders the
Slater’s condition true, and the procedure described in this section becomes applicable.
The bias of such expansion would be controlled as follows:

min
ΘI

p′x− ||p||dH(ΘI , Θ̃I) ≤ min
Θ̃I

p′x ≤ min
ΘI

p′x (101)

Moreover, by Lipschitz continuity of systems of linear inequalities, dH(ΘI , Θ̃I) ≤ C|κ| for
some C > 0 depending on θ0, where the vector κ > 0 is the RHS-expansion.

This estimator, however, would still be problematic both because it is conservative
even in terms of the convergence rate, and because it relies on an arbitrarily selected
set expansion. Since a larger expansion leads to a more conservative lower bound, in
applied work the researcher would be tempted to select the minimal value that ensures the
bootstrap iterations do not fail. The statistical properties of that approach are unclear.

6.5.b. Inference for the biased penalty. We now consider the penalty function estimator
B̃(·) defined in Section 4.1. The main difficulty when conducting inference for it consists
of proving its Hadamard directional differentiability.

Observe that we can write B̃ ≡ ϕ ◦ L̃, where L̃(θ) ≡ L(·; θ) is a functional L̃ : RS →
ℓ∞(X ), and ϕ : ℓ∞(X ) → R is given by:

ϕ(q) ≡ inf
x∈X

q(x),

and where we equip ℓ∞(X ) with the sup norm. By Lemma S.4.9 in the Online Appendix
of Fang and Santos (2018), ϕ is Hadamard directionally differentiable. It is therefore
tempting to apply the chain rule to find the derivative of B̃, which only requires that L̃
is H.d.d. However, in the spirit of the example from Hansen (2017), this is not the case.
The following remark illustrates that issue.

Remark. g(y)(x) ≡ (x+ y)+ viewed as a map g : R → ℓ∞(A) for x ∈ A ≡ [−C;C] for
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some C > 0 is not Hadamard directionally differentiable for any fixed y ∈ [−C/2;C/2]:

lim
tn→0+,hn→h

|| (y + x+ tnhn)+ − (y + x)+

tn
− f(h)(x)||∞ ̸= 0

for any continuous f(h)(x). To see that, note that the first term converges pointwise to
I{y + x = 0}h+ + I{y + x > 0}h. Suppose that h < 0 and consider: xn = −y − tn

2 hn, we
have:

| (y + xn + tnhn)+ − (y + xn)+

tn
− I{y + xn = 0}h+ + I{y + xn > 0}h| =

= o(1) − h

2 ̸= o(1)

In light of this finding, it should be almost surprising that B̃(·) is still Hadamard
directionally differentiable, as we now demonstrate. Instead of using the chain rule, which
is of course only a sufficient condition for differentiability, we notice that B̃ can be rewritten
as a new linear program that has a non-empty interior of the constraint set36.

Proposition 11. The penalty function estimator, B̃(θ;w) is Hadamard directionally
differentiable in θ at θ0 if either i) X is a polyhedron with Int(X ) ̸= ∅, or ii) ∃x ∈
Ã(θ0;w) ∩ Int(X ). The H.d.d. is given by:

B̃′
θ0

(h;w) = inf
x∈Ã(θ0;w)

sup
λ∈Λ̃(θ0;w)

h′
px+

2q∑
j=1

λj

∑
i∈Πj

wi(hci
− h′

Mi
x) (102)

where h = (h′
p, hc1 , . . . , hcq

, h′
M1
, . . . , h′

Mq
) is the direction and an upper-hemicontinuous

correspondence Λ̃ : RS → 21,2q is as defined in the proof.

Proof. Throughout this proof w is taken to be fixed, therefore some dependencies on it
are omitted in notation for brevity. We proceed in four steps:

1. Notice that L(x; θ, w) is a convex piecewise-linear function and it has the following
representation:

L(x; θ, w) = max
j∈1,2q

p′x+
∑
i∈Πj

wi(ci −M ′
ix)

 , (103)

where {Πj}2q

j=1 = 21,q, so that Πj for different j contain indices of all possible
combinations of positive penalty term. At a given x these can be interpreted as the
sets of violated constraints. Let gj(x, θ) ≡ p′x+

∑
i∈Πj

wi(ci −M ′
ix) for j ∈ 1, 2q.

The initial estimator can then be represented as:

B̃(θ;w) = min
x∈X

max
j∈1,2q

gj(x, θ) (104)

36Clearly, this new LP is not equivalent to the original one point-by-point, as that would mean that the
plug-in, B(·), is always H.d.d., contradicting Proposition 5.
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2. Assumptions i) or ii) allow us to impose w.l.g. that the known compact set X is
a fixed, non-empty and bounded polyhedron. To see that for ii), note that the
program is convex and therefore the sets of local and global minima coincide. If
there exists an interior local minimum, it means that expanding the constraint set
does not change the value, and therefore we can set X to be some compact and
non-empty polyhedron that contains the original set. Then, another representation
of the considered problem follows:

B̃(θ;w) = min
t,x

t s.t.:


t ∈ [t; t]
x ∈ X
gj(x, θ) ≤ t, j ∈ 1, 2q

(105)

For some sufficiently wide [t, t], given θ is close to θ0 and such that B̃(θ0;w) ∈
(t, t). This is justified because B̃(θ;w) is continuous in θ, as shown in the proof of
Proposition 5.

3. Note that the constraint set of (105) is compact, non-empty at θ = θ0 and, moreover,
it contains an open set. To see that, consider some pair x(θ0), t(θ0) from the argmin
of the problem, where x(θ0) ∈ Ã(θ0;w) ⊆ X and t(θ0) ≡ B̃(θ0;w). Consider
ε ≡ t− t(θ0) and take t∗ ≡ t(θ0) + ε

2 . Note that by definition t(θ0) ≥ maxj gj(x(θ0)).
By continuity of gj(x, θ0) in x for all j ∈ 1, 2q, ∃δ > 0 such that t ≥ maxj gj(x)
∀t ∈ (t∗ − ε

4 ; t∗ + ε
4 ),∀x ∈ Bδ(x(θ0)). By either i) or ii) Int(X ) ̸= ∅ and as x(θ0) ∈ X

it follows that Int(X ) ∩ Bδ(x(θ0)) is non-empty. It is also open as an intersection of
two open sets. Therefore, the open set O ≡ (t∗ − ε

4 ; t∗ + ε
4 ) × (Bδ(x(θ0)) ∩ Int(X ))

is contained in the constraint set of the induced LP at θ0. That is, the problem at
θ0 satisfies the Slater’s condition and Lemma 6 applies.

4. Suppose Λ̌(θ0) is the set of Lagrange multipliers of (105) at θ = θ0, and Λ̃(θ0) is its
projection on the coordinates corresponding to the constraints of form gj(x; θ0) ≤ t

for all j ∈ 1, 2q. A typical element of Λ̃(θ0) will be written as λ = (λj)2q

j=1. Recall
that for θ in some small open neighbourhood of θ0 the value function of (105) is
equal to B̃(θ;w) and, moreover, the problems are equivalent, so if Ǎ(θ) is the arg min
of (105), then Ǎ(θ) = {B̃(θ;w)} × Ã(θ;w). Using the conclusion of Step 3, direct
application of Lemma 6 to (105) yields:

B̃′
θ0

(h;w) = inf
x∈ ˜A(θ0;w)

sup
λ∈Λ̃(θ0)

2q∑
j=1

λj

h′
px+

∑
i∈Πj

wi(hci − h′
Mi
x)

 , (106)

where note that there are no terms corresponding to the objective function and
the constraints t ∈ [t, t] and x ∈ X , because there are no corresponding increments.
Moreover, differentiating the Lagrangean of (105) and recalling that t(θ0) ∈ (t; t),
so the constraints t ∈ [t, t] do not bind and the corresponding multipliers are 0, one
gets that ∀λ ∈ Λ̃(θ0), we have

∑2q

j=1 λj = 1, establishing (102).

■

Remark. By Lemma 2, Assumption A1 ensures ii) in Proposition 11 if ΘI ⊆ Int(X ).
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Assuming A1 holds, exact pointwise inference is then obtained via Proposition 10.
It is also straightforward to show that if A1 does not hold, but conditions i) or ii) in
Proposition 11 are otherwise satisfied, this inference is asymptotically conservative.

Computational considerations may be important in practice, especially as bootstrap
is involved. In Appendix we further show that the penalty function estimator may be
computed as a value of a simple LP. If there are k constraints defining X and q constraints
for ΘI , with d variables, the penalty-induced LP will feature d+ q variables and 2q + k

constraints, which makes it almost as simple computationally as the usual plug-in estimator
with d variables and q + k constraints.

6.6. Proof of Theorem 2

Proof. Fix θ = (p′, vec(M)′, c′)′ = θ0. We proceed in six steps, first proving the following
lemma:

Lemma 9. Consider B ≡ arg minx∈A f(x) and c ≡ f(x∗) for any x∗ ∈ B, where f(·) is
continuous and A is a non-empty compact. Then, for any measurable random sequence
{xn} ⊆ A such that f(xn) p−→ c, there exists a measurable random sequence {x∗

n} ⊆ B

such that ||x∗
n − xn|| p−→ 0.

Proof. Under the assumptions of the Lemma, Berge’s maximum theorem implies that B
is a non-empty compact. Because the distance is continuous, the projection x∗

n of xn onto
B is always well-defined for each n. If it is not unique, we select one of the values that
yield the minimum distance. Measurability of at least one such selection is established
by reference to Theorem 18.19 in Aliprantis and Border (2007). We then proceed by
contradiction. Suppose that ∃ε > 0:

P[||x∗
n − xn|| > ε] ̸→ 0 (107)

Then, there exists a δ > 0 and a subsequence {nk}∞
k=1 such that, for all k ∈ N:

P[||x∗
nk

− xnk
|| > ε] > δ (108)

Consider the following problem:

min
x∈A, d(x,B)≥ε

f(x) (109)

Notice that the constraint set is compact. It is also non-empty, as for any k some of
the realisations of xnk

are in it by (108). Therefore the minimum is attained at some x̃.
Suppose that the minimum is equal to f(x̃) = c̃. If c̃ = c, it follows that x̃ ∈ B, which is
not possible as d(x̃, B) ≥ ε. Clearly, c̃ < c is also infeasible as the constraint set of that
problem is smaller than that of the original one. Therefore, c̃− c = K > 0. Then, note
that for any k ∈ N:

||x∗
nk

− xnk
|| > ε =⇒ f(xnk

) ≥ f(x̃) = c+K > c (110)
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So,

P[f(xnk
) − f(x∗) ≥ K] ≥ P[||x∗

nk
− xnk

|| > ε] > δ > 0, (111)

where the LHS goes to 0 as k → ∞, since f(xnk
) p−→ f(x∗) by assumption of the Lemma.

