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Abstract

I develop a general equilibrium model of heterogeneous firms to study the impor-

tance of financial frictions on aggregate productivity. Frictions lead to lower aggregate

productivity by inducing suboptimal firm capital structure and leading to misallocation

of capital and labor across firms. Financial frictions are the only cause of suboptimal

capital structure by driving a wedge between the price of debt and equity. Yet, they are

one of the possible sources of the dispersion in the marginal revenue product of capital

(MRPK) which leads to the misallocation of real resources. Model estimates from

European public firms imply that suboptimal capital structure leads to a 2% loss in

aggregate productivity, which is a lower bound on the importance of financial frictions,

and represents 1/10 of the total loss from all frictions. The quantities of interest are

precisely estimated, and I obtain their standard errors using the influence function

approach, which provides a general inferential framework for multi-step estimators of

structural models in finance.
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1 Introduction

How much do frictions in financial markets reduce aggregate total factor productivity

(TFP)? I address this question by developing a general equilibrium framework featuring

heterogeneous firms, a production function that depends on capital structure (debt–equity

ratio), frictions in financial asset markets that lead to suboptimal firm capital structure, and

a host of other frictions (financial or otherwise) reflected in a firm-specific capital wedge

that prevents the efficient allocation of capital and labor across firms. I quantify the model

using data from European public firms and find that suboptimal capital structure due to

financial frictions lowers aggregate TFP by 2% in a typical year in 1989–2022, which is a

lower bound on the importance of financial frictions in the economy, and represents 1/10

of the total loss from all frictions.

In this model, firms are heterogeneous in terms of their productivity and choose the

amount of labor and physical capital, along with the liabilities that finance capital (debt

and equity), to maximize profit. Debt and equity are not perfect substitutes in production:

there is an optimal capital structure (debt share), with a suboptimal capital structure

manifesting as lower firm productivity. This modeling choice is motivated by the literature

in finance that views firms as more than an exogenous cashflow process (Jensen and

Meckling, 1976; Hart, 1988; Aghion and Bolton, 1992; Hart, 1995; Whited and Zhao, 2021).1

Given a productivity distribution, a first-best allocation of capital, labor, and firm capital

structure maximizes output (hence aggregate TFP, given the aggregate supply of resources).

The price of equity and debt vary across firms, reflecting distortions in financial and other

markets, leading to lower aggregate TFP than in the first-best allocation.

I decompose the distortions in the model into two wedges: a wedge between the

price of equity and debt for each firm (which I call the capital structure distortion) and a

1For a detailed discussion on how modeling choices are motivated from research on the theory of the
firm, see the end of Section 2.1.
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wedge between the overall cost of capital faced by a firm and the economy-wide price of

capital that reflects the aggregate scarcity of the physical resource. The capital structure

distortion reduces aggregate TFP through a purely financial mechanism: when the relative

price of debt is different than 1, the capital structure is suboptimal, leading to lower

firm productivity, which results in lower aggregate TFP. Notably, this mechanism leads

to lower aggregate TFP even if all firms face the same relative price of debt, as long as

this is different than 1. The reason is that investors supplying the financial resources are

indifferent about how the firm cash flow is split between debt and equity because money is

fungible; therefore, in a competitive asset market, debt and equity are elastically supplied

at a relative price of 1. Thus, in a competitive first-best equilibrium, the perfectly elastic

relative supply of debt to equity determines the price, and the demand side (the firm’s

production function) determines the relative quantity.2

All distortions affect the allocation of capital and labor across firms. The capital

wedge generates dispersion in the marginal revenue product of capital (MRPK) across

firms, leading to misallocation of capital and labor and lower aggregate TFP. The capital

structure distortion alters a firm’s effective productivity, making it endogenous. Hence,

firm productivity has an exogenous component, which I call frontier productivity, and an

endogenous component that depends on capital structure. The capital structure distortion

reduces firm productivity, which determines a firm’s demand for capital, thus altering

the allocation of capital and labor across firms relative to the first-best. The effect of this

channel on aggregate TFP depends on the joint distribution of frontier productivity and

capital structure distortion.

The model’s novelty is that it embeds the capital structure misallocation model of

Whited and Zhao (2021) into the Hsieh and Klenow (2009) model of misallocation of

2For a detailed discussion on how the elimination of the capital structure distortion relates to the
Modigliani-Miller environment, see the end of Section 2.1.
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capital and labor. The advantage of my framework is that it relates firm total factor

productivity to capital structure and distortions affecting real (non-financial) resources,

which allows measuring the importance of financial frictions on aggregate TFP and their

importance relative to all frictions.

I quantify the model using data on European public firms, which include informa-

tion on labor expenditures (unlike data on US public firms). Data on labor allow the

measurement of firms’ value-added and productivity from capital and labor (firm total

factor productivity), which allows for a precise estimate of the macroeconomic importance

of distortions. After estimating the production function parameters, I recover firm pro-

ductivity, the capital wedge, and the capital structure distortion that is a function of the

debt-to-equity ratio.

I use the estimated firm productivity, capital wedge, and capital structure distortion to

quantify the TFP loss from frictions. I find that suboptimal capital structure is responsible

for a 2% loss in aggregate TFP, which is substantial. This loss represents roughly 1/10

of the total loss from all frictions. This exercise implies that even if a policy eliminates

dispersion in MRPK, it will not eliminate the 2% loss from suboptimal capital structure.

Because financial frictions are the sole driver of the capital structure distortion but can

also be a driver of the capital wedge, the 2% estimate represents a lower bound to the

importance of financial frictions in the total TFP loss from all distortions.

I use the influence function approach to evaluate the statistical precision of the results

and conduct inference on the model parameters. Inference on the counterfactual quantities

of interest is challenging because the TFP loss is a function of the data and estimated

parameters in multiple stages. In addition, the TFP loss is not a standard statistic; therefore,

its asymptotic properties are unknown and must be derived. The starting point of the

approach is the von Mises expansion of an estimator/statistic (Fernholz, 1983), which

for a broad class of estimators (e.g., MLE, GMM, functions of means such as the TFP
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loss) implies that we can study their asymptotic properties from the derivative of the

estimator/statistic with respect to the probability distribution generating the data. This

derivative representation allows for building the asymptotic distribution of a multistep

estimator using concepts familiar from calculus, like the chain rule or obtaining the total

derivative from partial derivatives.

This approach simplifies inference because the derivative in the von Mises expansion

can be expressed as an integral of a specific random variable: the influence function,

which has the same asymptotic distribution as the statistic/estimator of interest. This

representation means that to calculate the standard error of the statistic/estimator, we

need to calculate the standard error of the mean of the influence function, which is trivial

once the influence function is known. Expressions for the influence function of the typical

classes of estimators MLE, GMM, quantiles, and moments are well-studied in the literature

(Newey and McFadden, 1994; Van der Vaart, 1998; Tsiatis, 2006). In addition, I show

that the influence function of any statistic that is a function of means, no matter how

complicated (as is the TFP loss), can be numerically approximated by finite differences,

sidestepping the need for analytical derivations.

The influence function is a general inferential framework particularly useful for con-

ducting inference on structural models that usually involve many steps and different

classes of estimators in each step. For example, this paper combines a quantile, a GMM

estimator, and a novel statistic: the TFP loss, a function of averages. As long as the in-

fluence function of each step is obtained, I can add all influence functions and calculate

the standard errors of the quantity of interest. An alternative approach to inference on

multistep estimators is the bootstrap, whose disadvantage is computational inefficiency if

an estimation step involves a computationally expensive estimator. The influence function

approach facilitates a hybrid approach to inference: use analytical expressions for compu-

tationally expensive steps (usually a Simulated Minimum Distance of a dynamic model)
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and approximate numerically the computationally cheap steps (like the TFP loss formula).

This hybrid approach simplifies the development of the computer code used to carry out

the calculations and reduces computing time.

Related literature. This paper contributes to the literature on misallocation (seminal

papers include Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009) that studies how

firm-specific distortions impact aggregate TFP when firms are heterogeneous in their

productivity (for surveys see Hopenhayn, 2014; Restuccia and Rogerson, 2017). A large

body of work has focused on how MRPK dispersion arises from different market frictions

(e.g., information frictions in David et al., 2016) and financial frictions (Gopinath et al.,

2017; Karabarbounis and Macnamara, 2021). This paper, instead, focuses on a different

channel: the effect of financial frictions on aggregate TFP through its direct impact on

firm-specific productivity by distorting capital structure. The role of frictions in capital

structure has first been studied in the seminal paper of Whited and Zhao (2021)—I extend

that model by adding real variables that allow for the estimation of firm-specific total

factor productivity. In this model, firm productivity is endogenous as it depends on capital

structure—therefore, it is related to the work on endogenous firm productivity such as

Aghion et al. (2023), who study the aggregate implications of misallocation in R&D.

This paper also contributes to corporate finance by providing a quantitative model of

the firm’s capital structure to assess the aggregate implications of suboptimal capital struc-

ture. Several theoretical papers have motivated optimal capital structure Jensen and Meck-

ling (1976); Hart (1988); Aghion and Bolton (1992); Hart (1995), mainly in environments

with conflicts of interest between managers and investors and contract incompleteness. In

these environments, optimal capital structure is a solution to the problem of contracting

frictions, and any distortion leading to suboptimal capital structure worsens allocations.

My model provides a reduced-form specification of the optimal capital structure similar to
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Whited and Zhao (2021) and quantitatively evaluates the importance of capital structure

frictions relative to all frictions that reduce aggregate productivity.

Lastly, this paper contributes to the methodology of structural estimation in finance

by providing a general framework for inference on multistep multiclass estimators using

influence functions. Bazdresch et al. (2018) show how to use influence functions for

inference in one-step estimators of dynamic corporate finance models targeting values

(benchmarks) of one class of estimators (either moments or regression coefficients of policy

functions). This paper extends their methodology by allowing the target benchmarks

to come from multistep hybrid (including different estimator classes, e.g., MLE, GMM,

quantile, or functions of means such as standard deviation, correlation, or TFP loss)

estimators. This paper is also related to recent methodological studies on causal inference

using influence functions to study semiparametric estimators with a non-parametric first

step (see Cattaneo et al., 2013; Chernozhukov et al., 2018; Ichimura and Newey, 2022;

Kennedy, 2022). This paper, instead, focuses on parametric multistep estimators and

exploits the conceptual simplicity and generality of influence functions to present a general

framework for inference in multistep hybrid estimation of structural models.

The remainder of the paper is organized as follows. Section 2 develops the model,

Section 3 presents the dataset, Section 4 describes the parameter estimation, Section 5

presents the results and develops the inferential framework using influence functions, and

Section 6 concludes. An online appendix includes formula derivations, additional results,

and an overview of the influence function approach to inference.

2 Model

This section presents a model of a monopolistically competitive sector with heterogeneous

firms and capital market frictions that reduce sectoral aggregate productivity through
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two channels: by inducing misallocation of capital across firms as in Hsieh and Klenow

(2009) and by leading to suboptimal capital structure (debt and equity financing) similar

to Whited and Zhao (2021) that leads to lower firm productivity. The online appendix

contains details about the model and additional formulas.

Consider a sector at time t populated by Nt firms. Each firm i at time t faces productivity

Ait and requires capital Kit and labor Lit to produce a differentiated product Yit. The capital

input can be financed through debt Dit or equity Eit, with Kit = Dit + Eit. Capital structure

is characterized by the debt share dit =
Dit
Kit

, which determines the equity share Eit
Kit

= 1− dit.

The capital structure enters the production function together with productivity, capital,

and labor:

Yit = Ait

[
dγ

it(1− dit)
1−γKit

]α
L1−α

it , α, γ ∈ (0, 1). (1)

Let Fit =
[
dγ

it(1− dit)
1−γ
]α represent the contribution of capital structure in the production

function. The quantity Fit is bounded above by F =
[
γγ(1− γ)1−γ

]α and is maximized at

capital structure d = γ, which I call the first-best capital structure. Therefore, the firm-level

productivity residual Ãit =
Yit

Kα
itL1−α

it
has an exogenous technological efficiency component

Ait and an endogenous financial component Fit.

As in Hsieh and Klenow (2009) and Whited and Zhao (2021), each monopolistic com-

petitor i sells its output to a single competitive aggregator firm that produces the sector’s

final good using a CES production function Yt =

[
∑Nt

i=1 Y
η−1

η

it

] η
η−1

, η > 1. This market

structure leads to downward-sloping isoelastic demand p(Yit) for each product.

Firms choose capital structure dit, capital Kit, and labor Lit to maximize period t profits

in a monopolistic competitive market subject to a firm-specific price of debt rdit and price

of equity rdit , and a common wage wt.

max
dit,Kit,Lit

p(Yit)Yit − rdit ditKit − reit(1− dit)Kit − wtLit. (2)
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Market frictions manifest as within-period across-firm dispersion in the price of debt and

equity and the relative price of equity and debt reit /rdit as in Whited and Zhao (2021). The

profit-maximizing capital structure d∗it is

d∗it =
γ

reit
rdit

(1− γ) + γ
reit
rdit

. (3)

Note that the profit-maximizing capital structure depends only on the relative price of

equity and debt but not their levels reit , rdit . Thus, at the profit-maximizing capital structure,

the contribution of capital structure to output Fit is a function of reit /rdit , which I denote

f (re/rd). When the price of equity is equal to the price of debt, the firm chooses the

first-best capital structure d∗it = γ. If the price of debt is different than that of equity

reit 6= rdit , then the contribution of capital structure to output Fit = f (re/rd) is less than it’s

potential F = f (1), leading to lower output. Therefore, if, for some firms, the price of debt

is different than that of equity reit /rdit 6= 1, there is an output loss in the economy from

suboptimal capital structure. (See also Figure 1 for a graphical presentation of the above

argument.)

