
Consistent Estimation of Finite Mixtures : An Application to

Latent Group Panel Structures*
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Abstract

Finite mixtures are often used in econometric analyses to account for unobserved heterogene-

ity. This paper shows that maximizing the likelihood of a finite mixture of parametric densities

leads to inconsistent estimates under weak regularity conditions. The size of the asymptotic

bias is positively correlated with the degree of overlap between the densities within the mixture.

In contrast, I show that maximizing the max-component likelihood function equipped with a

consistent classifier leads to consistency in both estimation and classification as the number of

covariates goes to infinity while leaving group membership completely unrestricted. Extend-

ing the proposed estimator to a fully nonparametric estimation setting is straightforward. The

inconsistency of standard maximum likelihood estimation (MLE) procedures is confirmed via

simulations. Simulation results show that the proposed algorithm generally outperforms stan-

dard MLE procedures in finite samples when all observations are correctly classified. In an

application using latent group panel structures and health administrative data, estimation re-

sults show that the proposed strategy leads to a reduction in out-of-sample prediction error of

around 17.6% compared to the best results obtained from standard MLE procedures.
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1 Introduction

Finite mixtures are extensively used in statistics, computer science, and machine learning for pattern

recognition and unsupervised classification to account for various types of unobserved heterogeneity

(Bishop, 2006; Frühwirth-Schnatter, 2006). Several applications of finite mixtures can also be found

in labor and health economics (Heckman and Singer, 1984; Deb and Trivedi, 1997; Keane and

Wolpin, 1997; Jones et al., 2015). For instance, Deb and Trivedi (1997) use finite mixtures to

distinguish two unobserved, latent types (i.e. the “healthy” and the “ill”) regarding the demand

for medical care and find substantial differences in fitted distributions for each type. Methods to

account for unobserved heterogeneity can reduce bias (Hsiao, 2014), improve inference and forecast

(Boot and Pick, 2018), and also allow for the estimation of heterogeneous treatment effects (Ahn

and Kasahara, 2024).

Conceptually speaking, a finite mixture distribution is a convex combination of a small number

of distinct parametric densities where the combination weights, known as mixing weights, corre-

spond to the proportion of observations that originate from each density in the population. The

resulting density, known as the mixture density, corresponds to a well-defined density that fully de-

scribes the distribution of the observed data. Finite mixtures are related to unsupervised clustering

methods given that each component density within the mixture fully describes its corresponding

group of observations. Finite mixtures are also known to be highly flexible since they can easily

accommodate the presence of covariates and nonlinear models. Estimation of the parameters con-

tained in the mixture density is usually performed using maximum likelihood estimation (MLE)

procedures, including nonparametric MLE (Compiani and Kitamura, 2016).

In this paper, I show that maximizing the likelihood of a mixture density using standard para-

metric MLE methods leads to inconsistent estimates of all parameters in the mixture if the distance

between each component density is finite. The main issue resides in the estimation of the mixing

weights : the MLE of the mixing weights is not well-defined and conventional estimates will not

converge to their true values unless all component densities are infinitely distant from each other.

I am not aware of any estimator of the mixing weights that would be consistent regardless of the

distance between the component densities. The issue is similar to the case of profile maximum likeli-

hood when the nuisance parameters are not consistently estimated, hence leading to an asymptotic

bias in the parameters of interest. The issue is also similar to the incidental parameter problem

initially described by Neyman and Scott (1948) in the sense that the inconsistencies vanish as the

asymptotic distributions of all component densities get further away from each other.

Figure 1 illustrates the problem using a simple mixture model of two normal densities with

different mean values and equal mixing weights/variances. The true mean values are denoted by µ0
1

and µ0
2 on both graphs, while maximum likelihood estimates for the means are denoted by µ∗

1 and

µ∗
2. When the two densities are very close to each other (panel (a)), the mixture is confounded with
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Figure 1: Two mixture distributions of two normal densities with different mean values, equal mixing
weights, and equal variances. The estimates provided by MLE in each case are represented by µ∗

1 and µ∗
2,

whereas the true mean values are represented by µ0
1 and µ0

2.

a single-component normal density unless the true mixing weights, π0
1 and π0

2, are known.1 As a

result, one of the two mixing weights will be very close to unity and its corresponding estimate for

the mean will be approximately equal to the (weighted) average of the true mean values. Panel (b)

of Figure 1 shows that the maximum likelihood estimates of the means (and the mixing weights) will

converge to their true values as the densities get further away from each other. Those statements

are confirmed by simulation results that are presented in Section 4.

The contributions of the paper are twofold. First, I show why the standard MLE of finite

mixtures leads to inconsistent estimates of all parameters in the mixture under weak regularity

conditions.2 By standard MLE of finite mixtures, I refer to procedures that attempt to globally

maximize the mixture likelihood function, as defined in Section 3.1. The well-known expectation-

maximization (EM) algorithm of Dempster et al. (1977) and all Newton-type algorithms (when

applied to the mixture likelihood) fall into this category. The inconsistency proof developed in

this paper is general with respect to the component densities, meaning that it applies to any finite

mixtures regardless of the nature of the component densities.

The second contribution of the paper is to show under which conditions the maximization of a

different objective function, the max-component likelihood (MCL) function, can lead to consistent

estimation of all parameters in the mixture. Similar to Dzemski and Okui (2021), I show that

consistency in estimation can be obtained by maximizing the MCL function provided the use of a

consistent classifier, thus implying that the proportion of misclassified observations goes to zero in

the limit. Efficient estimation of all parameters is also possible under standard regularity conditions

1One could test, for instance, the kurtosis of the empirical distribution to assess the presence of a mixture.
However, such a test is likely to have a low power against the null hypothesis of no mixture in finite samples when
the true mean and variance values are close to each other. For more details on tests for finite mixtures, see Amengual
et al. (2024) and references therein.

2By “all parameters” in the mixture, I always refer to the mixing weights and the set of parameters governing each
density in the mixture. Note also that “components” and “groups” have the same meaning and are interchangeable.
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if all observations are simultaneously classified within their true component as the sample size goes

to infinity (Su et al., 2016). Contrary to the literature on latent group panel structures, the proposed

estimation strategy has the benefit of leaving group membership completely unrestricted over any

dimension of the dataset, as is usually the case in finite mixture models.

I illustrate those two theoretical contributions by comparing the finite-sample performance of

the proposed estimation strategy to standard MLE procedures through the use of the EM algorithm

with both simulated and real-world data. Simulation results confirm the inconsistency of standard

MLE of finite mixtures under finite distance between each component density. Simulation results

also show that maximizing the MCL using the proposed estimation algorithm outperforms the EM

algorithm in terms of estimation error when the mixture features no small-sized component and the

misclassification rate is near (or equal to) zero at the true parameter values. More precisely, those

results show that the mean and variance parameters estimated by each algorithm become more

biased as the misclassification rate goes up. Those estimation errors do not vanish as the sample

size increases, hence confirming the presence of an asymptotic bias when the component densities

are not sufficiently distant from each other. Simulation results also show that no algorithm clearly

outperforms the other as the misclassification rate increases away from zero.

The empirical part of the paper uses the EM algorithm and the proposed estimation algorithm

to model individual healthcare expenditure (HCE) from administrative data over time. Both algo-

rithms use a latent group two-part model (LGTPM) for estimation and identical specification of

each component density. Empirical results show that the proposed algorithm leads to a reduction

in out-of-sample prediction error of 17.6% compared to the best result obtained when using the

EM algorithm, and of 56.6% compared to the single-component two-part model. The proposed

algorithm also allows to recover the true group memberships for almost every observation in the

sample, which can be dynamically modeled in a second step for forecasting purposes.

The remainder of the paper is as follows. Section 2 briefly reviews the related literature. Section

3 shows why maximizing the mixture likelihood leads to inconsistencies under weak regularity

conditions. It also details the proposed estimation strategy that is used to solve the inconsistency

issue. Section 4 presents simulation scenarios and results, confirming the theoretical insights from

the previous section. Section 5 presents the empirical application and the related results, while

Section 6 concludes. All proofs and additional results can be found in the appendices.

2 Related Literature

Finite Mixtures and the EM Algorithm. In practice, finite mixture models are almost al-

ways estimated via the EM algorithm although other numerical optimization algorithms can be

used.3 The EM algorithm consists of the consecutive repetition of an expectation step (i.e. the

3It is important to note that the EM algorithm is not a maximization algorithm per se, but a general strategy
for the maximization of any incomplete-data likelihood function. Indeed, it is possible and often desirable to use a
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E-step) and a maximization step (i.e. the M-step), each conditional on the results obtained from

the previous step. The E-step computes assignment probabilities for each observation and each

component density, whereas the M-step maximizes the likelihood function conditional on the most

recent assignment probabilities. In their seminal paper, Dempster et al. (1977) showed that such

an algorithm never decreases the incomplete-data likelihood function between two consecutive iter-

ations, the mixture likelihood being a special case of the former when the unobserved information

is assumed to have discrete support.

However, the multimodal nature of the mixture likelihood makes it difficult for any optimization

algorithm to find its global maximum, giving rise to various procedures to reduce the probability

of being “stuck” in a local spurious maximum (Celeux, 2019). Moreover, it is acknowledged that

“the sample size [...] has to be very large, before asymptotic theory of maximum likelihood applies”

(McLachlan and Peel, 2000) when applying MLE to the mixture likelihood, especially when the

“component densities are poorly separated” (Redner and Walker, 1984; Aragam and Yang, 2023).