This yields a contradiction. Therefore, ||x∗
n − xn|| p−→ 0. ■

1. We first prove that ∃ {δn} → 0+ such that A(θ̂n, wn) ⊆ A(θ0)δn w.p. 1 asymptoti-
cally. For this purpose, recall that by Theorem 3 for any sequence xn ∈ A(θ̂n, wn)
for all n and for any x∗ ∈ A(θ0), we have:

p′xn + wnι
′(ĉn − M̂nxn)+ − p′x∗ = op(1) (112)

Furthermore, since wn = op(
√
n), we have:

wn||ĉn − M̂nx− c+Mx||∞ = op(1) (113)

Because the argmin is contained in a compact, A(θ̂n, wn) ⊆ X , the first term in
(112) is bounded in probability: p′xn = Op(1), thus, from (112), it also follows
that wnι(ĉn − M̂nxn)+ = Op(1). By triangle inequality and using with (113), we
therefore conclude:

wnι
′(c−Mxn)+ = Op(1) (114)

As wn → ∞, it further follows that:

(c−Mxn)+ = op(1) (115)

We shall now consider x̃n - a projection of xn onto {x ∈ Rd|Mx ≥ c}. Note that it
exists, because distance is a continuous function and the set is a non-empty compact.
Note that (115) implies that, for some random κn ≥ 0 for all n:

c−Mxn ≤ ικn (116)

where κn = op(1). We get:

||xn − x̃n|| = d(xn, {x ∈ Rd|Mx ≥ c}) ≤ (117)
≤ dH({x ∈ Rd|Mx ≥ c− κn}, {x ∈ Rd|Mx ≥ c}) ≤ Cκn, (118)

where C > 0 is some fixed constant. The first equality is by definition of projection,
the second inequality follows from the definition of the Hausdorff distance and (116)
as well as:

d(xn, {x ∈ Rd|Mx ≥ c}) ≤ sup
x∈{x∈Rd|Mx≥c−κn}

d(x, {x ∈ Rd|Mx ≥ c})) (119)

The final inequality is implied by Lipschitz-continuity of polyhedra in Hausdorff
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distance with respect to RHS expansions (see Li (1993)). Therefore:

x̃n − xn
p−→ 0 (120)

We now wish to show that p′xn
p−→ p′x∗, where x∗ is some value from A(θ0). For

arbitrary ε > 0 note that:

P[|p′xn + wnι
′(ĉn − M̂nxn) − p′x∗| > ε] ≥ (121)

P[p′xn > p′x∗ + ε− wnι
′(ĉn − M̂nxn)] ≥ (122)

P[p′xn > p′x∗ + ε] (123)

As the LHS goes to 0 by (112), we have:

P[p′xn > p′x∗ + ε] → 0 (124)

To prove the other side, note that, as x̃n ∈ ΘI(θ0), by definition of x∗, it must be
that p′x̃n ≥ p′x∗. Therefore,

P[p′xn < p′x∗ − ε] ≤ P[p′xn < p′x̃n − ε] → 0, (125)

where the RHS converges to 0 by (120) and CMT. We thus conclude that p′xn
p−→ p′x∗

and, moreover, p′x̃n
p−→ p′x∗.

Notice that by Lemma 2, for a fixed, large enough w satisfying Assumption A1
Lemma 9 applies, where one sets f(x) = L(x; θ0, w), B = A(θ0) with f(x∗) = p′x∗

for any x∗ ∈ A(θ0). Thus, ∃x∗
n ∈ A(θ0) such that ||xn − x∗

n|| p−→ 0. Therefore,
∃δn → 0+ such that:

P[||xn − x∗
n|| < δn] → 1 (126)

Recall that the sequence xn was arbitrarily selected from A(θ̂n, wn), and we can, for
example, select a measurable {xn}∞

n=1 (by Theorem 18.19 in Aliprantis and Border
(2007)):

xn ∈ arg max
x∈A(θ̂n,wn)

d(x,A(θ0)) (127)

For such xn, we get:

||xn − x∗
n|| < δn =⇒ d(x,A(θ0)) < δn ∀x ∈ A(θ̂n, wn) (128)

So:

P[A(θ̂n, wn) ⊆ A(θ0)δn ] ≥ P[||xn − x∗
n|| < δn] → 1 (129)

This establishes the existence of a deterministic δn → 0+ such that A(θ̂n, wn) ⊆
A(θ0)δn w.p. 1 as.
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2. By (129) and using the representation found in Proposition 11 we have that:

inf
x∈X

L(x; θ̂n, wn) = inf
x∈A(θ0)δn

L(x; θ̂n, wn) + op(1) (130)

= min
x∈A(θ0)δn

p′x+ wn max
j∈1,2q

∑
i∈Πj

(ĉni − M̂ ′
nix)

+ op(1), (131)

where op(1) encompasses realizations at which A(θ̂n, wn) /∈ A(θ0)δn or where θ̂n

is not in a fixed open vicinity of θ0 that was argued to exist in Proposition 11.
Suppose that at θ0 the constraints that do not bind at any x ∈ A(θ0) are given by
I ⊆ {1, 2, . . . , q}. By continuity, it follows that ∃ δ > 0 and ε > 0 such that:

ci −Mix < −ε,∀i ∈ I (132)

for any x ∈ A(θ0)δ. From (129) it then also follows that:

inf
x∈X

L(x; θ̂n, wn) = min
x∈A(θ0)δn

p′x+ wn max
Π∈21,q\I

∑
i∈Πj

(ĉni − M̂ ′
nix)

+ op(1) (133)

3. Consider the problem in the linear programming representation found in Proposition
11, which it admits w. p. 1 as.:

inf
x∈X

L(x; θ̂n;wn) = min
t,x

t s.t.:


t ∈ [t; t]
x ∈ X
p′x+

∑
i∈Πj

wn(ĉni − M̂ ′
nix) ≤ t, j ∈ 1, 2q

(134)

The Lagrangian reads as:

L = t+
∑

Π∈21,q

λΠ

p′x− t+ wn

∑
j∈Π

ĉnj − M̂ ′
njx

 , (135)

Where the constraints x ∈ X and t ∈ [t; t] are omitted, as they are not binding
with probability 1 as. This holds, as A(θ0) ⊆ Int(X ) and B(θ0) ∈ Int([t; t]) by
assumption. Because A(θ0) is compact, there further exists37 a δ > 0: A(θ0)δ ⊆
Int(X ) and as Ã(θ̂n;wn) ⊆ A(θ0)δn w.p. 1 as. for some δn → 0+, it follows that
w.p. 1 as. A(θ̂n;wn) ⊆ Int(X ). Similar argument establishes that t∗n ∈ Int([t; t])
w.p. 1 as. In what follows, we will simply call such optimal pairs interior.

37To see that, consider A, B ⊆ Rd such that A is compact, B is open and A ⊆ B. Since B is open,
for any b ∈ B∃ε > 0 : Bε(b) ⊆ B. This defines an open cover of A, as A ⊆

⋃
b∈B

Bεb/2(b). Since
A is compact, for any cover there exists a finite subcover, i.e. ∃(bk, εbk

/2)K
k=1 such that bk ∈ B and

A ⊆
⋃K

k=1 Bεbk
/2(bk). Take δ = mink εbk

/2. Then, pick any x ∈ Aδ . It follows that ∃y ∈ A: ||x − y|| < δ.
Because y ∈ A, there further ∃k: ||y−bk|| ≤ εbk

/2. Thus, ||x−bk|| ≤ ||y−bk||+ ||x−y|| < εbk
/2+δ ≤ εbk

,
and so x ∈ Bεbk

(bk) ⊆ B.
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Differentiating with respect to t, one notes that:∑
Π
λΠ = 1 (136)

Next, at any interior optimal t, x:

t = p′x+ wnmax
Π

∑
j∈Π

(ĉnj − M̂ ′
njx) (137)

To see that, note that by contradiction, if:

t > p′x+ wnmax
Π

∑
j∈Π

(ĉnj − M̂ ′
njx) (138)

Then, as we assumed that the pair (t, x) is interior, there exists t̃ < t such that the
pair (t̃, x) satisfies all the constraints. Therefore, (t, x) is not optimal. The other
direction of the inequality is infeasible, and so the equality must hold. Moreover,
since Π may be empty, we also have at any optimal x:

t ≥ p′x (139)

Furthermore, the problem has a solution w.p. 1 as., and therefore it has a vertex-
solution, i.e. a solution that is pinned down by a matrix of binding constraints of
full column-rank. Because w.p. 1 as. any solution is interior, any such matrix w.p.
1 as. does not feature constraints x ∈ X , t ∈ [t, t]. The only constraints that can be
satisfied at such vertex-solution with an equality are of the following type:

p′x− t = wn

∑
j∈Πk

ĉnj − M̂ ′
njx, k ∈ J̃ (140)

for some J̃ ⊆ 21,q : |J̃ | ≥ d + 1, where the latter inequality holds by definition
of a vertex of a linear program38. One can write the complete set of the binding
constraints (140) as:

R̂J̃n

(
t

x

)
= r̂J̃

n , (141)

where the |J̃ | × (d+ 1) matrix R̂J̃n is of full column rank and the system yields a
unique solution t∗n, x

∗
n.