Substituting f (re/rd) in the production function we have Yit = Ait f ( re
rd
)Kα

itL
1−α
it . The

contribution of capital structure f (re/rd) appears in the production function as another

productivity term. I discuss later in this section why the quantity F is more like a pro-

ductivity rather than a resource. Substituting the profit-maximizing d∗it in (2) leads to the

reduced-form profit function p(Yit)Yit −
reit

(1−γ)+γ
reit
rdit

Kit − wtLit. At the profit-maximizing

capital K∗it, the first-order optimality conditions imply that the marginal revenue product

of capital MRPKit is equal to the cost of capital

MRPKit =
reit

(1− γ) + γ
reit
rdit

. (4)
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Figure 1: The loss in firm-specific productivity from the capital structure distortion.

The left panel of this figure demonstrates how the capital structure distortion τedit ≡
reit
rdit

leads to suboptimal profit-maximizing

capital structure (debt share) dit. The right panel demonstrates how suboptimal capital structure leads to a loss in firm productivity.
Suboptimal dit manifests as the financial productivity wedge τAFit , which brings firm-specific productivity from its frontier Ait down

to Ait
τAFit

, with τAFit > 1. Therefore the productivity loss for firm i is 1− 1/τAFit ≈ τAFit − 1 ≈ log(τAFit ). When there is no distortion

(the price of debt is equal to the price of equity), the capital structure is at its first-best value dit = γ (where the green dotted line
intersects the blue dashed line in the left panel), and there is no productivity loss (at the green dashed line of the right panel). The
parameters α, γ are set at their estimated values (Table 1). The domain of the x-axis of the right panel is restricted to values between
the 5th and 95th percentiles in the data, while the domain of the left panel’s x-axis is determined from the domain of d and parameter
γ.

Dispersion in the MRPK leads to misallocation and reduced aggregate sectoral TFP as in

Hsieh and Klenow (2009). This model nests their model as the two models are identical

when the price of equity is equal to the price of debt reit = rdit = rit.

An insight from this model is that frictions in asset markets leading to different prices

of equity and debt re/rd 6= 1 reduce aggregate output and aggregate sectoral TFP without

necessarily generating dispersion in the MRPK across firms. More specifically, consider an

environment where there is dispersion in reit /rdit while all firms exhibit the same MRPK=c,

which is possible when the following relationship holds reit = c[(1− γ) + γreit /rdit ]. In

that stylized economy, aggregate output is less than in the first best because firms have

suboptimal capital structure.

2.1 Equilibrium

Let the Kt, Lt denote the aggregate capital and labor supply, respectively. Let τedit repre-

sent the capital structure distortion: the wedge between the price of equity and debt. I

10



reparameterize the flow price of capital so that it consists of a common component Rt and

an idiosyncratic component τKit

τedit ≡
reit

rdit

,
reit

(1− γ) + γτedit

= RtτKit . (5)

In general equilibrium, the prices of capital and labor Rt, wt are such that the aggregate

demand for capital and labor resulting from the profit maximization problem (2) given the

distribution of productivities and wedges {Ait, τedit , τKit}
Nt
i=1 equals their aggregate supply

Kt, Lt. Such equilibrium exists for every economy {Ait, τedit , τKit}
Nt
i=1 since the production

possibility set of each producer is convex. Note that the aggregate resource constraint

is in terms of capital and labor but not in terms of aggregate debt or equity. The total

debt plus equity by construction equals the aggregate capital, so there is no need for an

additional constraint on financial resources. In addition, the aggregate debt and equity

are promises like money, and hence fungible, so the aggregate debt and equity can change

without any cost to the economy (see also the discussion below about the Modigliani-Miller

benchmark).

Aggregate TFP is the ratio between aggregate output and a Cobb-Douglas aggregator

of aggregate capital and labor TFPt =
Yt

Kα
t L1−α

t
. In this model, the aggregate TFP admits a

closed-form expression. What matters for TFP is the manifestation of wedge τedit on wedge

τAFi between the capital structure value added of the firm f (τedit) and the capital structure

value added at the first best f (1).

τAFit ≡
(
γγ[1− γ]1−γ

)α(
dγ

it[1− dit]1−γ
)α =

f (1)
f (τedit)

≥ 1 (6)

This parameterization implies that the production function can be expressed as Yit =

Ait
τAFit

Kα
itL

1−α
it , where Ait = Ait f (1) represents productivity under the first-best capital

structure. This parameterization of the model shows that a wedge between the price of
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equity and debt manifests as a factor that reduces a firm’s productivity. (See also Figure

1 for a graphical presentation of the this mechanism.) Therefore, I call τAFit the financial

productivity wedge.

By improving the debt and equity mix, each firm’s productivity can reach Ait. In

addition, increasing a firm’s productivity by bringing τAFit down to 1 does not require

reducing the productivity of another firm. This property is in stark contrast with a physical

resource like capital or labor, where to increase the capital of one firm, another firm’s

capital has to decrease. In other words, capital or labor are rival resources, while the

capital structure value added Fit is non-rival, and this is the reason that it is more like a

productivity component instead of a third resource, and this is why I call τAFit a financial

productivity wedge.

The TFP formula is:

TFPt({Ait, τAFit , τKit}
Nt
i=1) =

 N

∑
i=1

(
Ait

τAFit τ
α
Kit

)η−1
 1

η−1+α/ N

∑
i=1

(
Ait

τAFit

)η−1

τ
1+α(η−1)
Kit


α

(7)

Note that aggregate TFP is scale-invariant with respect to the capital wedge τKit imply-

ing that multiplying the capital wedge of every firm by a scalar c > 0 leaves the TFP

unchanged. This property is common in models of misallocation (see Fakos, 2023). But

TFP is not scale invariant with respect to the financial productivity wedge τAFit . In fact,

TFP is homogeneous of degree -1 with respect to the productivity wedge, implying that

multiplying τAFit by a scalar c > 0 is equivalent to multiplying TFP by 1/c.

The TFP formula (7) helps quantify the effect of frictions on aggregate TFP by comparing

TFP under different distributions {τAFit , τKit}i. A quantity of interest is the loss in aggregate

TFP from the capital structure distortion τedit characterizing the financial productivity

wedge—see expression (6).

There are two approaches to isolating the effect of τedit on aggregate TFP. One way
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to isolate this effect is to eliminate the financial productivity wedge in an environment

without capital wedges 1− TFP({Ait, τAFit , τKit = 1}i)/TFP({Ait, τAFit = 1, τKit = 1}i),

which I call the inframarginal effect of the capital structure distortion.3 The other way to

measure this loss is to compare the TFP of an economy at its current state {Ai, τAFi , τKi}i

to an economy without capital structure distortions τed = τAFi = 1. The issue with

the second approach is that changing τed also changes the capital wedge—see equa-

tion (4). The capital wedge changes because τed = 1 implies that the tradeoff between

reducing the cost of financing and increasing the capital structure productivity dis-

appears, leading to lower cost of capital τKit . To isolate the capital structure effect,

I keep τKit constant by setting reit = RτKi . This counterfactual can be calculated by

1− TFP({Ai, τAFi , τKi}i)/TFP({Ai, τAFi = 1, τKi}i) which I call the compensated marginal

effect (analogous to the compensated/Hicksian demand that isolates the substitution

effect). These two counterfactual quantities should be close but not identical. In the special

case where three variables are distributed jointly lognormal, the inframarginal and com-

pensated marginal loss are identical, and the TFP loss from the capital structure wedge

takes the following approximate expression.

inframarginal TFP loss ≈ E(log τAF) + (η − 1)σA,F −
η − 1

2
σ2

F, (8)

where σA,F is the covariance between a demeaned log A and a demeaned log τAF and σ2
F

is the variance of demeaned log τAF. While expression (8) is not general, it helps build

intuition about how the capital structure distortion affects aggregate TFP: the average

capital structure distortion E(log τAF) decreases TFP, and the covariance between the finan-

cial productivity wedge and productivity σA,F, increases loss because high-productivity

firms face higher distortions. A high variance of the capital structure distortion reduces

3I borrow the terminology marginal and inframarginal effect from Asker et al. (2022) who also study an
environment with multiple types of frictions in the oil-producing industry.
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TFP loss because the effect of capital structure distortions on output can be dampened by

reallocating resources from the firms facing high capital structure distortions to the ones

facing lower distortions—a general equilibrium channel.

All counterfactual quantities of interest in this paper are functions of the ratio of TFP

under different distributions of frictions, where the distribution of productivity A is kept

constant. Note that the ratio of two TFPs from two economies with the same productivity

distribution is scale-invariant with respect to Ait. The scale invariance with respect to Ait

and τKit (discussed earlier) implies that the counterfactual quantities are independent of

the scale or the unit of measurement of Ait or τKit . Unit invariance facilitates the analysis of

data coming from multiple years since demeaning the logarithm of Ait or τKit in each year

makes the observations comparable across time. In addition, since prices do not appear in

the TFP formula, any aggregate shocks to capital, labor, or technology that affect the scale

of firm-specific productivity do not affect the results of the counterfactual analysis (see

also Fakos, 2023 and the references therein). Moreover, the financial productivity wedge

depends only on capital structure dit, which, as the debt share, is unit-free and is also

comparable across time.

The financial productivity wedge and the Modigliani-Miller benchmark. In the coun-

terfactuals above, eliminating the financial productivity wedge implies setting the price

of equity equal to the price of debt for each firm reit = rdit . This price equality is because

investors are indifferent between receiving their return through debt or equity due to the

fungibility of money. Therefore, the marginal rate of transforming a dollar of debt to a

dollar of equity in this environment is
reit
rdit

= 1. An efficient allocation should reflect this

marginal rate of transformation. This efficient, frictionless benchmark is proposed in the

seminal contribution of Modigliani and Miller (1958). That paper argues that the cost of

capital is independent of the capital structure. In my model, the average and marginal cost
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of capital is rdit dit − reit(1− dit). For it to be independent of capital structure, it must be

that it is the same for any dit, d′it with dit 6= d′it. rdit dit − reit(1− dit) = rdit d
′
it − reit(1− d′it)

can only hold for dit 6= d′it if and only if reit = rdit .

Loosely speaking, the Modigliani-Miller argument implies that the price of debt equals

the price of equity. Still, it leaves the quantity of debt and equity undetermined. The

argument involves two steps. The first step is that investors only care about the return

on their asset, not the type of asset because money is fungible. In other words, they care

about the claims to the firm’s cash flow and are indifferent to how this cash flow is split

between debt and equity. Therefore, debt and equity are supplied at the same price; that is,

their relative price is 1. Whether that relative price prevails in equilibrium depends on the

market structure. The second step of the argument is that if markets are competitive, prices

are determined by supply (opportunity cost), not by demand. Therefore, arbitrage pricing

implies that the cost of capital doesn’t depend on capital structure, which in this model is

equivalent to reit = rdit (see also Ross, 1988). As Merton Miller explains in Miller (1988), the

Modigliani and Miller (1958) argument involves a Fisherian firm, a black box characterized

by a cash flow process, further implying that capital structure is indeterminate.

Theories of the firm and optimal capital structure. Suppose a firm is more than a cash

flow process. In that case, the Modigliani-Miller result that the price of debt equals the

price of equity in competitive equilibrium still holds, but other considerations determine

the capital structure. In their seminal paper, Jensen and Meckling (1976) argue that capital

structure is chosen to solve agency problems. Hart (1988), Aghion and Bolton (1992),

and Hart (1993) provide the theoretical foundations for the debt and equity tradeoffs in

environments with a conflict of interest between investors and managers where contracts

are incomplete. Loosely speaking, in such environments, one of the parties can cheat on

the original agreement, but a court cannot verify the cheating despite it being common
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knowledge by both parties, so the cheater cannot be held accountable, which leads to

inefficiencies. Grossman and Hart (1986) solve this problem by optimally allocating

residual control rights. But in most corporate settings, this solution is infeasible because no

single party is wealthy enough to own the firm. The following example from Hart (1995)

is relevant for the debt and equity tradeoff in public firms, which is the focus of this paper.

Suppose managers don’t care only about their monetary compensation but derive

private benefits from managing the firm and keeping their cronies employed, even if that

decreases firm value. In this case, to implement an efficient allocation, investors should

have control. However, this is impossible in large public companies because each investor

is not wealthy enough to have a large enough share of the company’s equity to exercise

control. A solution to this problem is debt issuance that promises interest payments and

default if payments cannot be met. If managers reduce the company’s value too much,

interest payments cannot be delivered, which triggers bankruptcy, and managers lose

their private benefits forever. In sum, debt disciplines managers. Still, debt cannot be too

high because it may trigger inefficient bankruptcy during a temporary adverse shock, so

there is an optimal capital structure. Therefore, too little debt implies low productivity,

as the company leadership can mismanage the company to gain private benefits. Too

much debt leads to a high likelihood of bankruptcy that distorts the acquisition of talent

through fewer and lower quality applicants (Brown and Matsa, 2016), which can lead

to a mismatch between firms and workers, leading to lower labor productivity. A high

likelihood of bankruptcy can also lower the value of a durable product as part of its value

comes from the ability of the firm to service it in the future (Hortaçsu et al., 2013). In sum,

there is an optimal capital structure, and if it is suboptimal, it leads to lower productivity.