Given that the mixture density is well-defined, it has been claimed that maximizing the mixture

likelihood function will necessarily lead to consistent estimates of all the mixture parameters (Red-

ner and Walker, 1984; Chen, 2017). Nonetheless, the practical difficulties often encountered with

standard MLE of finite mixtures did not cast doubt on its ability to converge to the true parameter

values. The inconsistency shown in Section 3.2 helps to explain why it is frequent to observe such

practical difficulties while maximizing the mixture likelihood function.

The results developed in this paper generalize the conclusion of Kwon and Caramanis (2019) to

any kind of mixture. The authors show that the EM algorithm will converge to the true parameter

values in the context of a mixture of linear regressions if the component densities are sufficiently

distant from each other and if the algorithm is initialized with parameters that are sufficiently

close to the true values. The main contribution of this paper is the development of an estimation

procedure that is able to converge to the true parameter values when the EM algorithm and

standard MLE of finite mixtures cannot.

K-means and the CEM Algorithm. The K-means algorithm is one of the most widely used

clustering algorithms in unsupervised machine learning (Hastie et al., 2009). It can be used to

estimate finite mixture models just as the EM algorithm, but is less flexible than the EM. Moreover,

it is known to yield inconsistent estimates of all parameters in the mixture (Pollard, 1981; Bryant,

1991). The CEM algorithm (for classification EM) is the likelihood generalization of K-means and

is as flexible as the EM, but still leads to inconsistent estimates of the mixture parameters (Bryant

and Williamson, 1978; Celeux and Govaert, 1992). Given that the K-means algorithm corresponds

to the special case of the CEM algorithm when all errors are independent, identically distributed,

and homoskedastic, the rest of the paper will focus on the general, more flexible CEM algorithm.

numerical optimization method at each M-step of the EM algorithm. See Section 5 of this paper and Section 2.4.4 of
Frühwirth-Schnatter (2006) for more details on the subject.
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Contrary to the EM algorithm, the CEM algorithm classifies each observation to the group

that maximizes its corresponding density value. This practical difference leads to a theoretical

difference, which is that the CEM algorithm maximizes the MCL function rather than the mixture

likelihood function. The MCL function is the estimated counterpart of the complete-data likelihood

function, the latter being the likelihood function one would get if all group memberships were known

(Gepperth and Pfülb, 2021). If this is the case, then it is said that the estimator achieves the oracle

property and all estimated parameters are efficient and asymptotically normal as a consequence of

standard, single-component MLE (Su et al., 2016).

Akin to the EM algorithm, it has been shown that the MCL function never decreases between

two consecutive iterations of the CEM algorithm (Bottou and Bengio, 1994). Given that the MCL

function is also multimodal, convergence of the CEM algorithm to the global maximum of the MCL

function is rarely guaranteed. Therefore, similar practical issues are encountered when maximizing

either the mixture likelihood or the MCL function (Samé et al., 2007). It is however worth noting

that global convergence of the estimation algorithm is not very helpful if the global maximum of

the objective function is not located at the true parameter values asymptotically.

Latent Group Panel Structures. Several recent studies in econometrics have used different

variants of the K-means algorithm to account for unobserved heterogeneity in panel data through

the introduction of grouped fixed-effects (GFE) and/or group-specific coefficients (Bonhomme and

Manresa, 2015; Bonhomme et al., 2019, 2022; Okui and Wang, 2021; Lumsdaine et al., 2023; Liu

et al., 2020; Wang et al., 2024). The GFE estimator is closely related to factor models since it

allows time-fixed effects to vary across groups, as in models with interactive fixed effects (Bai,

2009). However, factor models typically assume homogeneity of all the other parameters in the

model, whereas the GFE estimator impose restrictions on group memberships over time or on the

form taken by the unobserved heterogeneity to achieve consistency (Bonhomme and Manresa, 2015;

Okui and Wang, 2021; Bonhomme et al., 2022; Lumsdaine et al., 2023; Wang et al., 2024). The

estimation procedure proposed in this paper completely relaxes those two assumptions without

sacrificing consistency under the “many covariates” asymptotics where the number of covariates p

is allowed to grow at a strictly slower rate than the sample size (Cattaneo et al., 2018b,a).

Instead of employing the K-means algorithm, several authors relied on the LASSO device or on

binary segmentation algorithm for combining unit-level coefficients into group-level coefficients (Su

et al., 2016, 2019; Qian and Su, 2016; Wang et al., 2018, 2019; Wang and Su, 2021). All estimation

strategies presented in this kind of papers impose certain restrictions on group memberships over

time. For instance, in the case of the classifier-LASSO of Su et al. (2016), leaving group membership

completely unrestricted would imply the estimation of NT initial parameters for each time-varying

covariate in the sample, which is impractical in regular panel datasets. This is why this paper focuses

exclusively on regular finite mixtures where no restriction is imposed on group memberships along

any of the dimensions of the dataset.
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3 Maximum Likelihood Estimation of Finite Mixtures

This section is divided into three parts. Section 3.1 presents the general framework that will be

used throughout the paper. The general case considered is panel data when the ratio N/T is

relatively large. Section 3.2 then shows why standard MLE of finite mixtures is inconsistent under

weak regularity conditions. Extension of all inconsistency proofs to cross-sections, with or without

covariates, is straightforward. Finally, Section 3.3 describes the proposed estimation strategy and

shows under which conditions it will lead to consistent estimation of all parameters in the mixture.

3.1 General Setup and Notation

The mixture density function of any observation (yit, xit) ∈ Y × X ⊆ Rp+1 is generally defined as

follows

f(yit|xit; θ, π) :=
G∑

g=1

πgfg(yit|xit; θg) ≡
G∑

g=1

πgfg(yit|xit; θ), (1)

where yit is the observed univariate outcome of individual i at period t with i = 1, ..., N and

t = 1, ..., T , and where xit is a p-sized column vector of strictly exogenous covariates.4 The function

f : Y × X ⊆ Rp+1 → R>0 is the mixture density, defined as a function of θ = (θ1, ..., θg, ..., θG),

the set of component parameters, and of π = (π1, ..., πG), the vector of mixing weights. The set of

mixing weights π correspond to the mixing distribution, where G is the total number of components.

The set of component parameters θ is assumed to lie inside the compact parameter space Θ, whereas

the vector of mixing weights π is assumed to lie within the open space Π = (0, 1)G with the unit

constraint
∑G

g=1 πg = 1. Such a setup is also called a mixture of experts when the vector of mixing

weights π is allowed to depend on the covariates (Bishop, 2006).

Each component density fg(.) corresponds to a well-defined parametric density with respect to

a σ-finite measure, generally denoted by υ(dyit). All component densities do not necessarily belong

to the same family of distributions, although this is common in practice and also facilitates the

estimation of θ. In this paper, the vector of covariates xit is treated as a p-variate random variable

that is drawn from the population. All xit’s are assumed to be independent of each other but are

not necessarily identically distributed (see Assumption 2 for more details). For simplicity, it is also

assumed that Y is independent of the values taken by xit ∈ X , such that
∫
Y fg(yit|xit; θg)υ(dyit) = 1

for any value of g ∈ {1, ..., G} = G and any value of xit ∈ X .

Throughout the paper, the set of true parameter values is denoted by (π0, θ0) and lies in the

interior of the parameter space Π×Θ, where π0 = (π0
1, ..., π

0
g , ..., π

0
G)

⊤ and θ0 = (θ01, ..., θ
0
g , ..., θ

0
G).

Hence, the corresponding true mixture density is denoted by f(yit|xit; θ0, π0) ≡
∑G

g=1 π
0
gfg(yit|xit; θ0g),

4For simplicity, it is assumed for now that all observations are i.i.d., but serial correlation within units is taken
into account in the (asymptotic) distribution of the proposed estimator.
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where the true values (π0, θ0) are unobserved by the econometrician. Any dataset generated

by the true mixture density is denoted by (y,x), where y = (y11, ..., yit, ..., yNT )
⊤, and x =

(x11, ..., xit, ..., xNT )
⊤. Note that the set of true mixing weights π0 needs not be a function of

(a subset of) θ0. Note also that, for convenience, the true number of components G is assumed to

be discrete, finite, and known by the econometrician unless stated otherwise.