4. Denote the set of all vertices (t∗, x∗) that satisfy (140) with |J̃ | ≥ d+ 1 at a given θ̂n

by V∗(θ̂n). From the previous arguments it follows that V∗(·) is non-empty w.p. 1
as. and finite, because any finite-dimensional polygon has finitely many vertices and
therefore the corresponding LP has finitely many optimal vertices. We will write
V∗

x(θ̂n) for the projection of that set on the x-coordinates. For any vertex-solution
(t∗, x∗) ∈ V∗(θ̂n), suppose constraints V ∗ ⊆ {1, . . . q} are violated at it, meaning

38Any finite feasible LP has a vertex-solution, at which the matrix of binding constraints has full rank,
so that its dimension is at least that of (t x′)′.
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that:

V ∗(θ̂n, x
∗) ≡ {j ∈ 1, q|ĉnj − M̂ ′

njx
∗ > 0} (142)

For brevity, we will write V ∗
n ≡ V ∗(θ̂n, x

∗
n) where t∗n, x∗

n ∈ V∗(θ̂n) is some (measur-
able) sequence of optimal vertices. Note that:

t∗n = p′x∗
n + wnmax

Π

∑
j∈Π

(ĉnj − M̂ ′
njx

∗
n) = p′x∗

n + wn

∑
j∈V ∗

n

(ĉnj − M̂ ′
njx

∗
n) (143)

Consider (140) and suppose J̃n = J̃(t∗n, x∗
n) with |J̃n| ≥ d + 1 is the set of the

corresponding subsets, i.e.:

t∗n = p′x∗
n + wn

∑
j∈Πi

(ĉnj − M̂ ′
njx

∗
n) ∀i ∈ 1, k (144)

It must be that V ∗
n ⊆ Πi ∀i ∈ J̃n, because j /∈ V ∗

n =⇒ (ĉnj − M̂ ′
njx

∗
n) ≤ 0, and so

we have:∑
j∈V ∗

n

(ĉnj − M̂ ′
njx

∗
n) =

∑
j∈Πi

(ĉnj − M̂ ′
njx

∗
n) ≤

∑
j∈Πi∩V ∗

n

(ĉnj − M̂ ′
njx

∗
n), (145)

where the first equality follows from (144) and (143). We now proceed by contradic-
tion. Suppose that ∃j : j ∈ V ∗

n ∩ Π′
i (where the complement is taken with respect to

1, q), then:∑
j∈Πi∩V ∗

n

(ĉnj − M̂ ′
njx

∗
n) <

∑
j∈Πi∩V ∗

n

(ĉnj − M̂ ′
njx

∗
n) +

∑
j∈Π′

i
∩V ∗

n

(ĉnj − M̂ ′
njx

∗
n) =

=
∑

j∈V ∗
n

(ĉnj − M̂ ′
njx

∗
n),

which yields a contradiction with (145), so there can be no such j. In light of (145)
it then also follows that ∀i ∈ J̃n and ∀j ∈ Πi ∩ V ∗

n
′ it must be that:

ĉnj − M̂ ′
njx

∗
n = 0 ∀j ∈ Πk \ V ∗

n (146)

Therefore, the complete system described by equation (144), is equivalent to:{
ĉnj − M̂ ′

njx
∗
n = 0 ∀i ∈ J̃n : Πi ̸= V ∗

n , ∀ j ∈ Πi \ V ∗
n

t∗n = p′x∗
n + wn

∑
j∈V ∗

n
ĉnj − M̂ ′

njx
∗
n

(147)

From the representation (141), we know that the matrix corresponding to system
(147) must be of full column rank, d + 1. Dropping the equation defining t∗n, it
implies that there exists at least d linearly independent equations of form:

ĉnj − M̂ ′
njx

∗
n = 0

We denote the set of all binding constraints by Π∗(θ̂n, x
∗
n) ≡ {j ∈ 1, q|ĉnj −M̂ ′

njx
∗
n =
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0}, which we shall occasionally write as Π∗
n for brevity. We thus have:

|Π∗
n| ≥ d, rk(M̂Π∗

n
) = d (148)

5. Consider two collections of sets:

E ≡ {A ⊆ 2[q] : MAx ̸= cA ∀x ∈ A(θ0)} (149)
F ≡ {A ⊆ 2[q] : p /∈ R(M ′

A)} (150)

We shall now consider two events En and Fn:

En ≡ {Π∗
n ∈ E}, Fn ≡ {Π∗

n ∈ F} (151)
(152)

We wish to show that P[En] → 0 and P[Fn] → 0 and therefore P[E′
n ∩ F ′

n] → 1.

a) Let us consider En first. Since A(θ0) is compact, for a fixed set A ∈ E , the
condition MAx ̸= cA ∀x ∈ A(θ0) implies that there exists ε(A) > 0:

inf
x∈A(θ0)

||MAx− cA|| > ε(A) (153)

Because E is a finite collection of sets, we can pick ε = minA∈E ε(A), so that:

min
A∈E

inf
x∈A(θ0)

||MAx− cA|| > ε (154)

By continuity of the objective function in x, there further ∃κ > 0, such that:

min
A∈E

inf
x∈Aκ(θ0)

||MAx− cA|| > ε

2 (155)

We now consider:

P[En] ≤ P
[
||M̂Π∗

n
x∗

n − ĉΠ∗
n
|| = 0, inf

x∈Aκ(θ0)
||MΠ∗

n
x− cΠ∗

n
|| > ε

2

]
(156)

Observe that for any non-empty A ⊆ [q], by Cauchy-Schwartz and triangle
inequalities:

||(M̂nAx
∗
n − ĉnA)|| =∣∣∣∣∣∣(MAx

∗
n − cA) −

(
(ĉnA − cA) + (MA − M̂nA)x∗

n

)∣∣∣∣∣∣ ≥

||MAx
∗
n − cA|| −

∣∣∣∣∣∣M̂nA −MA

∣∣∣∣∣∣ ||x||∞ − ||ĉnA − cA||
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We can thus further rewrite:

P
[
||M̂Π∗

n
x∗

n − ĉΠ∗
n
|| ≤ 0, inf

x∈Aκ(θ0)
||MΠ∗

n
x− cΠ∗

n
|| > ε

2

]
≤

P
[∣∣∣∣MΠ∗

n
x∗

n − cΠ∗
n

∣∣∣∣ ≤ ηn, inf
x∈Aκ(θ0)

||MΠ∗
n
x− cΠ∗

n
|| > ε

2

]
,

where ηn ≡
∣∣∣∣∣∣M̂Π∗

n
−MΠ∗

n

∣∣∣∣∣∣ ||x||∞ +
∣∣∣∣ĉΠ∗

n
− cΠ∗

n

∣∣∣∣ = op(1). Finally, using P[A ∩
B′] + P[A ∩B] = P[A]:

P
[∣∣∣∣MΠ∗

n
x∗

n − cΠ∗
n

∣∣∣∣ ≤ ηn, inf
x∈Aκ(θ0)

||MΠ∗
n
x− cΠ∗

n
|| > ε

2

]
=

P
[∣∣∣∣MΠ∗

n
x∗

n − cΠ∗
n

∣∣∣∣ ≤ ηn, inf
x∈Aκ(θ0)

||MΠ∗
n
x− cΠ∗

n
|| > ε

2 , x
∗
n ∈ Aκ(θ0)

]
+

+P
[∣∣∣∣MΠ∗

n
x∗

n − cΠ∗
n

∣∣∣∣ ≤ ηn, inf
x∈Aκ(θ0)

||MΠ∗
n
x− cΠ∗

n
|| > ε

2 , x
∗
n /∈ Aκ(θ0)

]
,

where the second term is o(1) by Step 1 of the proof. Finally, we note that x∗
n ∈

Aκ(θ0) =⇒
∣∣∣∣MΠ∗

n
x∗

n − cΠ∗
n

∣∣∣∣ > ε/2, which, combined with
∣∣∣∣MΠ∗

n
x∗

n − cΠ∗
n

∣∣∣∣ ≤
ηn, further implies that ηn > ε/2 > 0, so that:

P
[∣∣∣∣MΠ∗

n
x∗

n − cΠ∗
n

∣∣∣∣ ≤ ηn, inf
x∈Aκ(θ0)

||MΠ∗
n
x− cΠ∗

n
|| > ε

2 , x
∗
n ∈ Aκ(θ0)

]
≤

P
[ε

2 ≤ ηn

]
= o(1)

This concludes the proof.

b) We now consider Fn. To do so, it is convenient to observe that the penalty
function estimator and problem (134) are equivalent to yet another LP:

B(θ̂n) + op(1/
√
n) = min

x,a
p′x+ wnι

′a s.t. :
{
a ≥ 0
a ≥ ĉn − M̂nx

(157)

Note that we drop the constraints corresponding to x ∈ X in (157), and op(1/
√
n)

accommodates the potential non-existence of the interior solution. Write La-
grangian:

L = p′x+ wnι
′a+ µ′(ĉn − M̂nx− a) − ω′a
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The KKT conditions at an interior optimum are:

p = M̂ ′
nµ (158)

wn = ω + µ (159)
ω′a = 0 (160)

µ′(ĉn − M̂nx− a) = 0 (161)
a ≥ ĉn − M̂nx (162)

a ≥ 0, ω ≥ 0, µ ≥ 0 (163)

Analyzing the above system, one observes that if at x∗
n ∈ V∗

x(θn) a constraint
is violated, j ∈ V ∗

n , then aj > 0, and so ωj = 0, which implies µj = wn. If
M̂njx

∗
n − ĉnj > 0, then ĉnj − M̂njx

∗
n − aj < 0, and so µj = 0. Finally, if j ∈ Π∗

n,
then µj ∈ [0;wn]. Therefore, (158) rewrites as:

p = wn

∑
j∈V ∗

n

M̂ ′
nj +

∑
j∈Π∗

n

M̂ ′
njµj (164)

