A Search and Matching Model of Housing and Rental Market Interactions

Nitish Kumar University of California, Riverside

October 24, 2024

Housing market subject to search frictions

- → Time to buy/sell \sim 5-6 months
- \twoheadrightarrow Costly \sim realtor fee, closing costs, flow costs

Housing market subject to search frictions

- → Time to buy/sell \sim 5-6 months
- → Costly \sim realtor fee, closing costs, flow costs

Rental market also subject to search frictions

- → Time to rent \sim 1-2 months
- \twoheadrightarrow Costly \sim realtor fee, flow costs, renovation costs
- → Separations \sim 1-2 years

Housing market subject to search frictions

- → Time to buy/sell \sim 5-6 months
- → Costly \sim realtor fee, closing costs, flow costs

Rental market also subject to search frictions

- ightarrow Time to rent \sim 1-2 months
- \rightarrow Costly \sim realtor fee, flow costs, renovation costs
- → Separations \sim 1-2 years

Previous studies fail to address connection with rental market

- → Average home-ownership rate \sim 70%
- → Policy spillovers- Han, Ngai and Sheedy (2023, WP)

Focus on housing market tightness (<u>buyers</u>)

Focus on housing market tightness (<u>buyers</u>)

- Bachmann and Cooper (2014, CEPR) show buyers are
 - → Previous home-owner flows \sim 55%
 - $\rightarrow\,$ Transitioning from rental flows $\sim\,45\%$

Focus on housing market tightness (<u>buyers</u>)

- Bachmann and Cooper (2014, CEPR) show buyers are
 - → Previous home-owner flows $\sim 55\%$
 - $\rightarrow\,$ Transitioning from rental flows $\sim\,45\%$
- Existing models
 - → Fixed measure of buyers
 - → Free entry of buyers

This Paper

Study joint behavior of housing and rental market

This Paper

Study joint behavior of housing and rental market

- Are frictions and prices in housing market correlated to those in rental market?
 - → Price to rent ratio, sales, time on market, housing vacancies, rental vacancies, buyers, rental seekers

This Paper

Study joint behavior of housing and rental market

- Are frictions and prices in housing market correlated to those in rental market?
 - → Price to rent ratio, sales, time on market, housing vacancies, rental vacancies, buyers, rental seekers
- How do these frictions impact household movement?
 - → Within each market
 - → Transitions from rental to homeownership

Existing Empirical Facts

Existing Empirical Facts

 Upward sloping Beveridge Curve in both markets Gabrovski and Ortego-Marti (2019, JET) Badarinza et al. (2024, WP)

Demand and supply shocks used to match stylized facts

- Demand and supply shocks used to match stylized facts
- Match upward sloping Beveridge Curve in both markets

Figure: Taken from Badarinza et al. (2024)

Opposite movements along Beveridge curve over business cycle

Literature Review

Empirical evidence on frictions in the housing market

- → Diaz and Jerez (2013, IER); Ngai and Tenreyro (2014, AER); Halket and Custoza (2015, JME); Badarinza et al. (2024, WP)
- Search and Matching models in the housing market
 - → Han and Strange (2015, Handbook of RUE); Gabrovski and Ortego-Marti (2019 JET); Han, Ngai and Sheedy (2023, WP)
- Transition of households from rental to housing
 - → Gyourko and Linneman (1997, EJ); Ortalo-Magne and Rady (2006, REStud); Andrews and Sanchez (2011, OECD)

Empirical Analysis

Data Sources

- Rents- Consumer Price Index for All Urban Consumers: Rent of Primary Residence in U.S. City Average (US BLS)
- Rental Vacancy rate- United States Census Bureau (Housing Vacancy Survey)
- ► Housing Vacancies- United States Census Bureau
- Prices- All Transactions HPI from FRED (FHFA)
- Time on Market- Median Number of Months on Sales Market for Newly Completed Homes from FRED (US Census)

*Data is from 1991 to 2019- Ngai and Sheedy (2024, IER)

Stylized Facts

The elasticity of Price to Rent ratio and Time to sell with respect to Rental Vacancy rate is -0.15 and 1.48

Stylized Facts

The elasticity of Sales and Housing Vacancies with respect to Rental Vacancy rate is -0.66 and -0.82

Model

Environment

• Discrete time, discount factor β

Agents are risk neutral and die at rate d

Households are in one of these stages: Homeowners, Home-buyers, Tenants, Rental-seekers or idle

• Segmented properties, destroyed at rate δ

Matching

Rental Market

- Matching function: $M_r(n, r_v)$
- Rental market tightness: ϕ
- Rent Seekers meet landlords: m(φ) = M_r(n, r_v)/n
- Landlords meet Rent Seekers: $\phi m(\phi) = M_r(n, r_v)/r_v$

Matching

Rental Market

- Matching function: $M_r(n, r_v)$
- Rental market tightness: ϕ
- Rent Seekers meet landlords: m(φ) = M_r(n, r_v)/n
- Landlords meet Rent Seekers: $\phi m(\phi) = M_r(n, r_v)/r_v$