In the finite mixture framework, each observation is assumed to originate from only one of the

G densities. The unobserved, true binary assignment (or grouping) variable, denoted by z0itg, is

defined as follows

z0itg :=

1 if and only if yit is generated by fg(·|xit; θ0),

0 otherwise.
(2)

Analogously, the true categorical assignment variable (or group membership), z0it, is defined such

that z0it = g if and only if z0itg = 1. Consequently, the true mixing weight of the gth component

density, π0
g , can be defined as follows

π0
g := plim

N,T→∞

N∑
i=1

T∑
t=1

z0itg
NT

= P[z0itg = 1], (3)

which corresponds to the unconditional probability of any observation to belong to the gth compo-

nent/group. Note that z0itg = 1 for at least one pair (i, t) and for any g ∈ G since π0
g ∈ (0, 1) for

any g ∈ G. Such a definition of π0
g also implies that the value z0itg can be seen as the realization of

the random variable Zit drawn from a univariate multinational distribution with G categories and

vector of probabilities (π0
1, ..., π

0
G) (McLachlan et al., 2019).

The infeasible maximum likelihood estimator where all true group memberships are known is

the estimator that maximizes the complete-data log likelihood function, which is defined as follows

lC(θ, π) :=
N∑
i=1

T∑
t=1

G∑
g=1

z0itg log(πgf(yit|xit; θ)) ≡
N∑
i=1

T∑
t=1

log(πz0it
fz0it

(yit|xit; θ)). (4)

Maximizing lC(θ, π) with respect to θ is similar to maximizing G distinct log likelihood functions

given that all observations are associated with their true component. The vector of mixing weights

may then be estimated using eq.(3). Since z0itg is unobserved, two alternative objective functions

have been used to estimate both π0 and θ0. The first objective function corresponds to the mixture

(log) likelihood function and is defined as follows

l(θ, π) :=
N∑
i=1

T∑
t=1

log(
G∑

g=1

πgfg(yit|xit; θ)), (5)
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whereas the second objective function corresponds to the MCL function

lMC(θ, z) :=
N∑
i=1

T∑
t=1

G∑
g=1

zitg log(fg(yit|xit; θ)), (6)

where z = (z1, ..., zg, ..., zG), with zg = (z11g, ..., zitg, ..., zNTg)
⊤, and where each zitg = {0, 1} with∑G

g=1 zitg = 1. It is easy to see that if zitg = z0itg for all triples (i, t, g), then lMC(θ, z) would be

equal to the infeasible estimator and the oracle property would be achieved. Given that a non-

null proportion of observations are asymptotically misclassified (unless the component densities

are infinitely distant from each other), maximizing the MCL function yields asymptotically biased

estimates of all parameters in the mixture (Celeux and Govaert, 1992; McLachlan et al., 2019).

It is commonly acknowledged that maximizing the mixture likelihood function with respect to

(θ, π) will yield consistent and asymptotically normal estimates of the mixture parameters (Redner

and Walker, 1984; Chen, 2017). The next subsection shows precisely why such a statement is

false unless all component densities are infinitely distant from each other, as is the case when

maximizing lMC(θ, z) with respect to θ when z ̸= z0, where z0 = (z01, ..., zg, ..., z
0
G), with z0g =

(z011g, ..., z
0
itg, ..., z

0
NTg)

⊤, is the set containing all true group memberships.5

3.2 Inconsistency of Standard MLE of Finite Mixtures

This subsection shows why maximizing the mixture likelihood leads to inconsistent estimation of

all parameters in the mixture under weak regularity conditions. Those regularity conditions are

described below in Assumption 1.

Assumption 1.

(i) E0[log(f(yit|xit; θ, π))] < ∞ for any (yit, xit) ∈ Y × X , any θ ∈ Θ, and any π ∈ Π, where

E0[·] stands as the expected value with respect to the true mixture density, and where xit is a

set of strictly exogenous covariates.

(ii) fg(yit|xit; θg) > 0 for any (yit, xit) ∈ Y × X , for any θg ⊂ θ ∈ Θ, and for any g ∈ G, where

all (yit, xit) are i.i.d. conditional on belonging to the same component, with θg = θj ⇔ g = j,

and where all component densities share the same support.

(iii) l(θg) :=
∑N

i=1

∑T
t=1 log(fg(yit|xit; θg)) features a unique maximum with respect to θg for any

g ∈ G and any dataset (y,x).

(iv) l(θ, π) = l(θ′, π′) ⇔ θ = θ′ and π = π′ up to any permutation in the labels of (θ, π) and

(θ′, π′), for any pair (θ, θ′) ∈ Θ×Θ, any pair (π, π′) ∈ Π×Π, and any dataset (y,x).

(v) l(θ, π) features a unique global maximum with respect to (θ, π) for any dataset (y,x).

5Infinite distance between each component density implies that
∫
Y fg(yit|xit; θ

0
g) × fj(yit|xit; θ

0
j )υ(dyit) → 0 as

||θ0g − θ0j || → ∞ for any pair (g, j) ∈ G×G\g, and any xit ∈ X , where || · || denotes the Euclidean norm.
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(vi) f(yit|xit; θ, π) is continuously differentiable with respect to both θ and π for all pairs (yit, xit) ∈
Y × X .

Assumption 1(i) rules out cases where the log likelihood function is not bounded from above.

In practice, this is satisfied provided appropriate constraints on key parameters of all component

densities or by the use of penalized MLE (McLachlan et al., 2019; Tanaka, 2009). Note that this

assumption directly implies that E0,g[log(fg(yit|xit; θg))] < ∞ for all g ∈ G, where E0,g[·] is the

expected value with respect to the true density of the gth component density.

Assumption 1(ii) states that the possible values taken by all component densities are restricted

to be strictly positive on the whole support of each density, where this support is assumed to be

identical across densities. Assumption 1(ii) also assumes that all observations are independently

and identically distributed conditional on belonging to the same component. Such an assumption is

made for simplicity since it implies that each yit generated by the same component density follows

a stationary process over time. Stationarity can however be relaxed at the expense of additional

modeling complexities. Assumption 1(ii) also implies that two different component densities cannot

identical parameter values.

Assumption 1(iii) is standard in most MLE problems. Unimodality of each component density

ensures that the maximization of any single-component likelihood function with respect to θg will

always yield a single set of estimated parameter values, which is located at the global maximum of

the corresponding likelihood function. Assumption 1(iv) is commonly known as generic identifia-

bility of the mixture density. Section 1.3 of Frühwirth-Schnatter (2006) describes the three types of

identification issues that can arise when modeling finite mixtures, including generic identifiability.

The two other identification issues are characterized as “weak” since those issues can be overcome

by the use of appropriate constraints on the component labels and the number of components.

Assumption 1(v) is similar to Assumption 1(iii), but applied to the mixture likelihood function.

It is different from Assumption 1(iii) since it eliminates situations where the empirical mixture

likelihood would have two identical global maxima, but at two different locations in Θ × Π for a

given dataset. Finally, Assumption 1(vi) is not crucial for the rest of the paper, although it greatly

simplifies the proof of Corollary 3.1, which is stated below along with the first lemma of the paper.

Lemma 3.1. Let Assumption 1 hold, and let ζ be any open subset of the space Π that does not

contain the set of true mixing weights, π0. Then the following inequality always holds :

E0[log(f(yit|xit; θ0, π̃))] < E0[log(f(yit|xit; θ0, π0))],

for any π̃ ∈ ζ.

Corollary 3.1. Let Assumption 1 hold, and let ζ be any open subset of the space Π that does not

9



contain the set of true mixing weights, π0. Let also the estimator θ̂NT (π) be defined as follows

θ̂NT (π) := argmax
θ∈Θ

l(θ, π),

such that plimN,T→∞ θ̂NT (π
0) = θ0. Then, for almost every vector π̃ ∈ ζ, we have

plim
N,T→∞

θ̂NT (π̃) ̸= θ0.

Lemma 3.1 and Corollary 3.1 formalize the logic behind the (in)consistency of pseudo maximum

likelihood estimates in the sense of Gong and Samaniego (1981) : for almost every π̃ ̸= π0, the

maximum likelihood estimates θ̂NT (π̃) will not converge in probability to θ0 as the sample size

increases. Although there could exist a finite, countable set A ⊂ ζ such that every πA ∈ A could

satisfy plimN,T→∞ θ̂NT (πA) = θ0, this set is of measure zero under Assumption 1(vi). Analogously,

it can be shown that maximizing the mixture likelihood with respect to π will not converge to π0

for almost every value of θ ̸= θ0. A concrete example of non-convergence of θ when π̃ ̸= π0 is given

in Appendix A.19 using a mixture of two exponential densities.

Therefore, it is important to know whether π converges to π0 or not as the sample size increases.

This depends on the choice of estimator for π conditional on θ = θ0. The next proposition shows

that applying a profile maximum likelihood strategy on the mixture likelihood conditional on θ

leads to a corner solution in terms of π.

Proposition 3.1. Let Assumption 1 hold, and define the mixture log likelihood function as in

eq.(5). Then

π̂θ := argmax
π∈Π

l(θ, π) = eG,

for almost every value of θ ∈ Θ, where eG is G-sized vector with all elements equal to zero, except

for a single element which is equal to one.

Proposition 3.1 shows that the “exact” MLE of π is not well-defined. Instead of maximizing

the profile likelihood, each one of the G mixing weights can be estimated by averaging over the

posterior probability that each observation belongs to each component. For the itth observation,

such a posterior probability is defined as follows (McLachlan and Peel, 2000; Frühwirth-Schnatter,

2006)

τg(yit|xit; θ, π) ≡ τitg(θ, π) :=
πgfg(yit|xit; θg)∑G
l=1 πlfl(yit|xit; θl)

. (7)

The posterior probability τitg(θ, π) comes from the application of Bayes’ rule on P[z0itg = 1|yit, xit, θ]
for a given observation and a given value of g ∈ G. This definition naturally leads to the following
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estimator for the gth mixing weight πg

π̂g(θ) :=
1

NT

N∑
i=1

T∑
t=1

τitg(θ, π̂), (8)

where the presence of π̂g on both sides of the equation is circumvented by the iterative nature of

the estimation algorithm. Redner and Walker (1984) refer to this estimator as the “approximate

MLE” of πg given that it maximizes the conditional expectation of the complete-data log likelihood

(also called the “Q-function”, (Celeux, 2019)) rather than the mixture log likelihood, as is shown

in the next lemma.