Since µj ≤ wn and as M̂n −M = Op(1/
√
n), we have:

p = wn

∑
j∈V ∗

n

M ′
j +

∑
j∈Π∗

n

M ′
jµj +Op(wn√

n
) (165)

Consider a projection PΠ∗
n

from Rd onto R(M ′
Π∗

n
). For example, one can construct

it as M ′
Π∗

n
(M ′

Π∗
n
)†, where † denotes a Moore-Penrose pseudoinverse. We can write:

p−Op(wn√
n

) = wn(I − PΠ∗
n
)
∑

j∈V ∗

M ′
j + wnPΠ∗

n

∑
j∈V ∗

M ′
j +

∑
j∈Π∗

n

M ′
jµj︸ ︷︷ ︸

Tn∈R(M ′
Π∗

n
)

(166)

Notice that, if
∑

j∈V ∗ M ′
j /∈ R(M ′

Π∗), then the RHS of (166) has unbounded
norm: ∣∣∣∣∣∣

∣∣∣∣∣∣wn(I − PΠ∗
n
)
∑

j∈V ∗
n

M ′
j + Tn

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= (167)

= w2
n||(I − PΠ∗

n
)
∑

j∈V ∗
n

M ′
j ||2 + ||Tn||2

Since the square norm of the LHS of (166) is bounded from above by ||p||2 +
Op(w2

n

n ) = ||p||2 + op(1), (167) will contradict the equality in (166) w.p. 1 as.
Suppose, alternatively, that ∃v :

∑
j∈V ∗

n
M ′

j = M ′
Π∗

n
v. Equation (166) rewrites:

p−Op(wn√
n

) = M ′
Π∗

n
(µΠ∗

n
+ wnv),
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which implies, for example, that:

(I − PΠ∗
n
)p+ PΠ∗

n
p−M ′

Π∗
n
(µΠ∗

n
+ wnv) = Op(wn√

n
) (168)

The norm of the LHS of (168) must go to 0, however, if p /∈ R(M ′
Π∗

n
), we have,

by orthogonality:

∣∣∣∣(I − PΠ∗
n
)p
∣∣∣∣2 +

∣∣∣∣∣∣PΠ∗
n
p−M ′

Π∗
n
(µΠ∗

n
+ wnv)

∣∣∣∣∣∣2 ≥
∣∣∣∣(I − PΠ∗

n
)p
∣∣∣∣2 > 0,

which will also yield a contradiction w.p. 1 as. To complete the proof, one applies
the same probabilistic arguments as used in step 5.a above, which we omit here.
Thus, P[Fn] → 0.

6. We define the correct set of vertices, G, as follows:

G ≡ {A ⊆ [q] : ∃x ∈ A(θ0) s.t. MAx = cA, p ∈ R(M ′
A)}

In line with previous notation, let Gn ≡ {Π∗
n ∈ G}. The results of point 5 imply

that P[E′
n ∩ F ′

n] = P[Gn] → 1.

Consider any A ∈ G. Suppose p = M ′
Av for some v ∈ R|A|. Further, fix any

x ∈ A(θ0) : MAx = cA, then:

B(θ0) = p′x = v′MAx = v′cA (169)

The conclusion then follows from the following chain of equalities:

Gn =⇒ p′x∗
n −B(θ0) = v′MΠ∗

n
x∗

n − v′cΠ∗
n

= (170)
= v′M̂Π∗

n
x∗

n − v′cΠ∗
n

+ v′(MΠ∗
n

− M̂Π∗
n
)x∗

n = (171)
= v′(ĉΠ∗

n
− cΠ∗

n
) + v′(MΠ∗

n
− M̂Π∗

n
)x∗

n (172)

Finally, from (172), applying the triangle and Cauchy-Shwartz inequalities as well
as noting that over the event Gn one has Π∗

n ∈ G by definition, it follows that:

Gn =⇒ |p′x∗
n −B(θ0)| ≤ ϖn ≡ (173)

max
A∈G

{(
||ĉA − cA|| + ||x||∞||MA − M̂A||

)
· min

v∈R|A|: M ′
A

v=p
||v||

}

One concludes by noting that the RHS is clearly Op(1/
√
n), as G is finite and

θ̂n − θ0 = Op(1/
√
n) by assumption. Formally, for any ε > 0:

P[rn|p′x∗
n −B(θ0)| > ε] = P[rn|p′x∗

n −B(θ0)| > ε,Gn] + o(1) ≤ (174)
P[rnϖn > ε,Gn] + o(1) ≤ P[rnϖn > ε] + o(1) (175)

and rnϖn = Op( rn√
n

) for any rn → ∞, where we used the fact that P[G′
n ∩ On] ≤

P[G′
n] = o(1) for any measurable On. Recalling that the choice of x∗

n ∈ V∗
x(θ̂n) was
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arbitrary and that neither ϖn, nor the o(1) depend on x∗
n, one gets:

sup
x∈V∗

x(θ̂n)
|p′x−B(θ0)| = Op(1/

√
n) (176)

But because any x ∈ A(θ̂n;wn) can be represented as a convex combination of
vertices, {xj}K

j=1 ⊆ V∗
x(θ̂n), as: x =

∑
j ωjxj , where ωj ∈ [0; 1] and

∑
j ωj = 1.

Using that, applying the triangle inequality and taking maximum, one gets, for any
x ∈ A(θ̂n;wn):

|p′x−B(θ0)| =

∣∣∣∣∣∣
∑

j

ωj(p′xj −B(θ0)

∣∣∣∣∣∣ ≤

max
j

|p′xj −B(θ0)| ≤ sup
x∈V∗

x(θ̂n)
|p′x−B(θ0)| = Op

(
1/

√
n
)

taking supremum on the left hand side establishes the claim of the theorem.

■

6.7. Proof of Lemma 6

Proof. With σ computed as follows:

Var
(
v̌′C(Â)

(
CcZ − vec−1

q×d(CMZ)x̂
))

= (177)

= Var
(
v̌′C(Â)CcZ

)
− 2Cov

(
v̌′C(Â)CcZ, v̌

′C(Â)vec−1
q×d(CMZ)x̂

)
+ (178)

+Var
(
v̌′C(Â)vec−1

q×d(CMZ)x̂
)

(179)

where Z ∼ N (0,Σ) has the asymptotic distribution of Z(2)
n . Let:

J1 ≡ v̌′C(Â)Cc (180)
J2 ≡ v̌′C(Â)(vec(Id)′ ⊗ Iq) (181)

The first term clearly rewrites as:

Var
(
v̌′C(Â)CcZ

)
= J1ΣJ ′

1 (182)

To deal with the last term, rewrite:

Var
(
v̌′C(Â)vec−1

q×d(CMZ)x̂
)

= J2Var ((Id ⊗ CMZ) x̂)J ′
2 (183)

Direct computation yields:

(Id ⊗ CMZ)x̂ =


CMZx̂1

CMZx̂2

. . .

CMZx̂d

 (184)
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So:

Var ((Id ⊗ CMZ) x̂) = x̂x̂′ ⊗ CM ΣC ′
M (185)

Consider:

Cov
(
v̌′C(Â)CcZ, v̌

′C(Â)vec−1
q×d(CMZ)x̂

)
= E[J1ZJ2(Id ⊗ CMZ)x̂] = (186)

= J2E[(Id ⊗ CMZZ ′J ′
1)]x̂ = J2(Id ⊗ CM ΣJ ′

1)x̂ (187)

Combining everything, we get:

σ(Â, x̂, v̂,Σ) = J1ΣJ ′
1 − 2J2(Id ⊗ CM ΣJ ′

1)x̂+ J2 (x̂x̂′ ⊗ CM ΣC ′
M ) J ′

2 (188)

We thus have, for fixed Â, v̂, x̂ with v̂ ̸= 0. ■

6.8. Proof of Theorem 3

Proof. We begin by taking the infeasible σ̂n(A, v, x) = σ(A, v, x,Σ). Note that:

P[Hn ≤ z1−α|D(1)
n ] = P[Hn ≤ z1−α|Â, v̂, x̂] (189)

Because the data in D(1)
n is independent from D(2)

n and all dependencies of Hn on D(1)
n

can be described as measurable functions of Â, v̂, x̂. Consider the set:

ℵ(v, σ) ≡ {(A, v, x) ∈ 21,q \ {∅} × Rq × X : v ≤ ||vn|| ≤ v, σ(A, v, x,Σ) ≥ σ} (190)

We now fix an aribtrary deterministic sequence (An, vn, xn) ∈ ℵ(v, σ) for some small v > 0
and σ > 0 for all n ∈ N. Consider the limit (integration is with respect to D2

n only):

lim
n→∞

P[Hn(An, vn, xn) ≤ z1−α] (191)

The space 21,q \ {∅}, to which An belongs, is endowed with a discrete metric, and
we consider the space ℵ(v, σ) as endowed with the induced product metric ρp. It is
straightforward to notice that σ(·) is continuous in its first three arguments with respect
to ρp even on the unrestricted space 21,q \ {∅} × Rq × X , and thus ℵ(v, σ) is a compact
space for any v > 0, σ > 0. It is also non-empty for some small enough v > 0, σ > 0
by Assumption B4. Suppose v > 0, σ > 0 are small enough and pick any convergent
subsequence (Ank

, vnk
, xnk

) → (A, v, x). Recall that:

Hn(An, vn, xn) = g(
√
n2(θ̂(2) − θ0), An, vn, xn) (192)

for a continuous function g and:
√

(n2)k(θ̂(2) − θ0)
Ank

vnk

xnk

 d−→


N (0,Σ)

A

v

x

 (193)
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we conclude that, by continuous mapping theorem, as k → ∞:

g(
√

(n2)k(θ̂(2)
nk

− θ0), Ank
, vnk

, xnk
) = Hnk

(Ank
, vnk

, xnk
) d−→ g(Z,A, v, x), (194)

where Z ∼ N (0,Σ). By (18), this implies:

lim
k→∞

P[Hnk
(Ank

, vnk
, xnk

) ≤ z1−α] = 1 − α (195)