The capital structure component g(d) = dγ[1− d]1−γ in the production function (1)

captures this tradeoff in a reduced form fashion. Essentially, the function g summarizes the

contracting frictions that require capital structure to deal with conflicts of interest between
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the firm’s stakeholders, implying that there is an optimal capital structure at d = γ that

attenuates such conflicts, leading to more output. Additional frictions in the asset markets

manifest as the relative price of debt being different than that of equity re/rd 6= 1, which

prevents the capital structure from being at its optimal level, reducing output. This paper

quantifies the effect of asset market frictions on aggregate output given existing contracting

frictions that characterize g.

Comparison with the model of Whited and Zhao. The seminal paper of Whited and

Zhao (2021) presents a model of production in which capital structure affects output

directly, like in my model. The models are different in several dimensions.

One difference between the two models is the functional form of the capital structure

component of value-added output. The capital structure component in their paper has a

CES functional form, while in this paper, it has the Cobb-Douglas form of function g. 4

The advantage of the CES functional form is that as the elasticity of substitution tends to

infinity, capital structure doesn’t have real effects (capital structure irrelevance). Since their

paper was the first to put capital structure in a production model, their model needed to

nest the capital structure irrelevance case so that they could test the irrelevance hypothesis

in the data. Using data for US and Chinese firms, they reject the irrelevance hypothesis

and estimate a CES elasticity of substitution between debt and equity around 1.5. The

functional form g in my model is equivalent to a CES with an elasticity of substitution of 1,

which is not far from the 1.5 estimate of Whited and Zhao (2021). The advantage of g is

analytical tractability that allows for simple formulas for crucial model quantities, like (7)

4In Whited and Zhao (2021) output takes the form Ait

[
γD

σ−1
σ

it + (1− γ)E
σ−1

σ
it

] σ
σ−1

. Factoring out

Kit = Dit + Eit and using my definition of dit = Dit
Kit

, output can equivalently be written as

Ait

[
γd

σ−1
σ

it + (1− γ)(1− dit)
σ−1

σ

] σ
σ−1

Kit. The limit of this function as the elasticity of substitution σ goes to

1 is the Cobb-Douglas function Aitd
γ
it[1− dit]

1−γKit.
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or (8), that help us gain intuition about the model mechanics.

Another difference between the two models is the inclusion of real factors in the

production function. My model includes capital and labor, while their model only includes

capital. Therefore, the two models coincide when my model has no labor, the capital share

α is one, and their capital structure elasticity of substitution is one. One advantage of

having two factors of production is that the estimates of the effect of capital market frictions

on aggregate TFP are conservative since capital is only one factor of production. Another

advantage is that firm-level productivity is total factor productivity, as it is calculated

using both factors of production. Calculating firm-level TFP is possible in this paper

because I use data on European firms that report labor expenditure, while they use data

for US public firms, most of which do not report the wage bill. Moreover, firm-level TFP

includes labor productivity, which can be a crucial channel through which suboptimal

capital structure has real effects (see the discussion above about the theory of the firm).

3 Data

Data on European public firms in 1989–2022 come from the Compustat Global dataset. The

advantage of data on European firms over data on US firms is that they contain information

on the expenditure on labor that is necessary for recovering total factor productivity at

the firm level and using a production function with capital and labor, like the one used in

this paper. For the analysis I use the same four European countries as David et al. (2023),

France, Germany, Sweden, and the UK, which have enough observations with non-missing

data.

Dataset construction. I measure labor expenditure wtLit by the variable XLR. As in Hsieh

and Klenow (2009), I assume that workers are paid their marginal product, and hence, the
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firm’s labor expenditure reflects the amount of labor in efficiency units, which allows for

comparing productivity across firms with different levels of human capital per worker.

Therefore, for the quantitative analysis, within a period, we can normalize wt = 1 so that

wtLit = Lit. Yearly normalizations with respect to prices, firms-specific productivity, or

capital distortions do not affect the results since all counterfactual quantities are scale-

invariant with respect to those quantities (see the discussion in Section 2.1).

I construct nominal value-added output pitYitas the sum of operating profit before

taxes, depreciation or interest (OIBDP) plus the labor expenditure (XLR) plus the change

in inventory of finished goods (INVFGit-INVFGit−1) as in David et al. (2023). I measure the

capital stock Kit by the balance sheet variable property plant and equipment (PPENT) as

in David et al. (2016). Value added, capital, and labor are necessary for constructing the

production function residual Ãit. I measure debt by total liabilities (LT) and equity by the

difference (AT-LT) as in Whited and Zhao (2021). Therefore, the capital structure measure

dit is debt over debt plus equity, which is the ratio LT/AT.

To arrive at the dataset used in the analysis, I first eliminate observations with missing

or non-positive values of capital, labor, value-added output, assets, or liabilities. I also

eliminate observations with a debt share outside the (0, 1) interval. I also drop firms

in the finance/insurance or public administration sectors (NAICS codes 52 and 92). To

reduce the impact of outlier observations on the results I trim the dataset by eliminating

observations lying in the top or bottom 1% of the distribution of MRPKit = pitYit/Kit

or MRPLit = pitYit/Kit in each country/year which leads to the deletion of 4.2% of the

observations. I trim the MRPK variable because it is proportional to the capital wedge

τKit , a component of the aggregate TFP formula. I trim the MRPL variable to eliminate

observations with outlier labor share (which is the inverse of MRPL), which is the variable

used to estimate the parameter α.

The dataset used in the analysis contains 43,389 observations from 4,933 firms. The
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mean and median debt share are 55.5% and 56.7%, respectively. The 25th and 75th

percentile are 42.4% and 69.7%, respectively, indicating substantial variation.

4 Estimation

To estimate the capital elasticity α in the production function, I use the first-order optimality

conditions for profit maximization that imply that the labor expenditure as a share of value

added equals the labor elasticity 1− α. I estimate the value 1− α as the median of the labor

share witLit
pitYit

in the sample like Asker et al. (2014). Then α is one minus the median of the

labor share and is reported in Table 1. The parameter α has a value of 0.342 and is estimated

precisely, reflected in a small standard error. Its estimated value is close to a value of 1/3

typically used in macro models of misallocation (see David et al., 2016; Gopinath et al.,

2017). I use the median to estimate the labor elasticity instead of the mean to avoid outliers

affecting the estimate. More specifically, approximately 10% of the sample’s observations

have a labor share higher than 1, which happens when profit is negative, and the inventory

change is insufficient to keep value-added output greater or equal to the labor expenditure.

This static production model cannot accommodate negative profit, and considering such

observations by using the mean as an estimator would overestimate the labor elasticity

(mean labor share is 0.71). The median is not affected by such outliers and is the better

estimator in this context.

I estimate the capital structure parameter γ using the fixed-effects estimator of Whited

and Zhao (2021). The starting point is the relationship between capital structure, produc-

tivity, and the production function residual Ãit after taking logs: log Ãit = αγ log dit +

α(1− γ) log(1− dit) + log Ait. In that equation, dit is observable, Ait is unobservable, and

Ãit can be recovered from the data. I calculate the residual in the production function

as in Hsieh and Klenow (2009): Ãit = (pitYit)
η

η−1

Kα
itL1−α

it
, where pitYit is the observed nominal
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Table 1: Model parameters.

Value S.E.

Capital elasticity α in production 0.342 0.0016
Debt exponent γ in capital structure 0.589 0.0196
Elasticity of substitution in demand η 3
Number of observations 43,389

This table presents the model parameters from the entire sample of public firms
in France, Germany, Sweden, and the UK. The elasticity of substitution η in the
CES demand is preset to 3 as in Hsieh and Klenow (2009). Standard errors are
heteroskedasticity robust, incorporate variation from all estimation steps, and are
calculated using the influence function approach described in Section 5.1.

value-added output, which, exponentiated in η
η−1 is the value-added quantity Yit. To

recover the production function residual, I use the estimated capital elasticity α and a

demand elasticity η = 3 as in Hsieh and Klenow (2009) and Gopinath et al. (2017). The

demand elasticity is challenging to estimate without data on quantities and prices and a

static model, and this is the reason many studies (Hsieh and Klenow, 2009; David et al.,

2016; Gopinath et al., 2017) set it to a specific number, lying within bounds reported in the

industrial organization literature. I use a fixed-effects model to estimate the coefficients of

log dit and log(1− dit). I demean Ãit at the yearly level before using it in the fixed-effect

estimator to remove aggregate nominal shocks from the productivity measure. I recover γ

from the two coefficients by dividing them to get (1− γ)/γ. The identifying assumption

behind the fixed effects estimator is that shocks to a firm’s productivity are orthogonal to

shocks to the friction τedit that drives the capital structure dit. This identifying assumption

is reasonable, as frictions originate in the asset market while productivity shocks are

technology shocks.

The estimated value of γ is 0.589, with the parameter estimated precisely, reflected in

a small standard error (Table 1). The estimated γ value implies that the optimal capital

structure is a debt share of 58.9%, which is close to the median debt share in the data.

To gain intuition about the implications of the estimated γ I calculate the productivity
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loss from suboptimal capital structure 1− 1/τAF at various points on the capital structure

distribution. More specifically, the productivity loss of a firm with the average (median)

capital structure is 0.08% (0.04%), a negligible loss. In contrast, the productivity loss of a

firm with a debt share in the 25th (75th) percentile of the debt share distribution is 1.91%

(0.9%), which is substantial given that it translates to an equivalent loss in the firm’s output.

Aggregating these firm-level losses to an economy-wide loss in output requires calculating

the aggregate TFP loss, which I do in Section 5.

Model fit. The estimated coefficients in the productivity capital structure equation used

to estimate γ can also be used to evaluate the fit of the functional form of the capital

structure component Fit in the production function. More specifically, the model implies

that the coefficient on log dit is the product of two parameters αγ. So, given the estimate of

γ, we can recover the value for α implied by the fixed effects regression, which is 0.377,

with a standard error of 0.0356. This value is close to and statistically indistinguishable

from the estimated value of α from the labor share, indicating that this parsimonious

model that restricts the exponent of the capital structure to be the same as the capital share

fits the data well, lending credence to the quantitative results of this paper.

5 Results and inference

This section quantifies the aggregate effects of the two types of frictions and develops

a framework to derive their standard errors using the influence function approach to

inference. Tables 2 and 3 present the results.

To quantify the importance of frictions, I estimate how changing the distribution of

frictions affects aggregate TFP by comparing the TFP of pairs of economies with different

distributions of frictions: {Ait, τAFit , τKit}it and {Ait, τ′AFit
, τ′Kit
}it keeping each firm’s pro-
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ductivity frontier Ait constant. Therefore, all results are a function of a ratio of two aggre-

gate TFPs: TFP/TFP′. I calculate the productivity frontier using the formula Ait = ÃitτAFit

and applying equation (6) at the estimated parameters. In addition, I demean A and τKit at

the yearly level to avoid nominal effects having an impact on the across-year comparison

of the TFP loss. The financial productivity wedge τAFit does not require yearly demeaning

because it is a share and, hence, is unit-free.

Table 2: TFP loss from distortions

TFP loss in %
Type of distortion considered Value S.E.

(1) All distortions (total):
{

τAFit , τKit

}
it → {1, 1}it 26.2 1.39

(2) Capital structure (inframarginal):
{

τAFit , 1
}

it → {1, 1}it 2.01 0.24
(3) Capital structure (compensated marginal):

{
τAFit , τKit

}
it →

{
1, τKit

}
it 2.11 0.32

This table presents results from three counterfactual exercises using data from public firms in France, Germany, Swe-
den, and the UK. The TFP loss is calculated as 1− TFP/TFP′, where TFP’ reflects an economy with less distortions and
is expressed in percent. Each row of the table represents counterfactuals involving eliminating different types of distor-
tions. Standard errors are heteroskedasticity robust, incorporate variation from all estimation steps, and are calculated
using the influence function approach described in Section 5.1.

Table 2 presents the results from three counterfactual exercises. Row (1) shows the loss

in TFP from both types of frictions by comparing the TFP in the data using the distribution{
τAFit , τKit

}
it to the TFP in the absence of distortions TFP′. The loss is then 1− TFP/TFP′,

is expressed in percent, and is estimated at 26%, implying that aggregate output could be

1/3 higher each year with the same aggregate resources (capital and labor) if distortions

disappeared. This estimate is in line with estimates from datasets from other countries

(see Fakos, 2023 and the references therein). The loss is precisely estimated, reflected in the

small standard error (Table 2).