Lemma 3.2. Let Assumption 1 hold, and define the conditional expectation of the complete-data

log likelihood as follows

Ez[l
C(θ, π)] :=

N∑
i=1

T∑
t=1

G∑
g=1

τitg(θ, π) log(πgf(yit|xit; θ)),

where τitg(θ, π) is defined as in eq.(7). Then the estimator π̂(θ) = (π̂1(θ), ..., π̂G(θ)) as shown in

eq.(8) maximizes Ez[l
C(θ, π)] conditional on θ and conditional on all posterior probabilities.

Other estimators of the mixing weights are sometimes used in applied studies, but those estima-

tors often require the estimation of an additional set of parameters and the imposition of a specific

relationship between the extra parameters and the mixing weights.6 The main benefit of eq.(8) is

that the mixing weights depend only on θ and on previous estimates of π (or a prior distribution

of π). The main theoretical result of this subsection is stated in Theorem 3.1.

Theorem 3.1. Let Assumption 1 hold, and define π̂g(θ) as in eq.(8). Then

plim
N,T→∞

π̂g(θ
0) ̸= π0

g

for any g ∈ G unless all component densities are infinitely distant from each other.

Corollary 3.2. Let Assumption 1 hold, and define π̂g(θ) and τitg(θ, π) as in eq.(8) and eq.(7)

respectively. Then

plim
N,T→∞

θ̂NT (π̂(θ
0)) = plim

N,T→∞
argmax

θ∈Θ
l(θ, π̂(θ0)) ̸= θ0,

unless all component densities are infinitely distant from each other.

Theorem 3.1 shows that π̂g(θ
0) will not converge to π0

g when all component densities are finitely

distant from each other. Consequently, θ cannot be consistently estimated by maximizing l(θ, π̂(θ0))

6See, for instance, Neelon et al. (2011) and Kasteridis et al. (2022) for alternative estimators of πg in applied
health studies.
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with respect to θ unless all component densities are infinitely distant from each other, as shown in

Corollary 3.2. Therefore, π can be regarded as incidental parameters that will bias the estimation

of θ when they are not consistently estimated. To my knowledge, no estimator of π has been

proven to be consistent under standard regularity conditions when the true group memberships are

unknown unless the proportion of misclassified observations goes to zero in the limit. This latter

avenue is explored in more detail in Section 3.3.

The next two propositions describe some properties of standard MLE of finite mixtures when

the gth estimated mixing weight is defined as follows

π̂g(θ) :=
1

NT

N∑
i=1

T∑
t=1

fg(yit|xit; θg)∑G
l=1 fl(yit|xit; θl)

. (9)

Proposition 3.2. Let Assumption 1 hold. Let also π̂g(θ) be defined as in eq.(9) for any g ∈ G,

and let π0
g = 1/G for any g ∈ G. Then plimN,T→∞ π̂g(θ

0) = π0
g for any g ∈ G.

Proposition 3.3. Let Assumption 1 hold, and let π̂g(θ) be defined as in eq.(9). Then

lim
fg(yit|xit;θ0g)→fj(yit|xit;θ0j )

plim
N,T→∞

π̂g(θ
0) = 1/G

for any pair (g, j) ∈ G×G\g.

Proposition 3.2 shows that the estimated mixing weights will necessarily converge to their true

values if the mixing weights are estimated using eq.(9) and if the true mixing weights are all

equal to 1/G. This case is similar to the one where the prior distribution of the parameters of

interest is identical to their true distribution. However, it occurs too infrequently to be considered

relevant in practice. Nonetheless, if one has good reason to think that all component densities are

of similar size, then using eq.(9) instead of eq.(8) and eq.(7) to estimate π should lead to smaller

bias, especially when the component densities are very close to each other. The intuition behind

both propositions is confirmed by simulations that are described in Section 4.1.1.

3.3 Consistent Estimation of Finite Mixtures

As described in the literature on latent group panel structures, consistent estimation of the pa-

rameters within each component is possible if the estimation procedure correctly classifies all ob-

servations as N,T → ∞ (Su et al., 2016). In this subsection, I present a general strategy for the

consistent estimation of finite mixtures that relies on the availability of a consistent, unsupervised

classification procedure. More precisely, I show that the use of the Mahalanobis distance leads to a

consistent classifier such that, under the additional assumptions stated below, its misclassification

rate goes to (or equals) zero as p → ∞. For brevity, some important assumptions described in

Assumption 1 are not copied below in Assumption 2.
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Assumption 2.

(i) E0[log(
∑G

g=1 zitgfg(yit|xit; θg))] < ∞ for any (yit, xit) ∈ Y × X and any θ ∈ Θ, where xit is a

set of strictly exogenous covariates with at least one continuous covariate.

(ii) fg(y|x; θg) = fj(y|x; θj) ⇔ θg = θj for any dataset (y,x) and any pair (j, g) ∈ G×G.

(iii) fg(yit|xit; θg) is continuously differentiable with respect to θg for all pairs (yit, xit) ∈ Y × X .

(iv) There exists a set of true parameter values ξ0 = (ξ01 , ..., ξ
0
g , ..., ξ

0
G) ∈ Ξ, where Ξ is a compact

parameter space, and a p-variate density, denoted by fg(·|ξg) > 0, that generates xit if and

only if z0itg = 1 for each g ∈ G such that each density fg(·|ξ0g) shares the same p-variate

support, is continuously differentiable with respect to any ξ ∈ Ξ, and such that each fg(xit|ξg)
integrates to unity over X with respect to a σ-finite measure denoted by ν(dxit).

(v) E[xit] = µ0
g = (µ0

g1, ..., µ
0
gp)

⊤ and V ar[xit] = Σ0
g if and only if z0itg = 1 such that (µ0

g,Σ
0
g) ⊆ ξ0g ,

where ||µ0
g||2 < ∞ for any g ∈ G, and where Σ0

g is a p×p positive-definite matrix with diagonal

elements 0 < σ2
g,ii < ∞ and off-diagonal elements 0 < |σg,ij | < σg,iiσg,jj with Cov[xit, xjs] = 0

for any pair (j, s) ̸= (i, t).

(vi) Σ0
j ̸= Σ0

g for any pair (g, j) ∈ G×G\g, and for a nonvanishing proportion of the elements in

each covariance matrix as p → ∞.

Assumption 2(i) is the analog of Assumption 1(i) in the context of the MCL, but also assumes

that at least one of the covariates in xit is continuous. This assumption avoid situations where

P[xit = xjs] > 0 for any (i, t) ̸= (j, s) but can be relaxed in practice without any major practical

implication. Assumption 2(ii) is analogous to Assumption 1(iv) but now expressed at the level

of the components. It implies that the MCL function will be generically identifiable if each θj is

point identified. Contrary to the mixture likelihood, overspecifying the number of components in

the MCL function does not lead to any identification issue. In practice, it is possible to test for the

presence of a “useless” component by testing if θg = θj for any pair (g, j) ∈ G × G\g. This idea

is reinforced by the fact that latent group estimators tend not to mix observations from different

groups when G is overspecified (Liu et al., 2020). Assumption 2(iii) is the component-level analog

of Assumption 1(vi) and is also slightly weaker than Assumption 1(vi).

Assumption 2(iv) states that xit is generated by a multivariate density that varies according to

the value of z0it. Assumption 2(v) implies that no covariate is perfectly collinear with any other (set

of) covariate(s) within each group, and that all covariates show minimal variation within groups

(apart from the group intercepts). This assumption is similar to the classical full-rank assumption in

linear regression but at the true group level. It can be relaxed to allow groups to depend exclusively

on one or several covariate(s) taking a specific value or values, but care must be taken in order to

avoid perfect collinearity during the estimation process. The same assumption also implies that

the vector xit is i.i.d. conditional on the true group membership, which could be relaxed at the

expense of tedious theoretical complications (see the proof of Corollary 3.3). Finally, Assumption
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2(vi) implies that the proportion of elements that differs between each true covariance matrix Σ0
g

does not go to zero as p → ∞. Those last three assumptions are essential in order to show that the

proposed estimator is consistent.

I now generally define a binary classifier for any observation in the sample.

Definition 1. Let Assumptions 1(ii)-(iii) and 2 hold. Then the binary classifier zitg(θ, ξ) is defined

as follows

zitg(θ, ξ) :=


1 if g = argmax

j∈G
hj(yit, xit|θj , ξj)

0 otherwise,

where hj : Rp+1 → R is a categorizing function (or discriminant function) conditional on (θj , ξj)

and which is continuous with respect to both θj and ξj for any j ∈ G.

Using Definition 1, the bias of any binary classifier zitg(θ, ξ) is defined as follows.

Definition 2. Let Assumptions 1(ii)-(iii) and 2 hold. A binary classifier zitg(θ, ξ) is said to be

unbiased if and only if

argmax
j∈G

E0[hj(yit, xit|θ0j , ξ0j )] = z0it,

for any pair (i, t) and any value of g ∈ G, where z0it = {1, ..., G} is the true group membership

indicator for the itth observation after a suitable permutation in the labels of the groups, and where

E0 denotes the expected value with respect to the true joint density of both yit and xit.

Remark 1. An unbiased binary classifier does not correspond to a binary classifier such that

E0[zitg(θ
0, ξ0)] = E0[argmax

j∈G
hj(yit, xit|θ0j , ξ0j )] = z0itg, which actually corresponds to a consistent

classifier (see Definition 3). Instead, the bias of any classifier refers to the capacity of its discriminant

function to correctly classify any observation after averaging hj(·) over multiple draws.