We claim that this further implies that:

lim
n→∞

P[Hn(An, vn, xn) ≤ z1−α] = 1 − α (196)

Suppose, by contradiction, limn→∞ P[Hn(An, vn, xn) ≤ z1−α] ̸= 1 − α. It means that
∃ε > 0 such that ∀N ∈ N ∃n ≥ N such that:

|P[Hn(An, vn, xn) ≤ z1−α] − (1 − α)| > ε (197)

Thus, we can construct a subsequence nk such that:

|P[Hnk
(Ank

, vnk
, xnk

) ≤ z1−α] − (1 − α)| > ε (198)

for all k ∈ N. Noting that Ank
, vnk

, xnk
still belongs to a compact metric space, we

can find a further subsequence nkj
such that Ankj

, vnkj
, xnkj

is convergent. But for this
subsequence our previous result, (195), yields that:

P[Hnkj
(Ankj

, vnkj
, xnkj

) → (1 − α), (199)

which yields a contradiction. Thus, for any (An, vn, xn) satisfying xn ∈ X , v < ||vn|| ≤ v

and σ(An, vn, xn,Σ) ≥ σ for all n ∈ N:

lim
n→∞

P[Hn(An, vn, xn) ≤ z1−α] = 1 − α (200)

We can therefore pick an arbitrarily small σ and v and consider event:

En ≡ {σ(Â, v̂, x̂,Σ) < σ} ∪ {||v̂|| < v} (201)

It is straightforward to see that continuity of σ(·) with respect to the first three arguments
(considered in the product metric), Assumption B4 and the fact that Â, x̂, v̂ converge in
probability to a random sequence in the set of optimal triplets by the previous results
imply that P[En] → 0. Observe that:

1E′
n

inf
A,v,x∈ℵ(v,σ)

P[Hn(A, v, x) ≤ z1−α] ≤ P[Hn ≤ z1−α|Â, v̂, x̂] ≤ (202)

≤ sup
A,v,x∈ℵ(v,σ)

P[Hn(A, v, x) ≤ z1−α] + 1En
(203)
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It follows that:

lim
n→∞

P[Hn ≤ z1−α|Â, v̂, x̂] = 1 − α+ op(1) (204)

Therefore:

P[Hn ≤ z1−α|Â, v̂, x̂] = 1 − α+ op(1) (205)

From where, integrating over D(1)
n , one concludes that:

P[Hn ≤ z1−α] = 1 − α+ o(1) (206)

Now, note that:

Gn = Op

(
1√
n

)
(207)

From where it follows that, for any ε > 0:

o(1) + P[Hn ≤ z1−α − ε] ≤ P[Hn −Gn ≤ z1−α] ≤ P[Hn ≤ z1−α + ε] + o(1) (208)

Letting α+(ε) ≡ 1−Φ(z1−α −ε) and α−(ε) ≡ 1−Φ(z1−α +ε), applying (206), one obtains:

o(1) + 1 − α+(ε) ≤ P[Hn −Gn ≤ z1−α] ≤ o(1) + 1 − α−(ε) (209)

Taking ε → 0 and using continuity of the normal’s cdf, we obtain:

P[Hn −Gn ≤ z1−α] = 1 − α+ o(1) (210)

■

6.9. Proof of Lemma 7

Proof. Let δ > 0 be a jump at P0. Construct a sequence {Pn} ⊂ P such that for some
0 < ϑ < 1:

||P0 − Pn||T V < ϑn−1 (211)

While ||V (P0) − V (Pn)|| > δ. Recall that:

||Pn
0 − Pn

n||T V ≤ n||P0 − Pn||T V (212)

It follows that:

||Pn
0 − Pn

n||T V ≤ ϑ (213)
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Using the binary Le Cam’s method39, one obtains ∀n:

inf
V̂n

sup
P∈P

EP[||V (P) − V̂n(X(Pn))||] ≥ δ(1 − ϑ)
2 (214)

Recalling that 0 < ϑ < 1 and δ were chosen arbitrarily and taking supremum over δ as
well as sending ϑ → 0 yields the result. ■

6.10. Proof of Theorem 6

Proof. We proceed in three steps.
i) Notice that any w1 > ||p||δ−1 satisfies assumption A1 for a given P ∈ P, if the δ-
condition holds for P. Therefore, B(θ(P)) = B̃(θ(P), w1) for this P.
ii) Using the same arguments as in the proof of Theorem 1:

|B̃(θ̂n;w1) − B̃(θ(P);w1)| ≤ ||x||∞(||p̂n − p|| + w1||M̂n −M ||) + w1||ĉn − c|| (215)

iii) Using i and ii, we have ∀ P ∈ P:

|B̃(θ̂n;wn) − B̃(θ(P);wn)| ≤ (216)

I{||p|| − ||pn|| < δζ}
[
||x||∞

(
||p̂n − p|| + wn||M̂n −M ||) + wn||ĉn − c||

)]
︸ ︷︷ ︸

ηn

+γn, (217)

where γn = 0 if ||p||−||pn|| < δζ. Using triangle inequality and the properties of supremum,
we get that ∀P ∈ P:

sup
m≥n

|B̃(θ̂m, wm) −B(θ(P ))| ≤ sup
m≥n

|γm| + sup
m≥n

|ηm| (218)

Therefore, using the union bound and the properties of supremum:

sup
P∈P

P[ sup
m≥n

||θ̂m − θ(P)|| ≥ ε] ≤ sup
P∈P

P[ sup
m≥n

|γm| > ε

2 ] + sup
P∈P

P[ sup
m≥n

|ηm| > ε

2 ] (219)

We now note that:

P[ sup
m≥n

|γm| > ε

2 ] ≤ P[ sup
m≥n

||p|| − ||pm|| > δζ] ≤ P[ sup
m≥n

||p− pm|| > δζ], (220)

where the latter probability goes to 0 uniformly over P by a.s. uniform consistency of θ̂n.
Using the same arguments and employing the boundedness of ||p̂n|| over P, one shows
that the first term in (220) also goes to 0 uniformly over P. ■

6.11. Penalty parameter selection

To develop an intuition for the tradeoff involved in selecting δ > 0 and therefore the
wn penalizing sequence in Theorem 6, let us return to the example in Proposition 5:

In this case, the smallest singular value at the binding constraint for b < 0 is simply
|b|. Therefore, as b → 0−, the underlying measure belongs to a progressively smaller-δ

39See Chapter 15 of Wainwright (2019)
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x

y y ≤ x

y ≥ (1 + b)x

−1 10

x ≤ 1x ≥ −1

(a) b < 0, B(b) = 0

x

y y = x

−1 10

x ≤ 1x ≥ −1

(b) b = 0, B(b) = −1

Figure 6: B(b) = min
x,y

x s.t. : y ≥ (1 + b)x, y ≤ x, x ∈ [−1; 1]

set. For a given sample size, a higher wn is then required to appropriately penalize the
deviations, because the population Lagrange multiplier that needs to be dominated by it
is equal to −1/b (see A1 and Lemma 2). On the other hand, if the true measure is the
one on the right, i.e. b ≥ 0, the Lagrange multiplier that needs to be dominated by wn is
fixed at −1+

√
5

2 .
An arbitrarily large wn will perform well in case the identified set has a ’sharp angle’

(b ≈ 0−). However, if b = 0, for example, in 50% of the cases the sample identified set
will look like Figure 2.a), delivering the exploding sample Lagrange multiplier −1

bn
. If it

happens to be dominated by wn in the sense of A1, the incorrect minimum at 0, which is
selected by the plug-in, is also picked by the penalty function estimator.

The aim of this section is to develop a prescription for the selection of a reasonable
δ parameter that balances finite sample performance of the estimator with sufficient
robustness. As a starting point, let us note that the scale of δ clearly depends on the
scale of the singular values of MJ∗ matrices. Any reasonable prescription for δ parameter
selection should then first normalize the constraint matrix M . More precisely, we suggest
that the constraint matrix first be normalized row-wise, setting the norm of each row to 1.
We further suggest rescaling it by s, where:

s2 ≡ 1
Qd− 1

∑
i,j

(M̂ij − M̂··)2, (221)

Once the singular values of our matrix are thus normalized, δ may be interpreted as the
degree of irregularity of the sharp identified set that one is willing to allow at the optimal
solution. While uniformly and consistently estimating the sufficient δ is infeasible (because
otherwise the uniformly consistent estimator would exist), we attempt to formulate a
notion of what values of δ are regular. One possibility is to imagine that the population
matrix of binding constraints MJ∗ , in turn, is generated by some prior over the space
of all measures. In particular, we can think of a prior such that each entry of MJ∗ is
a normalized mean zero variable, independent from other entries (but not necessarily
identically distributed). In terms of the lower bound on the singular value, this prior turns
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out to be rather conservative, because it can be shown that σd(MJ∗) goes to 0 at the rate√
d. We therefore view this as a prudent way to characterize the irregularity of a given

matrix. The random matrix theory provides the following version of the ’Central Limit
Theorem’ for this general prior:

Theorem 11 (Tao and Vu (2010)). Let Ξn be a sequence of n×n matrices with [Ξn]ij ∼ ξij ,
independently across i, j where ξij are such that E[ξ] = 0, V ar(ξ) = 1 and E[|ξ|C0 ] < ∞
for some sufficiently large C0, then:

√
nσn(Ξn) d−→ Σ (222)

with the cdf of Σ given by:

P[Σ ≤ t] = 1 − e−t/2−
√

t (223)

Remark. The distribution of mean-zero normalized ξij in Theorem 6 is arbitrary, possibly
discrete, and not necessarily identical.

This gives us the benchmark of what is ’reasonable’ for a singular value of a d × d

matrix. We suggest selecting the 0 < α < 1 quantile of this distribution, so that:

wn = ||p̂n||δ−1dn (224)

δ =

(√
1 − 2 ln(1 − α) − 1

)2

√
d

(225)

Where dn → ∞ is some sequence that diverges slowly enough, as in Theorem 5. For
example, one could set dn = ln lnn/ ln ln 100 and α = 0.15, seeing as the prior we selected
appears rather ’conservative’. In our simulations of the example in Proposition 5, this
choice of parameters delivers good uniform performance of the penalty function estimator,
see Figure 3.