The last two columns of Table 2 report the quantitative importance of the capital

structure distortion, reflected in the financial productivity wedge τAFit , on aggregate pro-

ductivity. Column (2) measures how aggregate productivity would change if we eliminated

the financial productivity wedge in an economy with no other frictions (inframarginal
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effect). The estimated TFP loss is 2% with a small standard error, implying that it is

statistically different from zero. This magnitude is large compared to, for example, the cost

of business cycles, which is estimated to be below 1% (see Alvarez and Jermann, 2004 and

the references therein). Column (3) measures how aggregate productivity would change

if we eliminated the financial productivity wedge while keeping the capital distortions

τKit at their existing level (compensated marginal effect). The compensated marginal effect

is nearly identical to the inframarginal effect. This reassuring since the compensated

marginal effect is designed to isolate the capital structure distortion and should be close to

the inframarginal effect, lending credence the results of the analysis.

Table 3: The importance of the capital structure distortions

Share of total loss in %
Inframarginal Compens. marginal

Market definition Value S.E. Value S.E. Obs.

(1) France, Germany, Sweden, and UK (baseline) 7.67 1.01 8.06 1.30 43,389
(2) France and Germany 12.51 1.99 12.11 2.11 19,930
(3) France 13.43 2.49 13.25 2.57 8,939
(4) Germany 15.22 4.06 14.69 4.34 10,991
(5) Sweden 8.85 4.18 9.65 4.55 5,438
(6) UK 7.51 1.22 7.59 2.01 18,021

This table decomposes the total TFP loss into the effects of the financial productivity wedge τAF (from the capital structure distortion)
and the capital wedge τK on TFP loss. The inframarginal component is the ratio of the quantities in rows (2) and (1) from Table 2,
while the compensated marginal component is the ratio of row (3) to row (1). The first row of this table reports results from the sample
used throughout this paper, which includes public firms from France, Germany, Sweden, and the UK. The subsequent rows report
the decomposition from re-estimating the model from each subsample. Standard errors are heteroskedasticity robust, incorporate
variation from all estimation steps, and are calculated using the influence function approach described in Section 5.1.

TFP loss decompositions. Table 3 presents results on the relative importance of the

capital structure distortions among all distortions by decomposing the total TFP loss into

the loss from the financial productivity wedge and the loss from the capital wedge. There

are two ways to perform this decomposition. One way is first to eliminate the capital

wedge τK and then eliminate the financial productivity wedge τAF, the last step of which
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measures the inframarginal TFP loss, which is 7.67% of the total loss (the ratio of column

(2) to column (1) from Table 2). The other way is first to eliminate the financial productivity

wedge and then the capital wedge, the first step of which measures the compensated

marginal TFP loss, which is 8.06% of the total loss (the ratio of column (3) to column (1)

from Table 2). Given that the marginal effect is compensated (changing re to keep the

capital wedge constant), these two decompositions are expected to give similar results. In

this dataset, the two decompositions give statistically identical results, lending credence to

the analysis.

To explore the robustness of the results, I re-estimate the model parameters and distor-

tion distributions in several subsamples and report the decomposition in the remaining

rows of Table 3. More specifically, I re-estimated the model for each country separately

and the France-Germany sample since both countries are geographically close, part of

the EU and the Euro monetary union. All samples exhibit two robust patterns: capital

structure distortions are responsible for approximately 1/10 of the overall TFP loss, and

the marginal effect is indistinguishable from the inframarginal effect.

The share of TFP loss emanating from the capital structure wedge provides a lower

bound on the effect of financial frictions on aggregate productivity. Financial frictions

drive a wedge between the price of debt and equity, leading to the financial productivity

wedge τAF. Financial frictions are also reflected in the capital wedge τK (Gopinath et al.,

2017) along with other frictions such as information frictions (David et al., 2016) or resale

market frictions (Chen et al., 2023). While decomposing the loss from τK into financial and

other sources is challenging, the capital structure wedge τAF is a pure financial wedge.

The finding that the capital structure wedge is responsible for approximately 1/10 of the

TFP loss sets a lower bound on the importance of financial frictions, which is substantial,

providing evidence that financial frictions have significant real effects.
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5.1 Inference

This section describes the influence function approach to inference used to calculate the

standard errors in Tables 1–3. The online appendix contains a more detailed exposition of

the methodology, formula derivations, and additional references.

To obtain the standard errors and confidence intervals of the counterfactual quantities

in Tables 2 and 3, I need to derive the asymptotic distribution of the ratio of two aggregate

TFPs, as all results depend on such a ratio. Since the ratio of two TFPs is not a well-studied

statistic, the first step is to verify that it can be expressed as a statistical functional so that

standard asymptotic inference can be applied. Given a sample X1, . . . , Xn, a statistical

functional is a map from an empirical cumulative distribution function Fn (or the empirical

probability measure Pn) to the real numbers, implying that the functional should not

depend directly on the sample size n but only on the distribution of the data (Fernholz,

1983). For instance, the TFP formula in equation (7) cannot be expressed as a statistical

functional because TFP increases as the number of firms increases. To see this, note that if

we duplicate every observation, the TFP is larger by a factor of 2
1

η−1 . As a result, as the

sample size grows (n→ ∞), the TFP does not converge but goes to infinity, and hence, the

asymptotic statistical theory is not applicable.

The ratio of two TFPs, in contrast, can be written as a statistical functional and asymp-

totic theory applies. To see this, note that the ratio of two TFPs can be expressed only in
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terms of averages:

Sn =

∑n
j=1

1
n

(
Aj

τAFj
τα̂

Kj

)η−1
 1

η−1+α̂/∑n
j=1

1
n

(
Aj

τAFj

)η−1

τ
1+α̂(η−1)
Kj


α̂

∑n
j=1

1
n

(
Aj

τ′AFj
τ′ α̂Kj

)η−1
 1

η−1+α̂/∑n
j=1

1
n

 Aj
τ′AFj

η−1

τ′
1+α̂(η−1)
Kj


α̂

. (9)

Inference on estimator Sn is challenging as it is a function of data and estimated parameters

α̂, γ̂, and is not a statistic with well-known asymptotic properties. If estimator Sn depended

only on estimated parameters, as in studies where counterfactuals use simulated data like

Fakos (2023), then the standard error of Sn could be calculated using the delta method.

I conduct inference on Sn using the influence function approach, which is a general

framework for conducting inference as it can be applied to settings where the statistic of

interest depends on parameters estimated using any combination of the GMM, quantile,

Maximum Likelihood (MLE), or Simulated Minimum Distance (SMD) frameworks because

they are asymptotically linear estimators (Newey and McFadden, 1994; Van der Vaart,

1998; Tsiatis, 2006).

The von Mises expansion. An asymptotically linear estimator φ can be analyzed by

studying the asymptotic properties of the first term of its von Mises expansion:

√
n[φ(Pn)− φ(P)] ≈

√
nφ′P(Pn − P). (10)

Where Pn denotes the empirical probability measure, P the true probability measure, and

φ′P(Pn − P) the Hadamard derivative at P in the direction Pn − P (see Van der Vaart, 1998).
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The influence function. The asymptotic limit (n→ ∞) of derivative φ′P can be expressed

as the expectation
∫

ψ(x)dP(x) of random variable ψ(x) that is called the influence function

of estimator φ. Therefore, we can study the asymptotic properties of estimator φ by

analyzing the sample average of the influence function 1
n ∑n

i=1 ψ(xi). For example, suppose

the estimated parameter is a φK×1 vector. In that case, the standard errors of the estimates

can be calculated from the influence function:
√

1
n2 diag(∑n

i=1 ψ(xi)ψ′(xi)). Formulas for

the influence function of the GMM, MLE, SMD, quantiles, and the mean are available

in, e.g., Newey and McFadden (1994); Van der Vaart (1998); Tsiatis (2006). The influence

function of the mean is x−
∫

xdP(x).

The influence function of multi-step estimators and the chain rule. Estimator Sn is a

function of the first stage median α̂ and GMM coefficients characterizing γ̂, and several

means, which I denote µ. To derive the influence function of Sn, I first must establish that

it is Hadamard differentiable. The median, means, and GMM estimators are Hadamard

differentiable, and γ̂ is a continuous differentiable function of the GMM coefficients,

rendering it Hadamard differentiable. This is because continuous partial differentiability

implies Hadamard differentiability in finite dimensions. Sn is continuously differentiable

with respect to α̂, γ̂ and the several means in formula (9) so it is Hadamard differentiable.

Express the estimator Sn as H(µ(P), α(P), γ(P, α(P))). It depends on the probability

measure P directly through the various means and indirectly through α̂, γ̂.5 To derive the

influence function of H, I use the chain rule for Hadamard differentiable functions, which

extends to influence functions. Therefore the influence function ψS(x) of S is

ψS(x) =
∂H
∂µ

ψµ(x) +
∂H
∂α

ψα(x) +
∂H
∂γ

[
ψγ(x) +

∂γ

∂α
ψα(x)

]
(11)

5The estimator Sn also depends on the estimated yearly means of τAF, τK used to demean these variables
at the annual level. I suppress this dependence here for the sake of brevity, but I take it into account when
conducting inference. The online appendix contains details about inference on yearly means.
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The influence function at each xi is straightforward to obtain since there are formulas for

ψµ(x), ψα(x), and the GMM coefficients, while the partial derivatives admit a numerical

approximation.

Approximating the influence function of estimators that are functions of means. De-

riving the influence function ∂H
∂µ ψµ(x) of a new statistic analytically can be tedious and

prone to error. Fortunately, the influence function of any statistic h(Pn) that is a continu-

ous differentiable function of means can be numerically approximated by perturbing the

empirical distribution Pn as follows

ψ(xi) = lim
ε↓0

h([1− ε]Pn + εδxi)− h(Pn)

ε
, ε ∈ (0, 1), (12)

where δxi is the probability measure with all mass at xi. I demonstrate in the online

appendix that the numerical approximation for spacing ε = 10−7 or less results in an

influence function nearly identical for all practical purposes to the one derived analytically,

leading to identical standard errors. Estimators that are smooth functions of averages

include misallocation statistics like Sn, moments, variance, standard deviation, and the

correlation between two random variables.

Advantages of the influence function approach to inference. The influence function

approach to multi-step estimators has several advantages compared to the resampling

alternative (subsampling or bootstrap).6 It can be computationally cheaper when some

estimation step involves a computationally challenging estimator like a simulated method

of moments of a dynamic model as in Bazdresch et al. (2018). In addition, the numerical

approximation described above allows for a hybrid approach: use analytical formulas for

6The online appendix demonstrates that the standard errors in Table 2 line up with the bootstrapped
ones.
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computationally intensive steps and the numerical approach for analytically complex but

computationally trivial statistics such as Sn. Moreover, the influence function approach is

a deterministic function of a sample that facilitates replication of the results compared to a

resampling method that introduces resampling error.

6 Conclusions

I develop a general equilibrium model with heterogeneous firms and market frictions that

distort each firm’s capital structure (debt–equity mix) and the allocation of capital and

labor across firms, reducing aggregate productivity. Suboptimal capital structure manifests

as lower firm productivity, is reflected in a firm-specific financial productivity wedge

that prevents the firm from attaining its productivity frontier, and is driven by the cost

of debt being different from that of equity due to financial frictions. Lower firm-specific

productivity leads to lower aggregate productivity. Aggregate productivity is also reduced

by the misallocation of capital and labor across firms driven by a firm-specific wedge on

the cost of capital, reflecting financial or other market frictions.

I use data on European public firms to quantify the effect of the capital structure

distortion and the capital wedge on aggregate productivity. I find that the capital structure

wedge leads to a permanent TFP loss of 2%, which implies an equivalent loss in yearly

aggregate output, which is substantial. The capital structure distortion is responsible for

roughly 1/10th of the overall TFP loss from all distortions. The TFP loss from the capital

structure distortion is a lower bound on the overall TFP loss from financial frictions, which

are solely responsible for the capital structure distortion but can also affect the capital

wedge. Identifying policies that alleviate or deteriorate the capital structure distortion is

an avenue for future research.
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Internet Appendix for

Financial frictions, capital structure, and aggregate

productivity

Alexandros Fakos1

This document is an internet appendix posted online but not intended for publication. Its

sections roughly correspond to the paper’s sections that are numbered in Arabic numerals.

A Model

Consider a sector at time populated by N firms. Each firm i faces productivity Ai and

requires capital Ki and labor Li to produce a differentiated product Yi. Capital needs

to be financed either by debt Di or equity Ei, with Di + Ei = Ki. Capital structure is

characterized by the debt share dit =
Dit
Kit

, which determines the equity share Eit
Kit

= 1− dit.

The production function is:

Yi = Ai

(
Dγ

i E1−γ
i

)α
L1−α

i , α ∈ (0, 1], γ ∈ (0, 1), Ki = Di + Ei.

Yi =

Ãi︷ ︸︸ ︷
Ai

Fi︷ ︸︸ ︷(
dγ

i (1− di)
1−γ
i

)α
Kα

i L1−α
i , α ∈ (0, 1], γ ∈ (0, 1), di =

Di

Ki
∈ [0, 1].

(A.1)

Fi =
[
dγ

i (1− di)
1−γ
i

]α
which represents the contribution of capital structure in the pro-

duction function. The firm-level productivity residual Ãi =
Yi

Kα
i L1−α

i
has a technological

1Fakos (alexfakos@icloud.com) is from the Department of Business Administration at ITAM.
Date: May 4, 2024.
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efficiency component Ai and a financial component Fi.