A consistent classifier is then defined as follows.

Definition 3. A consistent binary classifier is a binary classifier such that

ÊNTp(θ
0, ξ0) :=

N∑
i=1

T∑
t=1

G∑
g=1

1[ẑNTp,it(g)(θ
0, ξ0) ̸= z0itg]

2NT
, (10)

≡
N∑
i=1

T∑
t=1

1[ẑNTp,it(θ
0, ξ0) ̸= z0it]

NT

p−→ 0,

as N,T → ∞, where ÊNTp(θ, ξ) is the misclassification rate of any binary classifier ẑNTp,it(g)(θ, ξ)

that is based on a sample of NT observations and p covariates, and where (g) is a permutation

from g ∈ G → j ∈ G that minimizes ÊNTp(θ, ξ) for given values of (θ, ξ).
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Akin to Su et al. (2016), I now define a binary classifier that is uniformly consistent.

Definition 4. A uniformly consistent binary classifier is a binary classifier such that

Êu
NTp(θ

0, ξ0) := P[∪N
i=1 ∪T

t=1 ∪G
g=1(ẑNTp,it(g)(θ

0, ξ0) ̸= z0itg)] → 0,

as N,T → ∞, where Êu
NTp(θ, ξ) is the probability of misclassifying at least one observation in

the sample, ẑNTp,it(g)(θ, ξ) is defined as in Definition 3, and where (g) is a permutation from

g ∈ G → j ∈ G that minimizes Êu
NTp(θ, ξ) for given values of (θ, ξ).

Remark 2. A uniformly consistent classifier is a classifier that groups every observation into

its true group with probability approaching 1 as N,T → ∞. Such a classifier is “consistent”

uniformly over all possible realizations of (yit, xit). Note also that a uniformly consistent classifier

will not necessarily yield a misclassification rate that is equal to zero in finite samples. Analogously,

a misclassification rate equal to zero does not imply that the employed classifier is uniformly

consistent. If the rate of convergence of a uniformly consistent classifier is (very) fast, then it

should lead to a value of ÊNTp(θ, ξ) that is (very) close to zero when θ and ξ are close or equal to

their true values.

Unlike Su et al. (2016), the latter definition does not distinguish between Type I and Type II er-

rors since they can be controlled simultaneously in finite samples by minimizing the misclassification

rate if no observation is left unclassified, which is implicit throughout the paper.

I now define three different binary classifiers : the joint density classifier, the Euclidean distance

classifier, and the Mahalanobis distance classifier.

Definition 5. Let Assumptions 1(ii)-(iii) and 2 hold, and define zitg(θ, ξ) as in Definition 1.

(a) The joint density classifier zDitg(θ, ξ) is defined such that

zDitg(θ, ξ) : hj(yit, xit|θj , ξj) = fj(yit, xit|θj , ξj),

where fj(yit, xit|θj , ξj) = fj(yit|xit; θj)fj(xit|ξj) represents the joint density of the itth observation

as a function of (θj , ξj).

(b) The Euclidean distance classifier zEitg(µ) is defined such that

zEitg(µ) : hj(yit, xit|θj , ξj) = −||xit − µj ||2.

(c) The Mahalanobis distance classifier zMitg(µ,Σ) is defined such that

zMitg(µ,Σ) : hj(yit, xit|θj , ξj) = −d2(xit,µj ,Σj),

where d2(xit,µj ,Σj) = (xit − µj)
⊤Σ−1

j (xit − µj) denotes the squared Mahalanobis distance.
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Using the joint density of the outcome and the covariates as a classifier is a natural choice when

distributional assumptions are made on the joint density. This classifier is known as the Bayes’

classification rule and reduces to a naive Bayes’ classifier (with prior equals to fj(yit|xit; θj)) when
all covariance terms in Σ = (Σ1, ...,ΣG) are assumed to be null (Hastie et al., 2009). The Euclidean

distance classifier is a nonparametric classifier that relies on the first moment of xit and is the one

normally used with K-means. Finally, the Mahalanobis distance classifier is also nonparametric

but relies on the first and the second moments of xit to classify each observation. Several other

classifiers exist and are used in practice, but those three classifiers are the more prevalent in the

literature on unsupervised classification and clustering techniques.

The next two lemmas show that all three classifiers are unbiased under specific conditions.

Lemma 3.3. Let Assumptions 1(ii)-(iii) and 2 hold. Then all three classifiers defined in Definition

5 are unbiased if µ0
j = µ0

g ⇔ j = g.

Lemma 3.4. Let Assumptions 1(ii)-(iii) and 2 hold. Then the Mahalanobis distance classifier is

unbiased if p is sufficiently large and if Σg ̸= Σj for any pair (g, j) ∈ G×G\g, and for a sufficiently

large proportion of the elements in each covariance matrix.

Lemma 3.4 shows that the Mahalanobis distance classifier is unbiased even if the vectors of true

mean values are identical across components. This makes this classifier more robust to cases where

the component densities feature strong overlap between each other compared to the Euclidean dis-

tance classifier. Although the joint density classifier is unbiased if µ0
j = µ0

g ⇔ j = g, it is generally

not possible to show that it is (uniformly) consistent without specifying the distribution of the joint

density. On the other hand, Theorem 3.2 and Corollary 3.3 show that the Mahalanobis distance

classifier is uniformly consistent under Assumption 2 provided that the number of covariates grows

at a faster rate than the number of observations for a fixed value of G.

Theorem 3.2. Let Assumptions 1(ii)-(iii) and 2 hold, and define the Mahalanobis distance clas-

sifier as in Definition 5(c) with a fixed number of groups G. Then

P[∪G
g=1(z

M
it(g)(µ

0,Σ0) ̸= z0itg)] = Op(p
−1),

for any pair (i, t), where (g) corresponds to a suitable permutation in the labels of the groups.

Theorem 3.3. Let Assumptions 1(ii)-(iii) and 2 hold, and define the Mahalanobis distance clas-

sifier as in Definition 5(c). Then zMitg(µ
0,Σ0) is a uniformly consistent classifier if the number of

covariates p increases at a strictly higher-order rate than the rate at which the number of groups G

increases relative to the sample size.

Corollary 3.3. Let Assumptions 1(ii)-(iii) and 2 hold, and define the Mahalanobis distance clas-

sifier as in Definition 5(c) with a fixed number of groups G. Then zMitg(µ
0,Σ0) is a uniformly

consistent classifier if p/NT → ∞ as N,T, p → ∞.
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Corollary 3.4. Let Assumptions 1(ii)-(iii) and 2 hold, and define the Mahalanobis distance classi-

fier as in Definition 5(c). Then zMitg(µ
0,Σ0) is a consistent classifier if p/G → ∞ as N,T, p,G → ∞.

Corollary 3.3 implies that the Mahalanobis distance classifier may not be uniformly consistent if

the number of covariates increases at a slower rate than the sample size. This is problematic since

the estimation of each θg cannot be performed using MLE procedures or ordinary least squares

(OLS) in this case. On the other hand, Corollary 3.4 shows that the misclassification rate given by

the Mahalanobis distance classifier will go to zero as p → ∞ if the number of covariates grows at

a strictly faster rate than the number of groups, regardless from the rate at which the sample size

increases. As emphasized by Dzemski and Okui (2021), uniform consistency of a classifier is not

necessary to obtain consistent estimates of θ and ξ when estimating latent group panel structures

(or finite mixtures). Such a statement is confirmed below by Theorem 3.5. Note also that (strict)

exogeneity of xit is not necessary for the last two theorems and the last two corollaries to be true.

Contrary to the Mahalanobis distance classifier, the next theorem and corollary show that the

Euclidean distance classifier will always misclassify a non-null proportion of the observations in

the sample as N,T, p → ∞ if the distance between each vector µ0
j does not become sufficiently

large as p tends to infinity. Consequently, the Euclidean distance classifier cannot be consistent in

general, which is shown below in Corollary 3.5. This conclusion reinforces the idea according to

which the K-means algorithm does not converge to the true values if no restriction is imposed on

group memberships over (at least) one dimension of the dataset (Pollard, 1981; Bryant, 1991).

Theorem 3.4. Let Assumptions 1(ii)-(iii) and 2 hold, and define the Euclidean distance classifier

as in Definition 5(b) with a fixed number of groups G. Then

P[∪G
g=1(z

E
it(g)(µ

0) ̸= z0itg)]
p−→ cit as p → ∞

for any pair (i, t), where cit ≥ 0 is random.

Corollary 3.5. Let Assumptions 1(ii)-(iii) and 2 hold, and define the Euclidean distance classifier

as in Definition 5(b) with a fixed number of groups G. Then zEitg(µ
0) is not a consistent classifier

unless the ratio
||µ0

j−µ0
g ||2

tr(Σ0
g)

→ ∞ as p → ∞ for any pair (g, j) ∈ G × G\g, where tr(·) denotes the

trace operator.

Remark 3. When all covariates in xit are normally distributed, the joint density classifier can be

expressed as a function of the Mahalanobis distance given that the squared Mahalanobis distance

is embedded into the exponential part of the multivariate normal density. In this case, the joint

density classifier is both unbiased and consistent under the same conditions as the ones stated in

Lemma 3.4 and Corollary 3.4. Simulations confirm that the joint density classifier leads to a smaller

misclassification rate in finite samples than the Mahalanobis distance classifier when the normality

assumption is satisfied (results not shown).
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Algorithm 1 The “consistent” CEM algorithm

Let zitg(θ, ξ) be any binary classifier that is consistent, as described in Definition 3, as N,T, p → ∞.