6.12. Proof of Theorem 9

Proof. We first show that:

Θ∗ = {β ∈ R|∃x ∈ ΘI : β = p′x+ p′x} (226)

Fix x ∈ ΘI . It follows that the quantity m = Pmx+ Pmx satisfies (55) by construction.
To see that there exists at least one P ∈ P that supports this m by generating m(P ) = m,
consider P under which the marginal distribution FT,Z(·) is as observed, and the potential
outcomes have the form:

Y (t) = I{t ∈ O}(I{T ̸= t}f(t, T, Z) + I{T = t}η(t)) + I{t ∈ U}f(t, T, Z), (227)

where f : T 2×Z → R is a deterministic function with f(t, d, z) that maps to the component
of x corresponding to the conditional moment indexed by t, d, z: E[Y (t)|T = d, Z = z] if
this moment is counterfactual and to 0 otherwise. η(t) is some variable such that it aligns
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with Y (t) across the observed dimension: Fη(t)|T =t,Z=z(y) = FY (t)|T =t,Z=z(y), ∀y ∈ R
and ∀t ∈ O, ∀z ∈ Z. By construction, this DGP generates m(P ) = m and delivers
the required identified distribution across observed dimensions, FY |T =t,Z(·) for t ∈ O.
Therefore:

x ∈ ΘI =⇒ µ∗′(Pmx+ Pmx) = p′x+ p′x ∈ Θ∗ (228)

The other direction holds by construction: ∀β ∈ Θ∗ ∃x ∈ ΘI : p′x+ p′x = β.
The claim of the theorem is then established by showing that the identified set is indeed
an interval, a ray, or the whole line. This follows, since if β0, β1 ∈ Θ∗ with β0 < β1, then
∃x0, x1 ∈ ΘI such that βi = p′xi + p′x for i = 0, 1. Because ΘI is convex, for arbitrary
β ∈ [β0, β1] setting α = β1−β

β1−β0
, one obtains αx0 + (1 − α)x1 ∈ ΘI =⇒ β ∈ Θ∗. ■

6.13. Proof of Theorem 10

Lemma 10. Fix K0, µv, µw,K1 ∈ R: K0 ≤ µv ≤ µw ≤ K1 and Fw(·) that is a valid
c.d.f. with expectation µw. Suppose the probability space (P,Ω,S) can support a U [0; 1]
random variable, and P [W ≤ w] = Fw(w). Then, there exists a random variable V s.t.
K0 ≤ V ≤ W ≤ K1 a.s. and E[V ] = µv.

Proof. Proof. Suppose µw > K0 as otherwise the statement is trivial. W can be repre-
sented as:

W = F−1
w (U) (229)

Where F−1
w (t) ≡ inf{w : Fw(w) ≥ t} is a generalized inverse. Consider a CDF G(x) ≡

I{x ≥ K0} on [K0;K1]. Notice that by definition:∫
xdG(x) = K0 (230)

Moreover, by linearity of the Lebesgue integral ∀α ∈ [0; 1] we have:∫
xd(αG(x) + (1 − α)Fw(x)) = αK0 + (1 − α)µw (231)

Let Fv(x) ≡ α∗G(x) + (1 − α∗)Fw(x) where α∗ ≡ µw−µv

µw−K0
. Then, notice that:

V = F−1
v (U) (232)

Yields the required random variable. ■

To prove the inverse inclusion in (62) for some M̃, b̃, note that from Theorem 1:

{β ∈ R|∃P ∈ P : β = µ∗′m(P ) ∧ b∗∗ +M∗∗m(P ) ≥ 0} = {β ∈ R|x : Mx ≥ b : β = p′x+ p′x}
(233)
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Where:

p ≡ P
′
mµ

∗, p ≡ P ′
mµ

∗ (234)
M ≡ M∗∗Pm b ≡ −b∗∗ −M∗∗Pmx (235)

Therefore proving the inclusion consists in finding such data-consistent Y (or, equivalently,
the measure P ∈ P) for any given x : Mx ≥ b that it generates m(P ) = p′x+ p′x with
M∗∗m(P ) + b∗∗ ≥ 0 and M̃Y ≥ b̃ P - a.s.

1) Bounds For any x : Mx ≥ b we can once again construct the d.g.p. P from the
Proof of Theorem 1:

Y (t) = I{t ∈ O}(I{T ̸= t}f(t, T, Z) + I{T = t}η(t)) + I{t ∈ U}f(t, T, Z), (236)

Where f(t, d, z), η(t) are defined as in the proof of Theorem 1 and the distribution of T,Z
is as observed. Clearly, b∗∗ +M∗∗m(P ) ≥ 0 and P ∈ P for this P holds by construction,
and: Y (t) ∈ [K0;K1] ∀t ∈ T a.s., therefore M̃Y ≥ b̃ a.s. by construction.

2) MTR In this case it is clear that (236) fails, because it does not necessarily satisfy
monotonicity almost surely. Consider:

Y = (I{t ∈ O}(I{T ̸= t}f(t, T, Z) + I{T = t}η(t)) + I{t ∈ U}f(t, T, Z))t∈T + (237)

+
∑
t∈O

(ιNT
− et)I{T = t}(η(t) − E[Y (t)|T = t, Z])

Where et is the standard basis vector with 1 in the position of the potential outcome
corresponding to t in Y. Notice that the process in (237) has the same conditional means
as the deterministic process of form (236), and therefore the corresponding m(P ) satisfies
M∗∗m(P ) + b∗∗ ≥ 0. Furthermore, by construction of M∗∗ it must be that ∀t ∈ O and
∀d ∈ T : d ̸= t, we have:

E[Y (d)|T = t, Z] = f(d, t, Z) ≤ E[Y (t)|T = t, Z] iff d < t (238)

and for d0, d1 ∈ T \ {t} : d0 < d1:

E[Y (d0)|T = t, Z] = f(d0, t, Z) ≤ f(d1, t, Z) = E[Y (d1)|T = t, Z] (239)

Consider Y constructed in (237) over some element of the partition of Ω induced by T ,
where T = t.

i) If t ∈ U , it is simply:

Y =


f(1, t, Z)
f(2, t, Z)

. . .

f(NT , t, Z)

 (240)

Which satisfies M̃Y + b̃ ≥ 0 over this element of the partition a.s., by construction of f .
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ii) If t ∈ O:

Y =



f(1, t, z) + η(t) − E[Y (t)|T = t, Z]
. . .

f(t− 1, t, z) + η(t) − E[Y (t)|T = t, Z]
E[Y (t)|T = t, Z] + η(t) − E[Y (t)|T = t, Z]
f(t+ 1, t, z) + η(t) − E[Y (t)|T = t, Z]

. . .

f(NT , t, z) + η(t) − E[Y (t)|T = t, Z]


(241)

Notice that by (238) and (239) the MTR is then satisfied, i.e. M̃Y + b̃ ≥ 0.

3) MTR + Bounds It is clear that the process given in (237) does not necessarily
satisfy boundedness. We therefore resort to a different constructive argument. Consider
the element of the partition wrt to T corresponding to T = t. For t ∈ U we can again set
Y as in (240). Because each f(d, t, Z) satisfies MTR and boundedness by construction,
we have M̃Y + b̃ ≥ 0 over this element of the T -partition.
Suppose t ∈ O. The solution of the linear programming results in some moments that are
given by our map f(d, t, Z) that satisfies (238) and (239). Observe that constructing Y
over the considered element of partition consists in constructing the counterfactual Y (d)
s.t. d ∈ T : d ̸= t such that:

E[Y (d)|T = t, Z] = f(d, t, Z) ∀d ∈ T \ {t} (242)
Y (1) ≤ Y (2) ≤ · · · ≤ Y (t) ≤ · · · ≤ Y (NT ) a.s. (243)

Where the distribution of Y (t) over this element of the partition is identified. Repeated
application of Lemma 7 yields this result. To construct the variables on the left, one starts
from Y (t− 1), invokes Lemma 7 to construct it given the cdf of Y (t) (which is identified
over this element of the partition), and proceeds to use the obtained cdf to construct
Y (t− 2), etc., descending to Y (1). For the variables ’above’ Y (t), the Lemma is simply
applied with the negative sign. All of the variables can be constructed using the same
U random variable in the proof of Lemma 7, which yields that there exists a probability
space such that (242)-(243) hold jointly a.s. This concludes the proof of the Theorem. ■

6.14. Failure of the converse inclusion for almost sure inequalities

Consider a binary treatment T ∈ {0, 1} and suppose we estimate the sharp lower
bound for E[Y (1)|T = 0]. Suppose that conditional on T = 0, Y (0) is 1 and −1 with equal
probability. Assume that there is the only conditional restriction that E[Y (1)|T = 0] ≥ 0.
Further suppose that there is an almost sure restriction:(

1 1
−2 1

)(
Y (0)
Y (1)

)
≥

(
0
0

)
(244)

Note that this restriction defines the lower bound on Y (1) of 2 if Y (0) = 1 and 1 if
Y (0) = −1, and thus E[Y (1)|T = 0] ≥ 1.5. Taking the expectation of this system
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conditional on T = 0, however, yields that E[Y (1)|T = 0] = 0 is a solution. Therefore,
although 0 is a lower bound, it is not sharp.

6.15. Identification under cMIV

Sharp identification results for cMIV conditions follow from Theorem 2. cMIV-w, how-
ever, allows for a more explicit characterization of the bounds, which may better illustrate
the source of the identifying power of cMIV-w relative to MIV. This characterization is
also useful in binary settings, when cMIV assumptions coincide. For didactic purposes, in
this section we also show how to construct the restriction matrix M and vector b under
cMIV-s and cMIV-p. While we focus on bounding potential outcomes or ATEs, other
choices of β∗ can be accommodated by applying Theorem 2.