Housing Market

- Matching function: $M_h(b, h_v)$
- Housing market tightness: θ
- Buyers meet sellers: m(θ) = M_h(b, h_ν)/b
- Sellers meet buyers: $\theta m(\theta) = M_h(b, h_v)/h_v$

Transition to Housing

- ϵ : idiosyncratic utility of being a home-owner
- Separated tenants draw from $G(\epsilon)$
- ▶ If idiosyncratic utility $\epsilon \ge \epsilon^R$ become home-buyers

Model- Agents

Model- Agents

Model- Agents

Model- Properties

Model- Properties

Bellman Equations- Agents- Housing

Home-owners (H) receive separation (s) shock and become home-buyers (B) creating a housing vacancy (V^H)

$$H(\epsilon) = \underbrace{\epsilon \chi^{H}}_{\text{utility}} + \underbrace{(1-d)\left((1-\delta)}_{\text{no death or destruction}}\left(\underbrace{(1-s)\beta H(\epsilon)}_{\text{house destroyed}} + \underbrace{s\beta(B(\epsilon) + V^{H})}_{\text{s}\beta(B(\epsilon) + V^{H})}\right) + \underbrace{\delta\beta B(\epsilon)}_{\text{house destroyed}}\right) + \underbrace{d\beta V^{H}(1-\delta)}_{\text{death}}$$
$$B(\epsilon) = \underbrace{-c^{B}}_{\text{flow cost}} + \underbrace{(1-d)}_{\text{no death}}\left(\underbrace{m(\theta)\left(\beta H(\epsilon) - p(\epsilon)\right)}_{\text{matched}}\right) + \underbrace{(1-m(\theta))\beta B(\epsilon)}_{\text{unmatched}}\right)$$

Bellman Equations- Agents- Rental

Tenants (T) receive separation (σ) shock and become home-buyers (B) or rental seekers (R) depending on their idiosyncratic draw of utility (ϵ)

Bellman Equations- Properties

Nash Bargaining

Prices are,

$$p(\epsilon) = \underset{p(\epsilon)}{\operatorname{argmax}} \left(\underbrace{\beta H(\epsilon) - p(\epsilon) - \beta B(\epsilon)}_{\text{Buyer surplus}} \right)^{\eta} \left(\underbrace{p(\epsilon) - \beta V^{H}}_{\text{Seller surplus}} \right)^{1-\eta},$$
$$\forall \epsilon \geq \epsilon^{R}$$

► Rent is,

$$\rho = \underset{\rho}{\operatorname{argmax}} \quad \beta \bigg(\underbrace{T-R}_{\operatorname{Rent seeker surplus}}\bigg)^{\alpha} \bigg(\underbrace{L-V^R}_{\operatorname{Landlord surplus}}\bigg)^{1-\alpha}$$

Equilibrium

Free entry of rental seekers $\implies R = 0$,

Free entry of rental seekers $\implies R = 0$,

Free entry of landlords $\implies V^R = k^R$,

$$(LE): \quad \underbrace{\frac{k^{R}(1-\beta(1-\delta))+c^{R}}{\beta(1-\delta)\phi m(\phi)}}_{\text{expected cost}} = \underbrace{\frac{\rho-k^{R}(1-\beta(1-\delta))}{1-\beta(1-\delta)(1-\sigma)(1-d)}}_{\text{surplus}}$$

• Free entry of rental seekers $\implies R = 0$,

• Free entry of landlords $\implies V^R = k^R$,

$$(LE): \quad \underbrace{\frac{k^{R}(1-\beta(1-\delta))+c^{R}}{\beta(1-\delta)\phi m(\phi)}}_{\text{expected cost}} = \underbrace{\frac{\rho-k^{R}(1-\beta(1-\delta))}{1-\beta(1-\delta)(1-\sigma)(1-d)}}_{\text{surplus}}$$

Nash bargaining gives (Rent),

$$\rho = (1 - \alpha) \left[\chi^{T} + (1 - d)(1 - \delta)\sigma\beta(1 - G(\epsilon^{R})) \mathbb{E}(B) \right] \\ + \alpha [k^{R}(1 - \beta(1 - \delta))]$$

{rent, market tightness and number of rental seekers}

Comparative Statics- Rental Market

Demand Shock- χ^{T} decreases

Equilibrium-Housing Market

• Free entry of sellers $\implies V_H = k^H$,

Equilibrium price from Nash Bargaining,

$$(PP): p(\epsilon) - \beta k^{H} = \frac{\beta(1-\eta)(\epsilon \chi^{H} + c^{B} - k^{H}(1-\beta(1-\delta)))}{1-(1-s)(1-d)(1-\delta)\beta + \beta(1-d)\eta m(\theta)}$$

Reservation Utility

▶ For the marginal buyer, $T = B(\epsilon^R)$ i.e. $\epsilon = \epsilon^R$,

$$m(\theta)\eta\beta = \frac{(B(\epsilon^R)(1-\beta(1-d))+c^B)(1-\beta(1-s)(1-\delta))}{(\epsilon^R\chi^H - k^H(1-\beta(1-\delta)) - B(\epsilon^R)(1-\beta(1-d)))}$$