Given initial/previous values (θ̂(k), ξ̂(k)) (the NT subscript is dropped for brevity), the “consistent”

CEM algorithm consists of the consecutive repetition of the two following steps until convergence :

1. The Classification Step (the CE-step) :

Compute zitg(θ̂
(k), ξ̂(k)) for all pairs (i, t) and all values of g ∈ G.

2. The Maximization Step (the M-step) :

(a) Compute θ̂(k+1) = argmaxθ∈Θ
∑N

i=1

∑T
t=1

∑G
g=1 zitg(θ

(k), ξ(k)) log(fg(yit|xit, θ)).

(b) Compute ξ̂(k+1) = argmaxξ∈Ξ
∑N

i=1

∑T
t=1

∑G
g=1 zitg(θ

(k), ξ(k)) log(fg(xit|ξ)) or estimate

consistently µ̂(k+1) and Σ̂(k+1) conditional on zitg(µ̂
(k), Σ̂(k)) depending on the chosen

classifier.

If the normality assumption does not hold, the Mahalanobis distance classifier offers a very good

nonparametric alternative to the joint density classifier. Extending the use of the Mahalanobis

distance classifier to a consistent, fully nonparametric estimation strategy is straightforward via

the use of a kernel regression estimator for the outcome at each M-step of the “consistent” CEM

algorithm (see Algorithm 1). Quotation marks are used to name the algorithm since it is not

different from the original CEM algorithm, except that the employed classifier is consistent. This is

why, from now on, mention of the CEM algorithm will always refer to its consistent version, when

possible.

We can now derive the asymptotic distribution of the estimates given by Algorithm 1 under the

following assumptions.

Assumption 3.

(i) zitg(θ
0, ξ0) is a classifier that is unbiased and consistent as N,T, p → ∞.

(ii) plimN,T→∞ argmaxθ∈Θ lMC(θ, z0) = θ0.

(iii) limN,T→∞ n0
g = ∞ for all g ∈ G, where n0

g =
∑N

i=1

∑T
t=1 z

0
itg.

(iv) Each component density fg(yit|xit; θ) is twice continuously differentiable with respect to θ for

all pairs (yit, xit) ∈ Y × X .

(v) Ig := E0

[{
sig(θ

0, ξ0)
}{

sig(θ
0, ξ0)

}⊤]
< ∞, where sig(θ, ξ) =

∑T
t=1 zitg(θ, ξ)

∂
∂θg

log fg(yit|xit; θg),

with n̄−1
g (θ0, ξ0)

∑N
i=1

{
sig(θ

0, ξ0)
}{

sig(θ
0, ξ0)

}⊤ p−→ Ig and n̄g(θ, ξ) =
1
T

∑N
i=1

∑T
t=1 zitg(θ, ξ)

for each g ∈ G, and where all observations across units and across groups are assumed to be

independent from each other.

(vi) H(θg) := E0[
∂

∂θg
sig(θ, ξ)] is the expected Hessian matrix of the gth group, where Hg ≡ H(θ0g)

is finite and non-singular for all g ∈ G, and where n̄−1
g (θ, ξ)

∑N
i=1

∂
∂θg

sig(θ, ξ)
p−→ H(θg) uni-

formly in θg in an open neighbourhood of θ0g for all g ∈ G as N,T → ∞.
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Assumption 3(i) and Assumption 3(ii) are necessary to ensure that the algorithm leads to con-

sistent estimates of θ (and ξ). Those assumptions can be adapted to the case of fixed-T asymptotics

by using a bias-corrected estimator if the component densities are plagued by the incidental param-

eter problem (Hahn and Newey, 2004). Assumption 3(iii) implies that the number of observations

within each group goes to infinity as the sample size increases. Assumption 3(iv) is standard in

most MLE problems and is necessary to compute the Hessian matrix for each group. Finally, As-

sumption 3(v) and Assumption 3(vi) respectively describe the information and Hessian matrices of

the estimator for each g ∈ G. Note that the score function sig(θ, ξ) is computed at the unit level to

account for serial correlation within each unit-group. Independence of the same unit across groups

is assumed for simplicity since cross-group correlation would require the estimation of additional

covariance parameters.

The next two theorems follow from Assumption 3 and Algorithm 1, and can be adapted to

cross-sections by modifying the score function appropriately. Theorem 3.5 shows that the CEM

algorithm will yield consistent estimates of all parameters in the mixture after a finite number of

iterations provided appropriate initial parameter values, and a sufficiently large sample size and

number of covariates. If those conditions are satisfied, Theorem 3.6 shows that each estimated

component parameters θ̂
(k)
g will be normally distributed asymptotically.

Theorem 3.5. Let Assumptions 1(ii)-(iii), 2 and 3 hold. Given a fixed number of groups G, initial

values (θ(0), ξ(0)) sufficiently close to (θ0, ξ0), and values of (N,T, p) sufficiently large, the CEM

algorithm equipped with a consistent classifier will converge to θ̂(k+1) = θ̂(k) and ξ̂(k+1) = ξ̂(k) such

that (θ̂(k), ξ̂(k))
p−→ (θ0, ξ0) as N,T, p → ∞, where k is a positive, discrete, finite number.

Theorem 3.6. Let Assumptions 1(ii)-(iii), 2 and 3 hold, and let (θ̂(k), ξ̂(k))
p−→ (θ0, ξ0) as N,T, p →

∞ as described in Theorem 3.5. Then√
ng(θ̂(k), ξ̂(k))(θ̂

(k)
g − θ0g)

d−→ N (0,H−1
g IgH−1

g ),

as N,T, p → ∞, where ng(θ̂
(k), ξ̂(k)) =

∑N
i=1

∑T
t=1 zitg(θ̂

(k), ξ̂(k)).

Remark 4. The convergence of θ̂(k) is not uniform over π0 since arbitrarily small values of π0
g

can make the convergence of θ̂
(k)
g arbitrarily slow. This is why all convergence results presented

here are “groupwise” under Assumption 3(iii). Note also that the estimates provided by the CEM

algorithm will not be efficient if the employed binary classifier is not uniformly consistent. Devel-

oping an inference procedure that would be uniform over π0 as well as developing a binary classifier

that would be uniformly consistent and reach the semiparametric efficiency bound under weaker

conditions than the ones presented in Theorem 3.3 are left to future research.

As in standard MLE problems, misspecification of the component densities will make the CEM

algorithm converges to a pseudo-true value θ̄ ̸= θ0 that minimizes the Kullback-Leibler divergence
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between the “working” and the true component densities (Gourieroux et al., 1984). However, the

Mahalanobis distance classifier remains consistent under Assumption 1(ii)-(iii) and Assumption 2

even if the component densities are misspecified. This is one of the main benefits of using the

Mahalanobis distance classifier compared to the other ones presented in Definition 5.

Remark 5. Under misspecification of the component densities and/or lack of efficiency, estimation

of Var[θ̂
(k)
g ] can be done using the sample counterpart of the asymptotic variance given in Theorem

3.6. This estimated variance is defined as follows

Var[θ̂(k)g ] =
{
s′g(θ̂

(k), ξ̂(k))
}−1

N∑
i=1

[{
sig(θ̂

(k), ξ̂(k))
}{

sig(θ̂
(k), ξ̂(k))

}⊤
]{

s′g(θ̂
(k), ξ̂(k))

}−1
, (11)

where s′g(θ̂
(k), ξ̂(k)) =

∑N
i=1

∂

∂θ̂
(k)
g

sig(θ̂
(k), ξ̂(k)), and where θ̂(k) and ξ̂(k) are the parameters that

maximize the MCL function after searching for the global maximum of the objective function.

Note also that the expressions for both the asymptotic variance and its estimated counterpart

will not account for the uncertainty in group memberships. This uncertainty can be taken into

account by the use of resampling techniques, such as the bootstrap, or by constructing confidence

sets that account for group memberships (Dzemski and Okui, 2024; Higgins and Jochmans, 2022).

Implementing such methods goes however beyond the scope of this paper.

The next section confirms the theoretical results obtained in this section, which are summarized

as follows : standard MLE of finite mixtures cannot yield consistent estimates of any parameter in

the mixture unless one relies on a consistent classification procedure whose misclassification rate

will go to or be equal to zero as the sample size and the number of covariates tend to infinity.

4 Monte Carlo Simulations

4.1 Data-generating Processes and Estimation Strategies

In this section, I describe the objectives and details of two distinct simulation exercises. The main

objective of the first simulation exercise is to confirm the conclusion of Corollary 3.2. The main

objective of the second simulation exercise is to compare the finite-sample performance of the EM

and the CEM algorithms using a mixture of linear panel data.

4.1.1 Simple Gaussian Mixture Model with no Covariate

This first simulation exercise uses a simple Gaussian mixture of two and three components with

different means and equal variances. The maximization of the mixture likelihood and the max-

component likelihood functions is performed via the EM and the CEM algorithms respectively

for each scenario. Given that this simulation exercise does not employ any covariate, the CEM

algorithm cannot yield consistent estimates, just as the EM algorithm.
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The data-generating process (DGP) of the current simulation exercise is represented by the

following equation

yi = µ0
z0i

+ ϵi, (12)

with µ0 = (µ0
1, ..., µ

0
G) denoting the vector of true mean values, and where ϵi ∼ N(0, 1) for all

i ∈ {1, ..., N}. The following steps explain how the simulation exercise was conducted.