In what follows, Ik stands for the identity matrix of dimension k, and ιk is the vector
of ones of size k. These subscripts may be dropped in what follows without further notice.
All vectors are column vectors, and Rn×m refers to the space of real-valued n×m matrices.
Notice that we can consider each t ∈ T separately, because cMIV conditions do not impose
any restrictions across potential outcomes.

6.15.a. Recursive bounds under cMIV-w. Construct the ordering on the support of
Z: Z = {z1, z2, . . . , zNZ

}, s.t. zi < zj for i < j. Denote by li(t), ui(t) the sharp
lower and upper bounds for the conditional moment over the whole treatment support,
E[Y (t)|Z = zi]. Similarly, let l−t

i (t), u−t
i (t) be the sharp upper and lower bounds for

the counterfactual subset, E[Y (t)|T ̸= t, Z = zi]. We shall suppress the dependence on t

whenever it does not cause confusion.
The only bound of interest is the bound on unconditional expectation, li. However, it

turns out to be instructive to also consider the bound for the counterfactual subset, l−t
i .
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Proposition 12. If i) cMIV-w holds or ii) treatment is binary and cMIV-s or cMIV-p
hold, the sharp bounds for E[Y (t)|Z = zj ] are obtained through the following recursion for
j ≥ 2:

lj = lj−1 + ∆j (245)
l−t
j = l−t

j−1 + ∆−t
j (246)

Where ∆j ,∆−t
j ≥ 0 are defined as follows:

∆j ≡

∆P [T ̸= t|Z = zj ]
P [T ̸= t|Z = zj−1] (lj−1 − P [T = t|Z = zj−1]E[Y (t)|T = t, Z = zj−1])︸ ︷︷ ︸

∆P [T ̸= t|Z = zj ]l−t
j−1

+δj


+

(247)

∆−t
j ≡ 1

P [T ̸= t|Z = zj ]
(
−∆P [T ̸= t|Z = zj ]l−t

j−1 − δj

)+ (248)

δj ≡ ∆(P [T = t|Z = zj ]E[Y (t)|T = t, Z = zj ]) (249)

Sharp upper bounds ui, u
−t
i are obtained analogously. Moreover,

N∑
i=1

P [Z = zi]li(t) ≤ E[Y (t)] ≤
N∑

i=1
P [Z = zi]ui(t) (250)

In the absence of additional information, these bounds are sharp.

Proof. Note that l−t
1 = K0 and u−t

N = K1. Moreover, l1 = P[T = t|Z = z1]E[Y (t)|T =
t, Z = z1] + P[T ̸= t|Z = z1]K0, uN = P[T = t|Z = zN ]E[Y (t)|T = t, Z = zN ] + P[T ̸=
t|Z = zN ]K1. First, we note that the equations above may be rearranged to yield:

l−t
j = max

{
1

P [T ̸= t|Z = zj ] (lj−1 − E[Y (t)|T = t, Z = zj ]P [T = t|Z = zj ]) , l−t
j−1

}
(251)

lj = E[Y (t)|T = t, Z = zj ]P [T = t|Z = zj ] + l−t
j P [T ̸= t|Z = zj ] (252)

We consider the sharp lower bounds and proceed by induction on j. The proof for the
sharp upper bounds is identical.
Consider j = 2. The only information about lower bounds provided by assumption cMIV-w
at j = 2 is40: {

E[Y (t)|Z = z2] ≥ E[Y (t)|Z = z1]
E[Y (t)|T ̸= t, Z = z2] ≥ E[Y (t)|T ̸= t, Z = z1]

40Note that we can ignore the information that Y (t) ≥ K0, as it will be implied by the bound l−t
1 and

l1
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Which can be rewritten as a single condition on E[Y (t)|T ̸= t, Z = z2]:

E[Y (t)|T ̸= t, Z = z2] ≥ max
{
E[Y (t)|T ̸= t, Z = z1],

P [T ̸= t|Z = z2]−1(E[Y (t)|Z = z1] − P [T = t|Z = z2]E[Y (t)|T = t, Z = z2]
)}

Because l−t
1 is a sharp lower bound on E[Y (t)|T ̸= t, Z = z1], we get:

l−t
2 = max

{
l−t
1 , P [T ̸= t|Z = z2]−1(l1 − P [T = t|Z = z2]E[Y (t)|T = t, Z = z2]

)}
l2 = P [T = t|Z = z2]E[Y (t)|T = t, Z = z2] + P [T ̸= t|Z = z2]l−t

2

The base is thus proven. Now suppose that for some j ≥ 2, and sharp lower bounds for
i < j are defined. The information we have at j is:{

E[Y (t)|Z = zj ] ≥ E[Y (t)|Z = z], z < zj

E[Y (t)|T ̸= t, Z = zj ] ≥ E[Y (t)|T ̸= t, Z = z], z < zj

Or, equivalently,

E[Y (t)|T ̸= t, Z = zj ] ≥ max
{

max
i<j

{E[Y (t)|T ̸= t, Z = zi]} ,

P [T ̸= t|Z = zj ]−1(max
i<j

{E[Y (t)|Z = zi]} − P [T = t|Z = zj ]E[Y (t)|T = t, Z = zj ]
)}

Because li, l−t
i are sharp and non-decreasing in i by inductive hypothesis, it follows that

sharp lower bounds at j are given by:

l−t
j = max

{
l−t
j−1, P [T ̸= t|Z = zj ]−1(lj−1 − P [T = t|Z = zj ]E[Y (t)|T = t, Z = zj ]

)}
lj = E[Y (t)|T = t, Z = zj ]P [T = t|Z = zj ] + l−t

j P [T ̸= t|Z = zj ]

The characterization in the proposition is obtained by rearranging these two equations.
To see that these bounds are indeed sharp, consider a process, for which E[Y (t)|T =

d, Z = zj ] = l−t
j , d ̸= t, j ∈ 1, N . For such process cMIV-w will hold by construction and

lj and l−t
j are both attained for all j. An example of such process is given by:

Y (w) =
∑

t

I {t = w}

∑
j

I {Z = zj , T = t} η(t) +
∑
d̸=t

I {Z = zj , T = d} l−t
j



(253)

Where η(t) is as defined in the proof of Theorem 1. ■

The intuition for Proposition 2 is that MIV bounds are obtained by ’ironing’ the bounds
on the population moment E[Y (t)|Z = z], which can be seen in equation (247). cMIV-w
additionally ’irons’ the counterfactual moments E[Y (t)|T ̸= t, Z = z], as evident from
(248). Figure 1 plots the derived sharp bounds as well as the benchmark MIV sharp
bounds for a simulation exercise.
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Figure 7: Bounds for the d.g.p. in Appendix 6.17.

6.15.b. Constructing M and b for cMIV-s and cMIV-p. Bounds given in Proposition
2 are not necessarily sharp under cMIV-s. Intuitively, cMIV-s allows us to ’iron’ more
moments than cMIV-w. cMIV-p, however, does not imply nor is implied by cMIV-w, so
the bounds under the two conditions can compare arbitrarily. To characterize the sharp
bounds under cMIV-s and cMIV-p, it is useful to introduce some notation first.

Let F ≡ 2T \ {{t}, ∅} and its cardinality, Q ≡ |F| = 2NT − 2. Fix an ordering on F ,
so that F = {A1, A2, . . . AQ}.

Then all information under cMIV-s can be written as:

E[Y (t)|T ∈ Ak, Z = zj ] ≥ E[Y (t)|T ∈ Ak, Z = zj−1], k = 1, . . . , Q, j = 2, . . . NZ (254)
E[Y (t)|T = d, Z = zN ] ≤ K1, d ∈ T \ {t} (255)
E[Y (t)|T = d, Z = z1] ≥ K0, d ∈ T \ {t} (256)

Where notice that the LHS of (255) is the largest marginal moment due to monotonicity
in Z, while the LHS of (256) is the smallest marginal moment. Therefore, once almost
sure bounds for these two moments are imposed ∀d ∈ T \ {t}, these are also implied for
all other moments through equation (254) and the law of total probability.

We now rewrite the expectations in (254) in terms of pointwise conditional moments.
Let the vector of unobserved treatment responses be xj ≡ (E[Y (t)|T = d, Z = zj ])′

d ̸=t and
pj ≡ (P [T = d|Z = zj ])′

d̸=t be the vector of respective probabilities at Z = zj . Denote the
element of xj corresponding to T = d as xj

d = E[Y (t)|T = d, Z = zj ].
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For k = 1, . . . , Q and j = 2, . . . , NZ , we can rewrite inequality (254) as follows:

∑
d̸=t

I
{
d ∈ Ak

} P [T = d|Z = zj ]
P [T ∈ Ak|Z = zj ]x

j
d+

+I
{
t ∈ Ak

} P [T = t|Z = zj ]
P [T ∈ Ak|Z = zj ]E[Y (t)|T = t, Z = zj ] ≥

≥
∑
d̸=t

I
{
d ∈ Ak

} P [T = d|Z = zj−1]
P [T ∈ Ak|Z = zj−1]x

j−1
d +

+I
{
t ∈ Ak

} P [T = t|Z = zj−1]
P [T ∈ Ak|Z = zj−1]E[Y (t)|T = t, Z = zj−1]

Inequalities (255)-(256) are just xN
d ≤ K1, d ̸= t and x1

d ≥ K0, d ̸= t. This can be written
succinctly in matrix notation. Introdude the following:

Gj ≡
(
I
{
d ∈ Ak

} P [T = d|Z = zj ]
P [T ∈ Ak|Z = zj ]

)
k∈1,Q,d̸=t

∈ RQ×NT −1 (257)

cj ≡
(
I
{
t ∈ Ak

} P [T = t|Z = zj ]
P [T ∈ Ak|Z = zj ]E[Y (t)|T = t, Z = zj ]

)
k∈1,Q

∈ RQ (258)

The whole set of information given by cMIV-s can be represented as follows:

Gjx
j −Gj−1x

j−1 ≥ −∆cj , j = 2, . . . , NZ (259)
xN ≤ K1ι (260)
x1 ≥ K0ι (261)