Demand. A competitive firm produces the final good Y =

[
∑N

i=1 Y
η−1

η

i

] η
η−1

, and therefore,

the firm’s problem can be solved by cost minimization min{Yi}i ∑ piYi for a given level of

output Y−
[

∑N
i=1 Y

η−1
η

i

] η
η−1

= 0. The Lagrangian function for this problem is L = ∑ piYi +

λ

Y−
[

∑N
i=1 Y

η−1
η

i

] η
η−1

. The first order sufficient conditions (FOCs) for each i are pi =

λY
1
η Y
− 1

η

i . Solving the FOCs for Yi we get Yi = p−η
i ληY. Substituting in the constraint we

get λ = [∑ p1−η
i ]

1
1−η . Therefore, the demand function is Yi = p−η

i [∑ p1−η
i ]

η
1−η Y. Since the

firm is competitive, revenue equals to cost PY = ∑ piYi. Substituting for the demand we

get PY = ∑ p1−η
i [∑ p1−η

i ]
η

1−η Y. By simplifying the equation we get P = [∑ p1−η
i ]

1
1−η = λ.

Since Y is the numeraire, we set P to 1. The demand for firm i’s good comes from the final

good producer and is pi = Y
− 1

η

i Y
1
η .

Revenue function. The revenue is

piYi =

Ω̃i︷ ︸︸ ︷
Ωid

βd
i (1− di)

βe Kβk
i Lβl

i Y
1
η

βk = α(1− 1/η), βl = (1− α)(1− 1/η), Ωi = A1−1/η
i , Ω̃i = Ã1−1/η

i

βd = αγ(1− 1/η) = γβk, βe = α(1− γ)(1− 1/η) = (1− γ)βk .

(A.2)

Revenue productivity Ω̃i = A1−1/ηdβd
i (1− di)

βe has an invariant component A1−1/η and

a distortion-dependent component dβd
i (1− di)

βe .
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Profit maximization. Firms maximize profit given the price of debt rdi , the price of equity

rei , and the labor wage w.

max
di,Ki,Li

Ωid
βd
i (1− di)

βe Kβk
i Lβl

i Y
1
η − rdi diKi − rei(1− di)Ki − wLi (A.3)

Di = diKi, Ei = (1− di)Ki, di ∈ [0, 1]

If rei = rdi then there are no frictions in the supply of financing. The first order optimality

condition for capital implies that

MRPKi = βK
piYi

Ki
= rdi di + rei(1− di). (A.4)

The first order optimality condition with respect to the debt share di is

MRPdi = βd
piYi

di
− βe

piYi

1− di
= rdi Ki − rei Ki

γβk
piYi

di
− (1− γ)βk

piYi

1− di
= (rdi − rei)Ki

βk piYi
γ(1− di)− (1− γ)di

di(1− di)
= (rdi − rei)Ki

βk
piYi

Ki

γ− di

di(1− di)
= rdi − rei (A.5)

The profit-maximizing debt share di. Combining the first order conditions with respect

to capital and the debt share we have

MRPKi
γ− di

di(1− di)
= rdi − rei

[rdi di + rei(1− di)]
γ− di

di(1− di)
= rdi − rei (A.6)

Equation (A.6) is only in terms of di which lives in (0, 1) as any of the two extrema of the

interval will give zero profit which is never optimal. However, γ− di can be zero, and so
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can rdi − rei . Now solve equation (A.6) for di.

[rdi di + rei(1− di)]
γ− di

di(1− di)
− rdi − rei = 0

[(rdi − rei)di + rei ](γ− di)− (rdi − rei)di(1− di)

di(1− di)
= 0⇒

[(rdi − rei)di + rei ](γ− di)− (rdi − rei)di(1− di) = 0

(rdi − rei)di(γ− di − 1 + di) + rei(γ− di) = 0

(rdi − rei)di(γ− 1) + rei(γ− di) = 0

di[(rdi − rei)(γ− 1)− rei) + rei γ = 0

[(1− γ)rdi + γrei ]di = rei γ
rdi

,rei>0
⇒

di =
γrei

(1− γ)rdi + γrei

rdi
>0
⇒

di =
γ

rei
rdi

(1− γ) + γ
rei
rdi

(A.7)

Note that the profit-maximizing debt share di depends only on relative prices, not their

level. The profit-maximizing di has the following properties:

di



↗ 1 as
rei
rdi
→ ∞

∈ (γ, 1) if
rei
rdi

> 1

= γ if
rei
rdi

= 1

∈ (0, γ) if
rei
rdi

< 1

↘ 0 as
rei
rdi
↘ 0

(A.8)
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This is because

di =
γ

rei
rdi

(1− γ) + γ
rei
rdi

< γ⇒

rei
rdi

(1− γ) + γ
rei
rdi

− 1 < 0

rei
rdi
− (1− γ)− γ

rei
rdi

(1− γ) + γ
rei
rdi

< 0

(1− γ)

(
rei

rdi

− 1
)
< 0

rei

rdi

< 1 (A.9)

The formula for the profit-maximizing share of equity is

1− di = 1−
γ

rei
rdi

(1− γ) + γ
rei
rdi

=
1− γ

(1− γ) + γ
rei
rdi

(A.10)

The cost of capital and the capital wedge τKi . Substituting the profit-maximizing di into

the first order condition with respect to capital we get that the cost of capital takes the

following expression.

rdi di + rei(1− di) =
rei

(1− γ) + γ
rei
rdi

≡ RτKi

τedi =
rei

rdi

,
rei

(1− γ) + γτedi

= RtτKi (A.11)

Note that the cost of capital depends only on exogenous prices and from the first order

condition we know that MRPKi = RτKi . The cost of capital depends both on the level of rei

and its relative price, which I call the capital structure distortion τedi . Equation (A.11) im-
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plies that we can perform counterfactual exercises by keeping one of the τKi , τedi quantities

constant and eliminating the distortion in the other. For example, if we eliminate the rela-

tive price friction, τedi = 1, we can set rei = RτKi so that the capital wedges are unchanged.

Or, if we eliminate the capital wedge τKi = 1, we can set rei = R
[
(1− γ) + γτedi

]
so that

all firms have the same profit-maximizing MRPK but the capital structure distortions τedi

are unchanged.

Recovering the capital structure distortion τedi from the data. From the profit-maximizing

equations for di, ei equations (A.7) and (A.10), we get an expression for the relative prices

that depends only on the debt share di.

τedi ≡
rei

rdi

=
1− γ

γ

di

1− di
(A.12)

The above equations show that the capital structure distortion τedi can be recovered using

only data on capital structure di, given parameter γ.

The financial productivity wedge τAFi . At the profit-maximizing capital structure, the

contribution of capital structure to output Fi is a function of τedi , which I denote f (τedi).

Fi = f (τedi) =
[
dγ

i (1− di)
1−γ
]α

(A.13)

=

[(
γτedi

1− γ + γτedi

)γ ( 1− γ

(1− γ) + γτedi

)1−γ
]α

(A.14)

=
[
γγ(1− γ)1−γ

]α
[

τ
γ
edi

1− γ + γτedi

]α

(A.15)

= f (1)

[
τ

γ
edi

1− γ + γτedi

]α

(A.16)

When the price of equity is equal to the price of debt, the firm chooses the first-best
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capital structure d∗it = γ. If the price of debt is different than that of equity reit 6= rdit ,

then the contribution of capital structure to output Fit = f (re/rd) is less than it’s potential

F = f (1), leading to lower output. Therefore, if, for some firms, the price of debt is

different than that of equity reit /rdit 6= 1, there is an output loss in the economy from

suboptimal capital structure.

Define the financial productivity wedge as the factor difference between the first best F

and the actual Fi:

τAFi ≡
f (1)

f (τedi)
=

1[
τ

γ
edi

1−γ+γτedi

]α ≥ 1 (A.17)

I call τAFi the financial productivity wedge because a suboptimal capital structure manifests

as lower firm-specific total factor productivity in the production function (expression

(A.1)):

Ãi = Ai f (τedi) = Ai
f (1)
τAFi

=
Ai

τAFi

, Ai ≡ Ai f (1) (A.18)

I consider Ai = Ai f (1) the productivity frontier for firm i, which is achieved in the absence

of capital structure distortions, and is invariant to changes in frictions τedi , τKi since it

depends only on productivity Ai and the parameters γ, α.

A.1 Equilibrium

In this model, an economy is characterized by the distribution of productivities and

distortions {Ai, τAFi , τKi}i and the aggregate resource constraint in the economy in terms

of capital K and labor L. In equilibrium, a price of capital R and a price of labor w bring

the demand for capital ∑i Ki and labor ∑i Li equal to their respective supply.

Ki =

 Ω̃i

τ
1−βl
Ki

 1
1−βk−βl

[
βk
R

(
βlR
bkw

)βl

Y1/η

] 1
1−βk−βl

(A.19)
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Li =

 Ω̃i

τ
βk
Ki

 1
1−βk−βl

[
βl
w

(
βkw
βlR

)βk

Y1/η

] 1
1−βk−βl

(A.20)

Market-clearing prices R, w

[
βk
R

(
βlR
βkw

)bl

Y1/η

] 1
1−βk−βl

∑
i

 Ω̃i

τ
1−βl
Ki

 1
1−βk−βl

= K (A.21)

[
βl
w

(
βkw
βlR

)βk

Y1/η

] 1
1−βk−βl

∑
i

 Ω̃i

τ
βk
Ki

 1
1−βk−βl

= L (A.22)

Therefore firm-level demand of capital and labor at market-clearing prices can be expressed

as

Ki =

Ãη−1
i

τ
1+α(η−1)
Ki

∑
Ãη−1

i

τ
1+α(η−1)
Ki

K =

(
Ai

τAFi

)η−1

τ
1+α(η−1)
Ki

∑

(
Ai

τAFi

)η−1

τ
1+α(η−1)
Ki

K ≡

(
Ai

τAFi

)η−1

τ
1+α(η−1)
Ki

K
ΦK

(A.23)

Li =

Ãη−1
i

τ
α(η−1)
Ki

∑
Ãη−1

i

τ
α(η−1)
Ki

L =

(
Ai

τAFi
τα

Ki

)η−1

∑
(

Ai
τAFi

τα
Ki

)η−1 L ≡
(

Ai

τAFi τ
α
Ki

)η−1
L

ΦL
(A.24)

Firm output is

Yi =
Ai

τAFi


(

Ai
τAFi

)η−1

τ
1+α(η−1)
Ki

K
ΦK


α ( Ai

τAFi τ
α
Ki

)η−1
L

ΦL

1−α

=

(
Ai

τAFi τ
α
Ki

)η
KαL1−α

Φα
KΦ1−α

L

(A.25)
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Aggregate output is

Y =

[
N

∑
i=1

Y
η−1

η

i

] η
η−1

=

 N

∑
i=1

(
Ai

τAFi τ
α
Ki

)η−1


η
η−1

KαL1−α

Φα
KΦ1−α

L
(A.26)

Aggregate TFP. Total factor productivity is defined as Y
KαL1−α , which takes the following

form.

TFP =

[
∑N

i=1

(
Ai

τAFi
τα

Ki

)η−1
] η

η−1

Φα
KΦ1−α

L

=

[
∑N

i=1

(
Ai

τAFi
τα

Ki

)η−1
] η

η−1

∑

(
Ai

τAFi

)η−1

τ
1+α(η−1)
Ki


α [

∑
(

Ai
τAFi

τα
Ki

)η−1
]1−α

=

[
∑N

i=1

(
Ai

τAFi
τα

Ki

)η−1
] 1

η−1+α

∑N
i=1

(
Ai

τAFi

)η−1

τ
1+α(η−1)
Ki


α (A.27)

The TFP formula (A.27) is a function of only wedge τAFi τKi and the productivity frontier

Ai. It doesn’t depend on prices as we have already solved for the equilibrium. Therefore,

it is appropriate for conducting counterfactual experiments on the distortions by changes

the wedges τAFi τKi while keeping Ai constant.
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First-best TFP. At the first-best allocation {τAFi = 1, τKi = 1}, the TFP is

TFP0 =

(
N

∑
i=1

Aη−1
i

) 1
η−1

. (A.28)

A.2 Counterfactual analysis

There are two approaches to quantifying the importance of the capital structure distortion

τed. The first approach is to compare the TFP of an economy without capital wedges to

the first best 1− TFP({Ai, τAFi , τKi = 1}i)/TFP({Ai, τAFi = 1, τKi = 1}i), which I call

the inframarginal effect. The other is to compare the TFP of an economy at its current

state {Ai, τAFi , τKi}i to an economy without capital structure distortions τed = τAFi = 1.

The issue with the second approach is that changing τed changes also the capital wedge—

see equation (A.11). This is because τed = 1 implies no tradeoff between reducing the

cost of financing and increasing the capital structure productivity. To isolate the capital

structure effect, I keep τKi constant by increasing rei = RτKi . This counterfactual then

can be calculated by 1− TFP({Ai, τAFi , τKi}i)/TFP({Ai, τAFi = 1, τKi}i) which I call the

compensated marginal effect (akin to the compensated/Hicksian demand that isolates the

substitution effect by keeping utility constant). These two counterfactual quantities should

be close but not identical. In the special case where three variables are distributed jointly

lognormal, the inframarginal and compensated marginal loss are identical—see Section

A.3 below for an analytical derivation.