1. 500 observations were drawn from each component of the specified mixture.

2. 500 random initial mean values were drawn from a centered normal distribution with a rel-

atively large variance (≊ 100). Initial values for σ2
ϵ and π0 were set to their true values for

simplicity.

3. Both the EM and CEM algorithms were performed on the simulated dataset using each set

of initial values (with equations (7) and (8) when using the EM).

4. The estimates associated with the highest log likelihood value among the 500 runs for each

algorithm were selected (for all parameters, i.e. µ̂, σ̂2
ϵ and π̂).

5. The initial sample size was increased by a factor r = {2, 10, 20, 50, 200, 1000} in increasing

order while keeping the same random generation seed.

6. Steps 3 to 6 were repeated until r = 1000 with the selected estimates in step 4 as updated

initial values.

The first three steps of the above procedure help to find a local optimum in small samples that is

close to the global maximum of the corresponding likelihood function. Once this local optimum is

found, increasing the sample size should not fundamentally change the structure of this maximum,

so that the estimates associated with the previously identified maximum can be used as starting

values for the next, larger dataset.

If globally maximizing the mixture likelihood yields consistent estimates of the mean parameters,

the distance between the estimated parameters and the true parameter values should diminish as

N increases. The value of the objective function evaluated at the true parameter values should

also become larger than when it is evaluated at any other point as N increases if the estimator is

consistent. If the value of the objective function evaluated at the true parameter values remains

lower than the value of the same objective but evaluated at another point that does not converge

to the true parameter value as N increases, then such a situation is indicative of an inconsistent

estimation strategy. Therefore, such a simulation setup can indicate under which conditions the

MLE will yield (in)consistent estimates of the true parameter values.

To bind the likelihood function from above, a minimum variance of 0.01 was enforced for all

components. The true variance is equal to one for all components while the mean values vary across

simulation scenarios. The maximum number of iterations for each run of the CEM/EM algorithm
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is set to 100,000, and convergence is reached when the change in the average log likelihood value is

smaller than 1E-10 between two consecutive iterations.

4.1.2 Latent Group Linear Panel Structure

I consider here the typical case in latent panel structure where the conditional density of the outcome

value follows a normal distribution for all values of g ∈ G. The main goal of this simulation exercise

is to determine which one of the two algorithms, the EM or the CEM algorithm, yields the best

finite-sample results, in terms of estimation biases, when looking at the estimates that provide the

highest log likelihood value among randomly chosen initial values. The exact DGP for the outcome

variable used for this simulation exercise is described as follows

yit = x⊤itβz0it
+ x̄⊤i γz0it

+ δtz0it
+ αiz0it

+ ϵit, (13)

= Xitβ̃z0it
+ αiz0it

+ ϵit,

where z0it is generated by a categorical distribution where the vector of probabilities follows an

AR(1) process, β̃z0it
= (β⊤

z0it
, γ⊤

z0it
, δ1z0it

, ..., δTz0it
)⊤, Xit = (x⊤it , x̄

⊤
i ,1[t = 1], ....,1[t = T ]), x̄⊤i is a

p-sized row-vector of time-averaged covariates’ values, βz0it
and γz0it

are both p-sized column-vectors

of parameters to be estimated for each value of z0it, αiz0it
∼ N(0, σ2

α,z0it
) where σ2

α,z0it
= z0it ∈ G, and

where δtz0it
is a time-fixed effect that varies arbitrarily with the value of z0it. For simplicity, we have

that ϵit ∼ N(0, σ2
ϵ ) with σ2

ϵ = 1, and also E[ϵitϵls] = 0 for any pair (l, s) ̸= (i, t).

The vector of covariate xit is generated according to

xit ∼ Np(µ
0
z0it
,Σ0

z0it
), (14)

where Np denotes the p-variate normal distribution, and where the ijth entry of Σ0
g is equal to

σg,lj = (a× g)|l−j|, for any pair (l, j) ∈ {1, ..., p} × {1, ..., p},

with a = 0.16 such that all elements in the main diagonal of each Σ0
g is equal to one and all

covariances are bounded from above. Each element in the p-sized vector µ0
g is drawn from a normal

distribution with unit variance and centered at η0g ∈ [−4, 4] to guarantee that µ0
g ̸= µ0

l for any

l ̸= g. The number of covariates, p, and the true parameter values are modified in order to set the

misclassification rate, ÊNTp(θ
0, ξ0) (where θ0 = (β̃, σ2

α, σ
2
ϵ ) and ξ0 = (µ0,Σ0)), at the desired level

for each simulation scenario.

The specification described in equation (13) corresponds to the Mundlak specification where

the time-average values of the covariates plus unit-random effects are used in place of unit-specific

fixed effects. It has been shown that it is equivalent to the least-square dummy variable (LSDV)

estimator (Yang, 2022) but with the advantage of being more computationally tractable since it
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greatly reduces the number of parameters to estimate. Moreover, using the Mundlak approach

allows the non-random part of the unit-fixed effects, x̄⊤i γz0it
, to vary across groups for the same

individual. Such a feature is also feasible with the LSDV estimator, but each unit would have

to remain in the same group for at least two periods to avoid identification issues. The Mundlak

specification also facilitates cross-validation since the non-random part of the unit-fixed effect can

be predicted for any unit in the test set. This framework also avoids the biases generated by the

incidental parameter problem encountered in nonlinear panels with fixed effects.

Estimation is carried out using both the EM and the CEM algorithms, where the EM algorithm

uses equations (7) and (8) at each E-step, whereas the CEM algorithm uses the joint density

classifier as shown in Definition 5. All models are correctly specified, including the use of normal

distributions for the random-unit effects αij , the error term ϵit, and the density of xit. All simulation

scenarios use the same set of 1,000 different, randomly generated, initial values (θ̂(0), ξ̂(0)) to assess

the sensitivity of each algorithm to the same set of initial parameter values. More details regarding

the two estimation procedures for this second simulation exercise are given in Appendix B.

To ensure the boundedness of all likelihood functions, minimum and maximum variance values

of respectively 0.001 and 1000 are enforced for all diagonal elements in all covariance matrices.

Non-singularity of Ω̂
(k)
g and Σ̂

(k)
g is obtained by ensuring that all eigenvalues remain above 0.001

for all g ∈ G at each iteration. The maximum number of iterations for all simulation runs is set to

100. Convergence of both algorithms is assumed to be reached when the relative change between

two consecutive log likelihood values is less than 0.01%. Contrary to more traditional simulation

exercises, the dataset does not change across the thousand sets of initial values; only the initial

values are allowed to vary to find the global maximum of the corresponding objective function. The

simulated dataset however changes across simulation scenarios.

4.2 Simulation Results

4.2.1 Simple Gaussian Mixture Model

Table 1 shows the results of the first simulation exercise when G = 2 and when π0 = (0.5, 0.5).

The first column of Table 1 shows the true mean values, µ0, used to generate the dataset. The

second column of Table 1 shows the asymptotic misclassification rate at the true parameter values,

E(θ0, π0), while the sample size N is shown in column (3). The fourth column shows the distance

between the mixture log likelihood function when evaluated at the estimated parameter values

and at the true parameter values. The fifth column shows the root mean square error (RMSE) of

the estimated mean values µ̂ for each scenario. An increasing, positive distance l(θ̂, π̂) − l(θ0, π0)

observed along an increasing sample size and RMSE is indicative of the inconsistency of the esti-

mation procedure. If the estimates are consistent, then l(θ̂, π̂) − l(θ0, π0) should be negative and

decreases as both the RMSE and N rise. Finally, the sixth and seventh columns of Table 1 are the
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µ0 E(θ0, π0)

(%)

N l(θ̂, π̂)− l(θ0, π0) RMSE,

EM

lMC(θ̂, π̂)− lC(θ0, π0) RMSE,

CEM

(1) (2) (3) (4) (5) (6) (7)

2,000 2.573 1.036 953.1 0.599

10,000 5.217 0.994 4776.8 0.582

(-0.25,
40.1

20,000 0.691 1.060 9471.9 0.573

0.25) 50,000 2.234 0.739 23942.6 0.577

200,000 1.612 0.351 95070.9 0.575

1,000,000 -0.498 0.435 475990.9 0.572

2,000 1.917 0.411 810.6 0.424

10,000 3.024 0.309 4045.6 0.403

(-0.5,
30.9

20,000 2.199 0.274 7974.6 0.396

0.5) 50,000 2.269 0.310 20313.3 0.400

200,000 1.559 0.160 80164.5 0.398

1,000,000 -1.504 0.103 400923.9 0.396

(-1, 1) 15.9

2,000 1.424 0.023 474.9 0.184

10,000 3.427 0.010 2298.3 0.174

20,000 4.243 0.089 4377.7 0.169

50,000 1.927 0.028 11423.2 0.168

200,000 1.968 0.022 44902.4 0.169

1,000,000 0.737 0.003 223462.2 0.167

(-2, 2) 2.3

2,000 2.681 0.014 80.5 0.033

10,000 4.781 0.006 343.7 0.015

20,000 3.148 0.017 634.4 0.027

50,000 3.273 0.008 1842.1 0.016

200,000 1.976 0.001 7017.0 0.019

1,000,000 0.427 0.000 34913.3 0.017

Table 1: Root mean square errors (RMSEs) of the estimated mean values and differences in log likelihood
values with G = 2 when π0 = (0.5, 0.5); the true variances are all equal to one.

analogs of columns (4) and (5), but applied to the standard, inconsistent CEM algorithm.