The procedure for cMIV-p is similar. First, we note that all the information under it is
given by:

E[Y (t)|Z = zj ] ≥ E[Y (t)|Z = zj−1], j = 2, . . . NZ (262)
E[Y (t)|T = d, Z = zj ] ≥ E[Y (t)|T = d, Z = zj−1], d ∈ T \ {t}, j = 2, . . . NZ (263)
E[Y (t)|T = d, Z = zN ] ≤ K1, d ∈ T \ {t} (264)
E[Y (t)|T = d, Z = z1] ≥ K0, d ∈ T \ {t} (265)

Where (262) is just MIV and (263) is the monotonicity of the pointwise conditional
moments. In this case, we can once again represent all information in the matrix form
(259)-(261) with the following matrices:

Gj ≡

(
pj ′

INT −1

)
∈ RNT ×NT −1 (266)

cj ≡

(
P [T = t|Z = zj ]E[Y (t)|T = t, Z = zj ]

0NT −1

)
∈ RNT −1 (267)
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Corollary 2. Under cMIV-s and cMIV-p, sharp bounds on E[Y (t)] take the form:

min
Mx≥c


N∑

j=1
P [Z = zj ] · pj ′xj

+
N∑

j=1
P [T = t, Z = zj ]E[Y (t)|T = t, Z = zj ] ≤ E[Y (t)] ≤

≤ max
Mx≥c


N∑

j=1
P [Z = zj ] · pj ′xj

+
N∑

j=1
P [T = t, Z = zj ]E[Y (t)|T = t, Z = zj ],

where:

M ≡


−INT −1 . . . 0 0
GN −GN−1 . . . 0

...
. . . . . .

...
0 . . . G2 −G1

0 . . . 0 INT −1

 , c ≡


−K1 · ιNT −1

−∆cN

...
−∆c2

K0 · ιNT −1

 , x =


xN

...
x1

 ,

(268)

and Gj and cj are given by (257) and (258) for cMIV-s and by (266) and (267) for cMIV-p
respectively.

6.16. Proof of Proposition 8

Let Γ(z) ≡
∑

d∈T P [T = d|Z = z]E[ψ(z, η)|Z = z].

a) Let g̃(t) ≡ E[g(t, ξ)|T = d, Z = z] = E[g(t, ξ)|Z = z], where we use independence of
ξ and T,Z.
MIV implies:

E[Y (t)|Z = z] = g̃(t) + h(t)Γ(z) − increasing (269)

Since inequality is strict for some z, z′, it follows that h(t) ̸= 0 and h(t)/h(d) > 0.
Note that:

E[Y (t)|T = d, Z = z] − g̃(t) = h(t)
h(d) (E[Y (d)|T = d, Z = z] − g̃(d)) (270)

Therefore, cMIV-p holds iff all observed moments are monotone.

b) Let g̃(t, d) ≡ E[g(t, ξ)|T = d, Z = z], where we use independence of ξ and T,Z. We
can write:

E[Y (t)|T = d, Z = z] − g̃(t, d) = h(t)
h(d) (E[Y (d)|T = d, Z = z] − g̃(d, d)) (271)

Using b): ii) yields the result.
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6.17. Simulation exercise

We now consider the following parametric example:

Y (t) = c+ αt+ βη + Z (272)
T = I{ε+ f(Z) ≥ 0} (273)

η = min{u,max{ε, l}} (274)
ε ∼ N (0, 1) (275)

Where u, l, α, β, c ∈ R and u > l. Moreover, ε is independent of all other variables. Also
suppose for simplicity that Z ∈ [l;u] a.s. Consider:

E[Y (t)|T = 1, Z = z] = c+ αt+ z + βE[min{u, ε}|ε > −f(z)] = (276)

= c+ αt+ z + β

(
1 − Φ(u)
Φ(f(z)) u+ ϕ(f(z)) − ϕ(u)

Φ(f(z))

)
(277)

E[Y (t)|T = 0, Z = z] = c+ αt+ z + βE[max{u, ε}|ε ≤ −f(z)] = (278)

= c+ αt+ z + β

(
Φ(l)

Φ(−f(z)) l + ϕ(l) − ϕ(f(z))
Φ(−f(z))

)
(279)

For the Figure, suppose:

t = 0
[l, u] = [−4, 2]
Z ∼ U [−1, 1]
f(z) = −2z4

g(z) = ln(z + 1.1)
β = 0.1

6.18. Empirical analysis

ATE(3, 2) ATE(2, 1) ATE(1, 0)
cMIV-s (0.059, 3.768) (0.09, 3.761) (0.103, 3.742)

{0.053, 3.801} {0.082, 3.81} {0.094, 3.791}
cMIV-p (0.036, 4.163) (0.042, 4.185) (0.053, 4.058)

{0.033, 4.176} {0.039, 4.225} {0.049, 4.099}
cMIV-w (0, 4.162) (0, 4.072) (0, 4.087)

{0, 4.176} {0, 4.102} {0, 4.118}
MIV (0, 4.163) (0, 4.227) (0, 4.108)

{0, 4.175} {0, 4.25} {0, 4.134}
ETS 0.092 0.012 0.017

Table 2: Estimation results under various assumptions. CI in curly brackets are two-sided
95%, see Proposition 11.
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6.19. Uniform rate of the debiased penalty function estimator

Our theoretical results show that under a polytope δ-condition the debiased penalty
function estimator is at least

√
n/wn uniformly consistent. We now attempt to see if that

rate is sharp uniformly, or whether the pointwise rate of
√
n is achievable. This subsection

describes the design of simulations that allow us to study the uniform rate of convergence
of the debiased penalty function estimator.

The proof of pointwise
√
n−consistency of the debiased penalty function estimator

relies on the fact that the value L(x; θ, w) at x outside the argmin set Ã(θ;w) is sufficiently
well-separated from the optimal value B(θ). While at any fixed measure, including those
that result in ‘flat faces’, there exists some ‘separation constant’ for a given distance from
the argmin, this statement becomes problematic uniformly. In particular, around some
θ at which there occurs a flat face, there exist sequences θn, along which for any given
distance of x from the argmin the difference between objective functions grows arbitrarily
small.

It is worth emphasizing that the situation of an exact flat face is not problematic by
itself, which is easy to see by drawing the picture of the example below at a = 0. Instead,
the issue seems to occur when the measure grows arbitrarily close to a flat face. However,
it seems that this is also not enough to undermine uniform

√
n−consistency: Slater’s

condition must also fail. Intuitively, if Slater’s condition holds in the vicinity of θ, the
estimator eventually becomes insensitive to wn and delivers

√
n−consistency.

We consider the following linear program:

B(a, b, c, d) ≡ min
x,y

y − (1 + a)x, s.t.:


y ≤ (1 + b)x+ d

y ≥ (1 + c)x
x ∈ [−1; 1]

, (280)

Where we take a to be fixed and indexing a probability measure. b = 0, c = 0, d = 0 are
estimated via bn, cn, dn as sample averages of independent U [−0.5, 0.5] random variables.
We now describe the design of our simulations:

1. We set wn = ln n
ln 100 (δ/1.5)−1, where δ is the biggest value for which the delta condition

is satisfied over a ∈ [−0.1, 0.1].

2. For any fixed n, we take the grid of 9 points:

Gn ≡ {−0.1, 0, 0.1} ∪ {−0.1C1n
−1/2, 0.1C1n

−1/2}∪
{−0.1C2wnn

−1/2, 0.1C2wnn
−1/2} ∪ {−0.1C3w

−1
n , 0.1C3w

−1
n },

where Ci are chosen so that each point is equal to −0.1 at n = 100.

3. At each n, we run Nsim = 10000 simulations, each time computing bn, cn, dn and
plugging in to obtain:

sup
a∈Gn

|B̃(a, bn, cn, dn;wn) −B(a, 0, 0, 0)| (281)

4. We then compute the standard deviation of (281) across simulations at each n
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5. We consider multiplying the resulting standard deviations by two rates:
√
n and√

n/wn.

In all figures below the level of the red curve is equated to the level of the blue one at the
smallest n to illustrate the growth rate.
From Figure 8, it appears that standard deviations multiplied by

√
n are indeed exploding,
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Figure 8: Uniformity of the penalized estimator: continuous vicinitiy of a flat face

although very slowly, while those multiplied by
√
n/wn are stable. It may be the case that

the rate of
√
n/wn is sharp uniformly.

We next consider the grid that includes the flat face itself, but restricts the measures
from approaching it from the left and right. In other words, we conduct the same simulation
exercise with:

Gn ≡ {−0.1, 0, 0.1} ∪ {−0.05(1 + C1n
−1/2), 0.05(1 + C1n

−1/2)}∪
{−0.05(1 + C2wnn

−1/2), 0.05(1 + C2wnn
−1/2)} ∪ {−0.05(1 + C3w

−1
n ), 0.05(1 + C3w

−1
n )}

In this case, Figure 9 suggests that uniform
√
n-consistency is achieved.

Finally, we return to the original grid Gn, but consider the case in which Slater’s
condition holds. For that reason, we take the true value of d = 0.5 by sampling dn from
U [0, 1] instead. Once again, it appears that we obtain uniform

√
n−consistency.

Our simulation evidence thus suggests that while our estimator is only
√
n/wn uniformly

consistent in general, it is
√
n-consistent uniformly apart from the sequences of probability

measures, along which both Slater’s condition fails and where a flat-face is ‘approached’
monotonically. It appears possible to rule out the latter scenario by considering a uniform
condition similar to the δ−condition we imposed before. This condition would restrict the
set of measures under consideration to those at which the ‘distance’ from a flat face is
either 0 or bounded away from 0 in some metric. Accordingly, it would likely cover the
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Figure 9: Uniformity of the penalized estimator: restricted vicinitiy of a flat face, flat face
included.

unrestricted set of measures in the limit. These considerations, however, are the topic of a
separate exploration, and space does not permit us to include them in this paper.
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Figure 10: Uniformity of the penalized estimator: continuous vicinitiy of a flat face,
Slater’s condition holds.
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