A.3 TFP loss under log normality

To gain intuition about how the joint distribution of Ai, τAFi , τKi determines the TFP loss, I

derive the TFP loss formula for the case where the the log deviation of the mean of each

variable is normally distributed. More specifically, let µA = eE(log A), µτAF = eE(log τAF)
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and µτK = eE(log τK). Let Â = A/µA, τ̂AF = τAF/µτAF , and τ̂K = τK/µτK . Then E(Â) =

E(τ̂AF) = E(τ̂K) = 0. Let Â, τ̂AF, τ̂K be log-normally distributed. The the ratio of the TFP

with distortions to the TFP without distortions is

TFP1

TFP0
=

[
∑N

i=1

(
Ai

τAFi
τα

Ki

)η−1
] 1

η−1+α

∑N
i=1

(
Ai

τAFi

)η−1

τ
1+α(η−1)
Ki


α

/(
N

∑
i=1

Aη−1
i

) 1
η−1

=

[
∑N

i=1
1
N

(
Ai

τAFi
τα

Ki

)η−1
] 1

η−1+α

∑N
i=1

1
N

(
Ai

τAFi

)η−1

τ
1+α(η−1)
Ki


α

/(
N

∑
i=1

1
N

Aη−1
i

) 1
η−1

Law of large numbers
=

[
E
(

A
τAFτα

K

)η−1
] 1

η−1+α

[
E

(
A

τAF

)η−1

τ
1+α(η−1)
K

]α

/(
EAη−1

) 1
η−1 (A.29)

Equation (A.29) expresses the ratio f the two TFPs in terms of expectations. To apply

the expectations formulas of the log-normal distribution to expression (A.29), we need to
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express it in terms of Â, τ̂AF, τ̂K. The numerator of (A.29) is

Q(A, τAF, τK) ≡

[
E
(

A
τAFτα

K

)η−1
] 1

η−1+α

[
E

(
A

τAF

)η−1

τ
1+α(η−1)
K

]α

=
µ1

A
µ1

τAF
µ0

τK

[
E
(

Â
τ̂AF τ̂K

α

)η−1
] 1

η−1+α

E

(
Â

τ̂AF

)η−1

τ̂K
1+α(η−1)


α

=
µA

µτAF

[
Ee(η−1)

(
log Â−log τ̂AF−α log τ̂K

)] 1
η−1+α

[
Ee(η−1)

(
log Â−log τ̂AF

)
−[1+α(η−1)] log τ̂K

]α

=
µA

µτAF

[
e

1
2 Var(η−1)

(
log Â−log τ̂AF−α log τ̂K

)] 1
η−1+α

[
e

1
2 Var

[
(η−1)

(
log Â−log τ̂AF

)
−[1+α(η−1)] log τ̂K

]]α

=
µA

µτAF

[
e
(η−1)2

2 (σ2
A+σ2

F+α2σ2
K−2σA,F−2ασA,K+2ασF,K)

] 1
η−1+α

[
e

1
2 [(η−1)2(σ2

A+σ2
F−2σA,F)+[1+α(η−1)]2σ2

K+2[1+α(η−1)](η−1)(σF,K−σA,K)]
]α

=
µA

µτAF

e
η−1

2 (σ2
A+σ2

F−2σA,F)− α
2 [α(η−1)+1]σ2

K , (A.30)

where σ2
A = Var(log Â), σ2

F = Var(log τ̂AF), σ2
K = Var(log τ̂K), σA,F = Cov(log Â, log τ̂AF),

σA,K = Cov(log Â, log τ̂K), σF,K = Cov(log τ̂AF, log τ̂K). Note that σF,K, σA,K disappear.

The denominator of (A.29) is

Q0 ≡
(

EAη−1
) 1

η−1
= µA

(
EÂ

η−1
) 1

η−1

= µA

(
e
(η−1)2

2 σ2
A

) 1
η−1

= µAe
η−1

2 σ2
A (A.31)
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Combining expressions (A.30) and (A.31), the expression for the TFP ratio in (A.29) is

TFP1

TFP0
=

Q(A, τAF, τK)

Q0
=

1
µτAF

e
η−1

2 (σ2
F−2σA,F)− α

2 [α(η−1)+1]σ2
K . (A.32)

Note that the TFP loss is 1− TFP1
TFP0

≈ − log TFP1
TFP0

= − log Q(A,τAF,τK)
Q0

. Substituting expression

(A.32) we have

TFP loss total ≈ − log
[

1
µτAF

e
η−1

2 (σ2
F−2σA,F)− α

2 [α(η−1)+1]σ2
K

]
= log µτAF −

η − 1
2

(σ2
F − 2σA,F) +

α

2
[α(η − 1) + 1]σ2

K

= E(log τAF) + (η − 1)σA,F −
η − 1

2
σ2

F +
α

2
[α(η − 1) + 1]σ2

K. (A.33)

Note that the higher the average capital structure distortion (E(log τAF)), the higher the TFP

loss. The higher the covariance between the financial productivity wedge and productivity

σA,F, the higher the TFP loss because high-productivity firms face higher distortions. A

high variance of the capital structure distortion reduces TFP loss because the effect of

capital structure distortions on output can be dampened by reallocating resources from

the firms facing high capital structure distortions to the ones facing lower distortions (the

general equilibrium effect). As in Hsieh and Klenow (2009); David and Venkateswaran

(2019), the higher the variance of the capital wedge σ2
K, the higher the TFP loss.

Expression (A.30) can also be used to derive the inframarginal loss of the capital

structure distortion

TFP loss inframarginal =
Q(A, τAF, τK = 1)

Q(A, τAF = 1, τK = 1)
(A.34)

≈ E(log τAF) + (η − 1)σA,F −
η − 1

2
σ2

F (A.35)

Expression (A.30) can also be used to derive the compensated marginal loss of the capital
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structure distortion

TFP loss inframarginal =
Q(A, τAF, τK)

Q(A, τAF = 1, τK)
(A.36)

≈ E(log τAF) + (η − 1)σA,F −
η − 1

2
σ2

F (A.37)

which in this case is identical to the inframarginal loss.

B Data

The data come from the dataset Compustat Global and the text includes all the necessary

details. Before trimming the baseline dataset for France, Germany, Sweden, and the UK,

there are 45,273 and after trimming outliers there are 43,389 remaining observations used

for the analysis.

C Estimation

I estimate γ using the fixed-effects estimator of Whited and Zhao (2021). The starting point

is the relationship between the residual Ãit in the production function that depends on

productivity Ait and capital structure Fit, which in logs is:

log Ãit =

ad︷︸︸︷
αγ log dit +

ae︷ ︸︸ ︷
α(1− γ) log(1− dit) +

εi︷ ︸︸ ︷
log Ait (C.1)

I estimate equation (C.1) using a within-firm estimator after demeaning log Ãit at the

annual level (a year fixed-effect). The second panel of Table C.1 presents the results. The

estimated values for ad, ae are precisely estimated and lower than 1, which is consistent

with γ, α < 1 in the model. I estimate γ using the following formula resulting from
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Table C.1: Parameter estimates from the baseline sample.

Value S.E.

α from median 0.342 0.0016

GMM fixed effect estimator

ad 0.222 0.0247
ae 0.155 0.0137

γ 0.589 0.0196

α̃ (implied α) 0.377 0.0356

Number of observations 43,389

The baseline sample includes public firms from France, Germany,
Sweden, and the UK. Standard errors are heteroskedasticity ro-
bust, incorporate variation from all estimation steps, and are cal-
culated using the influence function approach described in Sec-
tion 5.1.

equation (C.1):

ae/ad =
1− γ

γ
⇒ γ =

1
1 + ae/ad

(C.2)

The estimated value of γ is precisely estimated and less than 1, consistent with the model.

I can also use the estimated γ and the estimated coefficient ad to back out the implied

α: α̃ = ad/γ. The implied α̃ is 0.377 which is close to the α estimated using the median

(Table C.1). In fact, the estimated α using the median is 0.342 and is included in the

95% confidence interval of α̃, implying that we cannot reject the hypothesis that the two

estimates are equal, which gives credence to the model and the estimation approach. For

the analysis, I use the median estimate of α which is more precisely estimated than α̃ and

relies on less assumptions than the fixed-effects estimator.
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D Results and Inference

Table D.1 presents results from re-estimating the model in subsamples, which are used to

generate Table 3 in the text. There are several common patterns across subsamples. The

capital share is less than half, the optimal debt share is more than half, the TFP loss from

the financial productivity wedge is approximately 2% and the compensated marginal loss

has similar magnitude to the inframarginal loss.

Table D.1: Estimates from subsamples

TFP loss from τAF in %
Market definition α γ Inframarginal Compens. marginal Obs.

(1) Baseline sample 0.342 (0.002) 0.589 (0.02) 2.0 (0.24) 2.1 (0.32) 43,389
(2) France and Germany 0.302 (0.002) 0.530 (0.03) 1.8 (0.25) 1.7 (0.27) 19,930
(3) France 0.303 (0.003) 0.541 (0.05) 1.8 (0.28) 1.8 (0.30) 8,939
(4) Germany 0.302 (0.003) 0.526 (0.04) 1.7 (0.50) 1.7 (0.54) 10,991
(5) Sweden 0.255 (0.005) 0.459 (0.06) 1.2 (0.56) 1.3 (0.61) 5,438
(6) UK 0.424 (0.003) 0.577 (0.04) 3.3 (0.58) 3.3 (0.92) 18,021

The first row of this table reports results from the sample used throughout this paper, which includes public firms from France,
Germany, Sweden, and the UK. Standard errors (in parentheses) are heteroskedasticity robust, incorporate variation from all
estimation steps, and are calculated using the influence function approach described in Section 5.1.
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D.1 Inference

To obtain the standard errors and confidence intervals of the quantities of interest, I need to

derive the asymptotic distribution of the ratio of two aggregate TFPs, as all results depend

on such a ratio.

Since the ratio of two TFPs is not a well-studied statistic, the first step is to verify that

it can be expressed as a statistical functional so that standard asymptotic inference can

be applied. Given a sample X1, . . . , Xn, a statistical functional is a map from an empirical

cumulative distribution function Fn (or the empirical probability measure Pn) to the real

numbers, implying that the functional should not depend directly on the sample size n

but only on the distribution of the data (Fernholz, 1983). For instance, the TFP formula in

equation (7) cannot be expressed as a statistical functional because TFP increases as the

number of firms increases. To see this, note that if we duplicate every observation, the

TFP is larger by a factor of 2
1

η−1 . As a result, as the sample size grows (n → ∞), the TFP

does not converge but goes to infinity, and hence, the asymptotic statistical theory is not

applicable. The ratio of two TFP’s, in contrast, can be written as a statistical functional and

asymptotic theory applies. To see this note that the ratio of two TFP’s can be expressed

only in terms of averages:

Sn =

∑n
j=1

1
n

(
Aj

τAFj
τα̂

Kj

)η−1
 1

η−1+α̂/∑n
j=1

1
n

(
Aj

τAFj

)η−1

τ
1+α̂(η−1)
Kj


α̂

∑n
j=1

1
n

(
Aj

τ′AFj
τ′ α̂Kj

)η−1
 1

η−1+α̂/∑n
j=1

1
n

 Aj
τ′AFj

η−1

τ′
1+α̂(η−1)
Kj


α̂

. (D.1)

Inference on estimator Sn is challenging as it is a function of data and estimated
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parameters α̂, γ̂, and is not a statistic with well-known asymptotic properties. If estimator

Sn depended only on estimated parameters, as in studies where counterfactuals use

simulated data like Fakos (2023), then the standard error of Sn could be calculated using

the delta method. I conduct inference on Sn using the influence function approach, which

is a general framework for conducting inference as it can be applied to settings where

the statistic of interest depends on parameters estimated using any combination of the

GMM, quantile, Maximum Likelihood (MLE), or Simulated Minimum Distance (SMD)

frameworks.