Reservation Utility

• For the marginal buyer, $T = B(\epsilon^R)$ i.e. $\epsilon = \epsilon^R$,

$$m(\theta)\eta\beta = \frac{(B(\epsilon^R)(1-\beta(1-d))+c^B)(1-\beta(1-s)(1-\delta))}{(\epsilon^R\chi^H - k^H(1-\beta(1-\delta)) - B(\epsilon^R)(1-\beta(1-d)))}$$

• Assume $G(\epsilon)$ follows a Pareto distribution,

$$G(\epsilon) = 1 - (\frac{\epsilon_I}{\epsilon})^{\lambda}, \quad \lambda > 1$$

HE and PP condition,

$$\frac{k^{H}(1-\beta(1-\delta))+c^{S}}{\theta m(\theta)(1-\delta)} = \frac{\beta(1-\eta)(\frac{\lambda}{\lambda-1}\epsilon^{R}\chi^{H}+c^{B}-k^{H}(1-\beta(1-\delta)))}{1-(1-s)(1-d)(1-\delta)\beta+\beta(1-d)\eta m(\theta)}$$

Equilibrium-Housing Market

{prices, market tightness and reservation utility}

Comparative Statics- Housing Market

Demand Shock- χ^{H} increases

Agent Flows

For tenants,

For buyers,

$$\underbrace{(s+\delta)h + \sigma(1-G(\epsilon^R))t}_{\text{inflows}} = \underbrace{(m(\theta)+d)b}_{\text{outflows}}$$

Calibration

Calibration

Preferences/Technology	Parameter	Value	Source/Target
Discount Factor	β	0.987	Interest rate= 5%
Elasticity of	$\psi_h = \psi_r$	0.16	Genesove
Matching function			and Han (2012)
Destruction rate	δ	0.004	Van Nieuwerburgh
			and Weill (2010)
Death rate	d	0.0044	Head, Lloyd
			and Stacey (2023)
Separation Rate Housing	S	0.022	Tenure= 9 years
Separation Rate Rental	σ	0.131	Tenure= 2 years
Housing Efficiency	μ_h	0.75	TTB= 1.4625
Matching Function			quarters
Rental Efficiency	μ_r	1.667	TTR = 0.65
Matching Function			quarters

Calibration

Preferences/Technology	Parameter	Value	Source/Target
Utility Scale Housing	χ^{H}	1	Normalization
Utility Scale Rental	χ^{T}	18.56	Equilibrium
Bargaining power	$\eta = \alpha$	0.5	Han, Ngai
Housing and Rental			and Sheedy (2022)
Seller cost	c ⁵	26.54	Average seller cost
			= 5.4 % of price
Buyer cost	c ^B	28.37	Average buyer cost
			= 5.7 % of price
Rental seeker cost	c	3.98	Equilibrium
Maintenance cost	c ^R	0.18	Han, Ngai
Landlord			and Sheedy (2022)
Construction cost (H)	k ^H	447.09	Equilibrium
Construction cost (R)	k ^R	976.63	Equilibrium
Pareto Shape	λ	2.8927	Rent to Price

Moment	Data/Source	Value
Average Price	Kotova and	491.2
	Zhang (2020)	
Rent		17.2
Rent to Price	3.5%	3.5%
Housing vacancy	1.75%	4.49%
Rental vacancy	7.76%	7.75%

Business Cycle

Model with Business Cycles

- Solved same as before
- Perfectly correlated shocks along business cycle Shimer (2005, AER)
- All processes are AR(1) with same underlying shock u_t
- Approximate with Markov Chain- Rouwenhorst (1995)
- Discretize

$$ln(\chi_t^H) = \zeta_{\chi^H} + \nu ln(\chi_{t-1}^H) + u_t$$
$$ln(\chi_t^T) = \zeta_{\chi^T} + \nu ln(\chi_{t-1}^T) + xu_t$$

Moment	Data	Demand	Demand + Supply
Price to rent	-0.15	-0.12	-0.15
Time to Sell	1.48	0.03	0.09
Sales	-0.66	-0.60	-0.65
Housing vacancy	-0.82	-0.57	-0.56

*With just demand shock, unable to match correlations in housing market

Beveridge Curve- Boom Cycle

- Matches upwards sloping BC
- Shows opposite movements along the BC

Conclusion

- Empirical evidence to show that frictions in both markets are correlated
- A model of housing and rental market
 - → Search frictions in both markets
 - → Heterogeneous buyers
 - → Endogenous decision to move from rental to housing market
- Frictions in both markets affect the transition from renting to homeownership
- Model matches the observed elasticity

Thank You!

Comparative Statics- Rental Market

Supply Shock- k^R increases

Comparative Statics- Housing Market

Supply Shock- k^H increases

Example- Boom Cycle

Model matches the new and existing stylized facts

Model- Properties Move

Moment	Data	Demand + Supply	Investors
Price to rent	-0.15	-0.15	-0.15
Time to Sell	1.48	0.09	0.08
Sales	-0.66	-0.65	-0.97
Housing vacancy	-0.82	-0.56	-1.60