D.1.1 von Mises expansion and the influence function

A large class of estimators can be analyzed using linear approximation around the probabil-

ity measure, which admits a calculus of estimators that allows for building the asymptotic

distribution of complicated multi-step estimators from a sequence of simple asymptotic

distributions. Such estimators are often called asymptotically linear (Newey and McFad-

den, 1994; Tsiatis, 2006). They can be expressed as statistical functionals that map the

sample probability measure Pn into some space (a finite-dimensional Euclidean space

for our purposes). The regular versions of GMM, SMD, MLE, quantiles, and smooth

functions of means like Sn are such estimators. Below, I use notation close to (Van der

Vaart, 1998, ch. 20) whose exposition I follow closely. Let φ(Pn) be an asymptotically

linear estimator, P the true probability distribution, and let φ be Hadamard differentiable

at P. Let φ′P(
√

n[Pn − P]) be the derivative of φ using a perturbation in the direction of
√

n[Pn − P]. Then:

φ(Pn)− φ(P) ≈ 1√
n

φ′P(
√

n[Pn − P]) =
1√
n

φ′P(Gn), (D.2)
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which is called a von Mises expansion and can be used to study the asymptotic properties

of the estimator φ. To see this, note that if we multiply both sides of equation (D.3) by
√

n,

the left-hand side has the asymptotic distribution of the estimator. Since the derivative

is a linear operator we have that φ′P(
√

n[Pn − P]) =
√

nφ′P(Pn − P). Substituting this

expression into equation (D.2) we have that

√
n[φ(Pn)− φ(P)] ≈

√
nφ′P(Pn − P). (D.3)

The above equation implies that to study the asymptotic properties of the estimator φ, we

need only analyze the asymptotic behavior of its derivative φ′P. From the definition of

Hadamard differentiability (Van der Vaart, 1998, ch. 20), φ is Hadamard differentiable at P

if there exists a continuous, linear map φ′P(h̃) such that

∥∥∥∥∥φ(P + εh̃ε)− φ(P)
ε

− φ′P(h̃)

∥∥∥∥∥→ 0, ε ↓ 0, (D.4)

for all h̃ε → h̃ in a neighborhood of h̃ where φ is well-defined. In this case, h̃ε = Pn − P,

and Hadamard differentiability guarantees that the limit of φ′P as n→ ∞ is well defined

even if the direction of approach is not fixed as Pn − P changes with n, since it depends

on the empirical measure Pn. By substituting h̃ε = Pn − P into (D.4) we obtain a more

informative expression

∥∥∥∥φ[(1− ε)P + εPn]− φ(P)
ε

− φ′P(Pn − P)
∥∥∥∥→ 0, ε ↓ 0, Pn → P, (D.5)

for all Pn where φ[(1− ε)P + εPn] is well-defined. We expect that in most cases φ[(1−

ε)P + εPn] is well defined for any empirical measure Pn when ε ∈ (0, 1).
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Chain rule and the delta method. An advantage of Hadamard differentiability is that

the differentiation operations in Euclidean spaces (RN) like the chain rule, still apply. For

example, if an estimator θ is a function of another estimator φ(Pn) such that θ = h(φ(Pn))

and h is Hadamard differentiable then θ′P(Pn − P) = h′(φ(P))φ′P(Pn − P). This chain rule

leads to the functional delta method (Van der Vaart, 1998, §20.8), which is the extension

of the delta method to estimators with infinite-dimensional parameters like an empirical

distribution. Even though the estimator used in this paper is finite-dimensional, von

Mises calculus can simplify the derivation of the asymptotic distribution of Sn. Hadamard

differentiation in RN is equivalent to the definition of a derivative of a function from RN to

R (see van der Vaart and Wellner, 1996, ch. 3.9). A sufficient condition for differentiability

in RN is that the function has continuous partial derivatives that can easily be verified for

our estimator Sn. For example, the partial derivatives ∂Sn/∂α̂ and ∂Sn/∂γ̂ exist and are

continuous.

I can express estimator S as a function of the median α̂ and GMM coefficients character-

izing γ̂, and several means, which I denote µ.

S(P) = H(µ(P), α(P), γ(P, α(P))). (D.6)

In (D.6) the dependence of the estimator γ on the first stage estimate α is explicit. Here,

I have suppressed the partial derivatives with respect to the yearly demeaning of the

distortions for the sake of brevity. Regarding the influence function of yearly means, see

further in this section.
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By the mean-value theorem, we can express S as a linear function of its arguments

H(µ(Pn), α(Pn), γ(Pn, α(Pn)))− H(µ(P), α(P), γ(P, α(P))) =

+
∂H
∂µ

(µ̄, ᾱ, γ̄)[µ(Pn)− µ(P)]

+
∂H
∂α

(µ̄, ᾱ, γ̄)[α(Pn)− α(P)]

+
∂H
∂γ

(µ̄, ᾱ, γ̄)[γ(Pn, α(Pn))− γ(P, α(P))]

(D.7)

For some point (µ̄, ᾱ, γ̄) between (µ(P), α(P), γ(P)) and (µ(Pn), α(Pn), γ(Pn)). Since the

latter point converges to the former, (µ̄, ᾱ, γ̄) also converges to both points as n→ ∞, and

all three points are interchangeable in the continuous partial derivatives above. We can

further expand the last term using the mean-value theorem to explicitly account for the

effect of the first stage estimation of α on γ.

γ(Pn, α(Pn))− γ(P, α(P)) =

= γ(Pn, α(Pn))− γ(Pn, α(P)) + γ(Pn, α(P))− γ(P, α(P)) =

= γ(Pn, α(P))− γ(P, α(P)) +
∂γ

∂α
(Pn, α∗)[α(Pn)− α(P)]

(D.8)

for some point α∗ between α(P) and α(Pn). Since α∗ → α(P), and (µ̄, ᾱ, γ̄)→ (µ(P), α(P), γ(P)),

we can substitute expression (D.8) for γ(P, α(P))− γ(Pn, α(Pn)) in equation (D.7) to study

the asymptotic behavior of H.

To apply the von Mises expansion to S, we need to check whether it is Hadamard

differentiable with respect to the P measure, where we can use the chain rule. The

estimator α is Hadamard differentiable as a quantile (Van der Vaart, 1998, corollary 21.5).

The estimator γ is also Hadamard differentiable as a continuously differentiable function

of GMM estimator coefficients. The estimator γ depends on α through the construction of

Ã, which is a continuous differentiable function of α. The formula Sn depends on averages
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µ which are Hadamard differentiable estimators because they are linear functions of the

probability measure (the von Mises expansion of means is exact, not approximate Van der

Vaart, 1998, example 20.2). Therefore, using the von Mises expansion of each component

of S and abusing the partial derivative notation to refer to the Hadamard derivative of

each argument of H with respect to the probability measure, we have

S(Pn)− S(P) =
∂H
∂µ

∂µ

∂Pn
(Pn − P)

+
∂H
∂γ

[
∂γ

∂Pn
(Pn − P) +

∂γ

∂α

∂α

∂Pn
(Pn − P)

]
+

∂H
∂α

∂α

∂Pn
(Pn − P).

(D.9)

The von Mises expansion (D.9) is often used to construct efficient first step estimators (see

Robins et al., 2009), but here I use it to derive the asymptotic variance of Sn. To study the

asymptotic properties of an estimator φ using the von Mises expansion, we need to study

the limit φ̃P = limn→∞ φ′P(Pn − P) of the derivative.

The influence function. While the derivative in the von Mises expansion helps to break

down the estimator to a sum of its components, it does not help derive an estimator of the

asymptotic variance from the sample. To obtain a formula for the estimator’s variance, we

would like to express φ̃P as an expectation so that we can approximate it by an average

in finite samples. Expressing φ̃P in terms of an expectation is possible since the Riesz

representation theorem establishes that a linear functional (such as a derivative) can be

expressed as an integral of a measurable function (Hines et al., 2022). More specifically,

there exists a measurable function ψ(x) such that

φ̃P =
∫

ψ(x)dP(x). (D.10)
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The function ψ(x) is called the influence function (Hines et al., 2022; Ichimura and Newey,

2022; Fisher and Kennedy, 2021; Van der Vaart, 1998). The sample analogue of (D.10) is

1
n ∑i ψ(xi) which converges to φ̃P. Therefore, the asymptotic properties of estimator φ can

be studied by studying the influence function since

φ(Pn)− φ(P) =
∫

ψ(x)dP(x) + o(‖Pn − P‖) = 1
n

n

∑
i=1

ψ(xi) + op(1) (D.11)

More specifically, to study the asymptotic properties of φ, we need to study the average

1
n ∑n

i=1 ψ(xi), and asymptotic theory for averages is straightforward. The asymptotic

variance of
√

n[φ(Pn)− φ(P)] is the asymptotic variance of 1√
n ∑n

i=1 ψ(xi), which can be

estimated by ÂsyVar = 1
n ∑n

i=1 ψ(xi)ψ
′(xi). The standard errors are

√
diag(ÂsyVar)

n .

Calculating the influence function (the chain rule for the influence function). Formu-

las for the influence function of the estimators GMM, SMD, MLE, and quantiles are avail-

able (see Newey and McFadden, 1994; Tsiatis, 2006). We can construct the influence func-

tion of S from the influence function of the mean, which is x− E(x). If a statistic is a func-

tion of a mean, then the influence function can be derived using the chain rule. To see that

let θ = h(φ(Pn)). Then θ′P = h′(φ(P))φ′P = h′(φ(P))
∫

ψ(x)dP(x) =
∫

h′(φ(P))ψ(x)dP(x).

Therefore the influence function φθ of θ is h′(φ(P))ψ(x). Thus, the influence function of S

can be derived by successive applications of the chain rule.

Approximating the influence function. The influence function at each point x can also

be calculated as the value of the Hadamard derivative at the direction ε(δx − P), where

δx represents the Dirac delta: a probability measure with all the mass concentrated at x.

This directional derivative is the Gateaux derivative, which is guaranteed to exist since φ
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is Hadamard differentiable and is defined as

ψ(x) = lim
ε↓0

φ(P + ε[δx − P])− φ(P)
ε

, ε ∈ (0, 1) (D.12)

ψ(x) = lim
ε↓0

φ([1− ε]P + εδx)− φ(P)
ε

, ε ∈ (0, 1) (D.13)

The Gateaux derivative in this direction resembles the partial derivative in RN (see

Kennedy, 2016; Ichimura and Newey, 2022; Kennedy, 2022). The advantage of the Gateaux

derivative at x is that it is a limit to a difference between two numbers which can be

approximated numerically for a wide class of statistics.

Approximating the influence function of the mean. To estimate the asymptotic dis-

tribution of the mean µ, we need the sample analogue of ψµ(x) which for the mean is

ψµn(xi) = xi − (1/n)∑i(xi). It turns out that the influence function ψµn(xi) at an obser-

vation xi is equivalent to the Gateaux derivative in expression (D.13) evaluated at the

empirical measure Pn instead of the unknown true measure P. To see this, note that
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ψµn(xi) = lim
ε↓0

µ(Pn + ε[δxi −Pn])− µ(Pn)

ε
, ε ∈ (0, 1] (D.14)

= lim
ε↓0

µ([1− ε]Pn + εδxi)− µ(Pn)

ε
(D.15)

= lim
ε↓0

∑n
j=1

[
(1− ε) 1

n xj + εxi1{j = i}
]
−∑n

j=1
1
n xj

ε
(D.16)

= lim
ε↓0

εxi + (1− ε)∑n
j=1

1
n xj −∑n

j=1
1
n xj

ε
(D.17)

= lim
ε↓0

εxi − ε ∑n
j=1 Pjxj

ε
= (D.18)

ε(xi −∑n
j=1

1
n xj)

ε
= xi −

n

∑
i=1

1
n

xj, ε ∈ (0, 1] (D.19)

⇒ µ(Pn + ε[δxi −Pn])− µ(Pn) = εψµn(xi), ∀ε ∈ [0, 1] (D.20)

Approximating the influence function of functions of the mean. We can derive the

influence function of h(µ) using the chain rule ψh(µ)(x) = h′(µ)ψµ(x). And its sample

analogue is ψh(µn)(xi) = h′(µn)ψµn(xi). By the definition of the derivative h′ we have

h′(µn)ψµn(xi) = lim
t→0

h(µn + t)− h(µn)

t
(D.21)

For every t close to 0, and ψµn(xi) 6= 0 there exists an ε ∈ (0, 1) such that |t| = ε|ψµn(xi)|.

Since ψµn(xi) is finite, as ε ↓ 0, t→ 0. Therefore,

lim
ε↓0

h(µn + εψµn(xi))− h(µn)

εψµn(xi)
= h′(µn), ε ∈ (0, 1], ψµn(xi) 6= 0 (D.22)

⇒ lim
ε↓0

h(µn + εψµn(xi))− h(µn)

εψµn(xi)
ψµn(xi) = h′(µn)ψµn(xi) = ψh(µn)(xi) (D.23)
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Therefore,

ψh(µn)(xi) = lim
ε↓0

h(µn + εψµn(xi))− h(µn)

εψµn(xi)
ψµn(xi), ε ∈ (0, 1], ψµn(xi) 6= 0 (D.24)

= lim
ε↓0

h(µn + εψµn(xi))− h(µn)

ε
(D.25)

= lim
ε↓0

h(µ(Pn) + εψµn(xi))− h(µ(Pn))

ε
(D.26)

(D.20)
= lim

ε↓0

h(µ(Pn) + µ(Pn + ε[δxi −Pn])− µ(Pn))− h(µ(Pn))n)
ε

(D.27)

= lim
ε↓0

h(µ(Pn + ε[δxi −Pn]))− h(µ(Pn))

ε
(D.28)

= lim
ε↓0

h(µ([1− ε]Pn + εδxi))− h(µ(Pn))

ε
, ε ∈ (0, 1], ψµn(xi) 6= 0 (D.29)

If ψµn(xi) = 0, then ψµn(xi) limε↓0
h(µ([1−ε]Pn+εδxi ))−h(µ(Pn))

ε = 0 = h′(µn)ψµn(xi) =

ψh(µn)(xi), ε ∈ (0, 1], since h′(µn) is finite and µ[1 − ε]Pn + εδxi) → Pn and µ(Pn) is

continuous with respect to Pn as a linear function. Therefore

ψh(µn)(xi) = lim
ε↓0

h(µ([1− ε]Pn + εδxi))− h(µ(Pn))

ε
, ε ∈ (0, 1] (D.30)

Equation (D.30) implies that the influence function of h(µ(Pn)) is the Gateaux derivative at

the empirical measure Pn in the direction of δx. This representation means that calculating

the sample analog of the influence function does not require any analytical derivations

but can be approximated numerically using finite differences for small enough spacing

ε. Successive approximations of the chain rule imply that the sample analog influence

function of any estimator that is a smooth function of averages (it has continuous partial

derivatives) can be approximated using equation (D.30). Functions of averages is a large

class of estimators that includes misallocation statistics like S and also moments, variance,

standard deviation, and correlation between two random variables.
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Note that (D.30) is an estimator of the influence function. The proof is constructive and

doesn’t require any appeal to empirical process theory. Developing general estimators

of influence functions requires tools from the theory of empirical processes because the

influence function is an infinite dimensional parameter, but such a general approach is

beyond the scope of this paper.

The influence function of yearly averages (time fixed effects) One way is to estimate

the yearly means using a regression with time dummy variables and then obtain the

influence function using the GMM formulas. The time dummy coefficients are parameters,

and then we can use the standard von Mises expansion. The influence function derived

from the GMM formula is

n(X′tXt)
−1Xt

(
xit∗ −∑

i,t∗

1
Nt

Xit∗1{t∗ = t}
)

(D.31)

= nN−1
t 1{t∗ = t}

(
xit∗ −∑

i,t∗

1
Nt

Xit∗1{t∗ = t}
)

(D.32)

Where, Xt is the dummy column for t.

Another approach is to calculate means from subsamples. Let θt denote the estimate of

the expectation of X, θt = (1/Nt)∑i Xit. The influence function of θt is

ψθt(xit̃) =
n
Nt

(xit̃ − (1/Nt)∑i Xi) if t∗ = t

0 if t̃ 6= t
(D.33)

In therms of probabilities, the yearly average estimator is

θt(Pn) =
∑i,t∗ pit∗Xit∗1{t∗ = t}

∑i,t∗ pit∗1{t∗ = t} (D.34)

Therefore, for t∗ 6= t
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θt([1− ε]Pn + εδxit∗ )− θt(Pn)

ε
=

θt(Pn)− θt(Pn)

ε
= 0, t∗ 6= t (D.35)

For t∗ = t

θt([1− ε]Pn + εδxit∗ )− θt(Pn)

ε
=(

εxit∗ + (1− ε)∑i,t∗ pit∗Xit∗1{t∗ = t}
ε + (1− ε)∑i,t∗ pit∗1{t∗ = t} − ∑i,t∗ pit∗Xit∗1{t∗ = t}

∑i,t∗ pit∗1{t∗ = t}

)
/ε =(

εxit∗ + (1− ε)∑i,t∗
1
n Xit∗1{t∗ = t}

ε + (1− ε)∑i,t∗
1
n 1{t∗ = t}

− ∑i,t∗
1
n Xit∗1{t∗ = t}

∑i,t∗
1
n 1{t∗ = t}

)
/ε

=

(
εxit∗ + (1− ε)∑i,t∗

1
n Xit∗1{t∗ = t}

ε + (1− ε)Nt
n

− ∑i,t∗
1
n Xit∗1{t∗ = t}

Nt
n

)
/ε

=

 Nt
n εxit∗ +

Nt
n (1− ε)∑i,t∗

1
n Xit∗1{t∗ = t} −

(
ε + (1− ε)Nt

n

)
∑i,t∗

1
n Xit∗1{t∗ = t}(

ε + (1− ε)Nt
n

)
Nt
n

 /ε

=

 Nt
n εxit∗ − ε ∑i,t∗

1
n Xit∗1{t∗ = t}(

ε + (1− ε)Nt
n

)
Nt
n

 /ε

=

εxit∗ − ε ∑i,t∗
1

Nt
Xit∗1{t∗ = t}(

ε + (1− ε)Nt
n

)
 /ε

=
xit∗ −∑i,t∗

1
Nt

Xit∗1{t∗ = t}(
ε + (1− ε)Nt

n

)
⇒ lim

ε↓0

xit∗ −∑i,t∗
1

Nt
Xit∗1{t∗ = t}(

ε + (1− ε)Nt
n

) =
n
Nt

(
xit∗ −∑

i,t∗

1
Nt

Xit∗1{t∗ = t}
)

(D.36)

The limit in (D.36) is the same formula as the fixed effects regression formula in (D.32).

Therefore, the influence function of yearly means (or any subsample mean) can be approx-

imated numerically by finite differences using the empirical measure Pn.
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Comparison with resampling methods. An alternative approach to calculating the stan-

dard errors of estimator Sn is using resampling methods such as subsampling or boot-

strapping. Note that resampling methods are another approach to perturb the empirical

measure Pn: bootstrap resamples with replacement, so an observation sampled twice has

an empirical probability 2/N instead of 1/N under Pn; subsampling decreases the sample

size so the sampled observations have empirical probability 1/B > 1/N, with B being the

subsample size. For a formal analysis of the bootstrap as a perturbation method see Hong

and Li (2020).

An advantage of the resampling approach versus the analytical influence function

approach is its simplicity: devise a resampling algorithm and re-estimate the model

parameters on different samples. The numerical approximation of the influence function

makes it as simple as resampling without giving up precision (see Section D.1.3 for an

assessment of the precision of the numerical influence function in this dataset).

The hybrid influence function approach. The advantage of the influence function ap-

proach is that it permits using the numerical approximation approach for the estimation

steps that are easy to calculate and the analytical approach for the computationally inten-

sive steps. For example, if an estimation step involves estimating a dynamic model using

SMD (such as Bazdresch et al., 2018) and another a complicated function of means such as

the misallocation statistic Sn, then the influence function for the dynamic parameters can be

calculated using analytical formulas, while the influence function for Sn can be calculated

using the approximate method and then combine the two influence functions to conduct

inference on counterfactuals. In contrast, the bootstrap would require re-estimating the

dynamic model, which is computationally inefficient.

Appendix page 29



D.1.2 Additional influence function formulas

Quantiles. Let p ∈ (0, 1) and the p quantile estimator qp = F−1(p), where F is the

cumulative distribution function. The influence function at an observation xi is (see

Van der Vaart, 1998, corollary 21.5):

ψqp(xi) = −
1{xi ≤ q̂p} − p

f̂ (q̂p)
, (D.37)

where f̂ (q̂p) > 0 is the kernel estimate of the probability density function at q̂p. I estimate

the density using the Epanechnikov kernel with bandwidth equal to h = 0.9∗min{
√

σ̂2,IQR/1.349}
N1/5

which is the default in STATA. The median used to estimate α is a special case of the quan-

tile estimator for p = 0.5.

M-estimators, Z-estimators, GMM A large class of estimators that includes the linear

and non-linear regression take the following form:

1
n

n

∑
i=1

m(xi, θK×1) = 0M×1. (D.38)

These estimator are often called Z-estimators (from zero; see Van der Vaart, 1998; Kosorok,

2008), or M-estimators (Tsiatis, 2006). Many extremum estimators, such as the MLE, the

GMM, Simulate Minimum Distance, also belong to this class through their first-order

optimality conditions. For example, the OLS estimator (such as the within fixed-effects

estimator used for the estimation of γ), can be recast as

1
n

n

∑
i=1

(yi − xiβK×1)εi = 0K×1. (D.39)
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In the just-identified case, where M = K, the influence function of the estimator is (see

Tsiatis, 2006, ch. 3.2).

ψ(xi, θ)1×K = −
(

1
n ∑

i

∂m(xi, θ)

∂θ K×K

)−1

m(xi, θ)K×1 ≡ −(GK×K)
−1m(xi, θ)K×1 (D.40)

In over-identified GMM models, a weighting matrix Ξ is necessary, and these estimators

have the following influence function (see the chapter GMM and Minimum Distance

estimation in Wooldridge, 2002, ch. 14):

ψ(xi, θ)K×1 = −(G′ΞM×MGM×K)
−1G′Ξm(xi, θ)K×1 (D.41)

If the model is just identified then M = K and Ξ = I the influence function becomes

ψ(xi, θ) =− (G′ IGK×K)
−1G′ Im(xi, θ)K×1

=− (G′GK×K)
−1G′m(xi, θ)K×1

G invertible as a square matrix
= G−1G

′−1G′m(xi, θ)K×1

=G−1m(xi, θ)K×1

which is identical to expression (D.40). If Ξ equals the optimal weighting matrix which is

W =

[
1
n ∑

i
m(xi, θ)K×1m(xi, θ)′

]−1

(D.42)

Then the influence function is:

ψ(xi, θ) = −(G′WM×MGM×K)
−1G′Wm(xi, θ)K×1

which matches the formula for the GMM in (Newey and McFadden, 1994, equation 3.6).
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Maximum Likelihood Estimators (MLE). As discussed in (Tsiatis, 2006, ch. 3.2), the

MLE, under regularity conditions, is a special case of a z-estimator, where the moment

condition is the score Sθ of the log likelihood l(xi, θ): m(xi, θ) = Sθ(xi, θ) = ∂l(xi,θ)
∂θ . The

influence function is

ψ(xi, θ) = −
(

1
n

∂2l(xi, θ)

∂θ∂θ′

)−1

Sθ(xi, θ)

, where the first term is the inverse of the expectation of the Hessian, which is the informa-

tion matrix.

D.1.3 Equivalence among the different approaches to inference

This section compares three approaches to inference: the analytical influence function, the

approximate influence function, and the bootstrap. More specifically, I focus on inference

on the three counterfactuals of interest in Table 2 in the text.

I first compare the standard errors of each counterfactual of interest calculated using

the analytical influence function and the bootstrap. The analytical influence function uses

formulas for the influence function of the median estimator, the fixed-effects regression,

and the means in the TFP expression to calculate the standard error of the counterfactual

quantities, containing variation from all estimation stages. It is the approach used to

calculate the standard errors in section 5. The first row of Table D.2 duplicates the standard

errors of Table 2 in the text for the sake of completeness, while the second row of Table

D.2 reports standard errors from 1,000 bootstrap samples, each drawn from the original

sample with replacement. The standard errors calculated using the bootstrap align with

the standard errors from the influence function approach.

Panels B and C of Table D.2 compare the analytical to the numerical influence function

approach. The numerical approach applies only to the last stage of the estimation, which
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Table D.2: Analytical influence, numerical influence, and the bootstrap

Approach to inference Inframarginal Marginal Total
Panel A. Standard error of each quantity above

All stage variation (including from α, γ)

Influence function formula Ψ 0.242 0.315 1.385
Bootstrap (1,000 samples) 0.256 0.323 1.372

Panel B. Last stage variation only (not from α, γ)

Influence function formula Ψ 0.2371 0.3151 1.3761
Numerical influence Ψ̃(ε = 10−9) 0.2371 0.3151 1.3761
Numerical influence Ψ̃(ε = 10−8) 0.2371 0.3151 1.3761
Numerical influence Ψ̃(ε = 10−7) 0.2370 0.3151 1.3760
Numerical influence Ψ̃(ε = 10−6) 0.2368 0.3148 1.3747
Numerical influence Ψ̃(ε = 10−5) 0.2344 0.3118 1.3622

Panel C. Accuracy of the approximate influence vector Ψ̃

MSE[Ψ− Ψ̃(ε = 10−9)] 7*10−9 6*10−9 2*10−7

MSE[Ψ− Ψ̃(ε = 10−8)] 6*10−7 4*10−7 1*10−5

MSE[Ψ− Ψ̃(ε = 10−7)] 4*10−5 6*10−5 1*10−3

MSE[Ψ− Ψ̃(ε = 10−6)] 4*10−3 6*10−3 1*10−1

MSE[Ψ− Ψ̃(ε = 10−5)] 4*10−1 6*10−1 1*10+1

This table presents the assessment of the precision of three approaches (analytical influence function, nu-
merical influence function, and the bootstrap) to calculate standard errors for the quantities of Table 2 in the
text. MSE refers to the distance measure of the mean squared error, which is used to evaluate the degree of
similarity between the analytical and the numerical influence vector. Standard errors are heteroskedasticity
robust. Computations are carried out using the Julia programming language (Bezanson et al., 2017).

is a function of means, so Panel B reports standard errors that take into account variation

only from the last stage of the estimation: the influence function includes only the first

term in expansion (11), ignoring variation from the estimation of α and γ. The first row of

panel B reports the standard errors from the analytical influence function. As expected,

the standard error from the last stage is smaller than the standard error from the variance

of all the stages (first row of panel A). Still, the difference is negligible, indicating that the

bulk of the variation comes from the last stage.

The rest of the rows of panel B report standard errors from the last stage using the

numerical approximation to the influence function. Since the numerical approach is a
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finite difference, it depends on the size of the spacing ε, and I report results for different

magnitudes of spacing. Note that for spacing 10−7 or less, the standard errors from the

numerical influence function are identical to the analytical influence function to three

digits. For spacings 10−6 or 10−5, the standard error’s accuracy deteriorates but negligibly.

Panel C compares the vector of the analytical to the numerical influence function using

the distance measure of mean squared error (MSE). Each vector has a length equal to the

sample size, and the two influence vectors are very close for spacing 10−7 or less. Also

note that a decrease in the spacing of one order of magnitude results in two orders of

magnitude decrease in the MSE, as expected, since the mean squared error converges at

rate ε2. The main takeaway of Table D.2 is that the influence function approach to inference

is precise and admits a numerical approximation that is easy to implement without giving

up precision.
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