The fourth and fifth columns of Table 1 show that the RMSE of the mean values obtained with

the EM algorithm mostly decreases as the sample size increases, except in some cases where it

remains constant or slightly increases with N . This is the case, for instance, when µ0 = (−0.5, 0.5)

and N goes from 20,000 to 50,000, where both l(θ̂, π̂)− l(θ0, π0) and the RMSE associated with the

EM algorithm increase asN increases. A similar case is also observed when µ0 = (−1, 1) andN goes

from 50,000 to 200,000. Such situations indicate that the estimation procedure is inconsistent when

E(θ0, π0) is too high. On the other hand, l(θ̂, π̂)− l(θ0, π0) becomes negative when N = 1, 000, 000

in the first two scenarios. This does not invalidate the inconsistency hypothesis since it can be

caused by the presence of a local maximum near the global maximum. Nonetheless, the general
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Algorithm µ0 µ̂1 µ̂2 σ̂1 σ̂2 π̂1 π̂2

(1) (2) (3) (4) (5) (6) (7) (8)

EM

(-0.25, 0.25) -0.018 0.819 1.026 0.905 0.979 0.021

(-0.5, 0.5) -0.399 0.605 1.019 0.984 0.603 0.397

(-1, 1) -1.002 0.996 1.000 1.003 0.498 0.502

(-2, 2) -2.000 2.001 1.001 1.001 0.500 0.500

CEM

(-0.25, 0.25) -0.823 0.822 0.621 0.621 0.500 0.500

(-0.5, 0.5) -0.895 0.897 0.670 0.669 0.501 0.499

(-1, 1) -1.169 1.165 0.799 0.801 0.499 0.501

(-2, 2) -2.018 2.017 0.965 0.966 0.500 0.500

Table 2: Estimated values for each scenario with G = 2, when π0 = (0.5, 0.5) and N = 1, 000, 000. The
estimated mixing weights do not always sum to one due to rounding.

evolution of the RMSE in the fifth column shows that the estimation bias is substantially larger in

cases where the overall degree of overlap between the component densities is larger.

Even though those results do not completely confirm that the whole estimation procedure is

inconsistent, it directly questions this aspect, especially when the degree of overlap between the

component densities is large. The last rows of Table 1 also show that maximizing the likelihood

of a mixture of distant component densities will yield good approximations of the true parameter

values when N is large, thus strengthening the notions conveyed by Corollary 3.2 and Figure 1.

The sixth and seventh columns of Table 1 also show that the standard CEM algorithm yields

inconsistent estimates when the mean values are too close to each other. The large positive distances

observed in column (6) are explained by the fact that the max-component log likelihood is computed

only with the component that maximizes the density value of the observation. As the overlap

between the components shrinks, the distance between the two functions shrinks as well, implying

that the standard CEM algorithm will yield consistent estimates if the component densities get

infinitely distant from each other, just as the EM. Note also that the RMSE values provided by the

CEM algorithm are much more stable than those provided by the EM, and that the CEM algorithm

yields less biased estimates than the EM algorithm in small samples when the components are very

close to each other (first four rows of Table 1).

Table 2 shows the estimated parameters associated with the results of Table 1 for both algo-

rithms when N = 1, 000, 000. It shows that the mean values provided by the EM algorithm get

more distant from their true values as the component densities are closer to each other. However,

the estimates shown in Table 2 might correspond to a local optimum of the objective function since

the associated distance l(θ̂, π̂) − l(θ0, π0) is negative at N = 1, 000, 000 for the first two scenarios.

Notwithstanding this possibility, the estimated mean values for the first two scenarios are in line

with the intuition given in panel (a) of Figure 1. Contrary to the EM algorithm, the mixing weights
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estimated by the CEM algorithm are stable and very close to the true values. Overall, results from

Table 2 confirm the higher stability of the CEM algorithm while showing the inconsistency of the

“approximate MLE” of the mixing weights when the true densities are too close to each other.

Additional simulation results can be found in Appendix C.1, where the results are shown for

different values of G, different mixing weights, and different true mean values. Similar conclusions

as those drawn from Tables 1 and 2 can be drawn from the tables in Appendix C.1, but with more

examples confirming the inconsistency of standard MLE of finite mixtures, especially when G = 3.

4.2.2 Latent Group Linear Panel Structure

The upper and lower graphs of Figure 2 respectively show the weighted RMSEs associated with

the estimated conditional mean parameters
ˆ̃
β and the estimated variance parameters (ω̂

2(k)
α+ϵ, ω̂

2(k)
α )

when ÊNTp(θ
0, ξ0) is equal or close to zero (between 0.00% and 0.05%). The estimation errors

shown in Figure 2 are based on the estimates that maximize the log likelihood function associated

with each algorithm. The weights used to compute the weighted RMSEs are the true mixing weights

π0
g after a suitable permutation in the labels of the groups. The weighted RMSEs associated with

ξ̂(k) = (µ̂(k), Σ̂(k)) are not shown since they do not represent parameters of interest and are useful

only to reduce the misclassification rate ÊNTp(θ̂
(k), ξ̂(k)). Note that the vector of mixing weights

based on the true group membership varies across simulation scenarios, but all “true” mixing

weights lie between 0.234 and 0.504 for all simulation scenarios.7

The weighted RMSEs shown in Figure 2 illustrate that the CEM algorithm always features

lower estimation errors than the EM algorithm for both the mean and variance parameters, except

for the mean parameters when T = 4. Nonetheless, the upper graphs of Figure 2 clearly show

that the estimation errors of the mean and variance parameters obtained from the EM algorithm

generally increase as T goes up, which is the opposite of what we would expect from a consistent

estimator. On the contrary, the estimation errors of the mean and variance parameters obtained

from the CEM algorithm tend to decrease as both N and/or T increase, which clearly illustrates the

usefulness of the proposed estimator. Note also that the weighted RMSEs for the mean parameters

averaged over all sets of results (one for each set of initial parameter values; excluding those who

did not converge) were much lower for the CEM algorithm than for the EM algorithm (results not

shown). This strengthens the idea that the CEM algorithm provides results that are less sensitive

to initial parameter values than those provided by the EM algorithm.

Table 3 presents the misclassification rates for each scenario. Results from Table 3 show that the

estimated misclassification rate ÊNTp(θ̂
(k), ξ̂(k)) equals the “true” misclassification rate ÊNTp(θ

0, ξ0)

in all scenarios when the CEM algorithm is used. Unlike the EM algorithm, the CEM algorithm

can correctly classify all observations when ÊNTp(θ
0, ξ0) = 0 even if the AR(1) nature of z0it had

7By “true” mixing weights, I am not referring to the true population weights, but rather to their estimated
counterparts when all group memberships are known.
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Figure 2: Evolution of the estimation error when G = 3 and when ÊNTp(θ
0, ξ0) = [0.00%, 0.05%] with

p = 4. The estimates selected to compute the weighted RMSEs are the ones that maximize the log likelihood
function associated with each algorithm. The y-axis stands as the weighted RMSE for each total number
of periods T , and each type of parameter (mean and variance). The “true” mixing weights all lie between
0.234 and 0.504.

not been taken into account for classification. It also shows that small deviations of ÊNTp(θ
0, ξ0)

away from zero should not substantially increase the estimated misclassification rates when using

the CEM algorithm.

If the general form of the joint density f(yit, xit|θ, ξ) is known, the joint density classifier leads

to good classification performance in finite samples, as shown in Table 3. Relying on the Maha-

lanobis distance classifier in the context of the current simulation exercise leads to higher values of

ÊNTp(θ
0, ξ0) for all scenarios (results not shown). This is not surprising given that, when p = 4, a

large share of the performance of the joint density classifier is explained by the jth outcome den-

sity fj(yit|xit; θj). A hybrid classifier using both the Mahalanobis distance d2(xit,µj ,Σj) and the

outcome density fj(yit|xit; θj) for each j ∈ G could still lead to good classification performance if

one is willing to make distributional assumptions for the outcome only. Exploring the performance

of such a hybrid classifier goes however beyond the scope of this paper.

Columns (3), (5), and (7) of Table 3 show that the misclassification rates obtained with the

EM algorithm generally increase with T , which explains the results depicted in Figure 2. This

is a consequence of the inconsistency of the estimation procedure : as the sample size increases,

the estimates remain biased but are estimated more precisely, which leads to an increase in the
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N Ê(·)
T = 4 T = 6 T = 8

EM (%) CEM (%) EM (%) CEM (%) EM (%) CEM (%)

(1) (2) (3) (4) (5) (6) (7) (8)

100
Ê(θ0, ξ0) 0.00 0.00 0.00 0.00 0.00 0.00

Ê(θ̂(k), ξ̂(k)) 5.75 0.00 11.33 0.00 12.75 0.00

250
Ê(θ0, ξ0) 0.00 0.00 0.00 0.00 0.00 0.00

Ê(θ̂(k), ξ̂(k)) 7.50 0.00 10.33 0.00 10.60 0.00

500
Ê(θ0, ξ0) 0.05 0.05 0.00 0.00 0.00 0.00

Ê(θ̂(k), ξ̂(k)) 8.10 0.05 9.43 0.00 11.50 0.00

750
Ê(θ0, ξ0) 0.00 0.00 0.00 0.00 0.00 0.00

Ê(θ̂(k), ξ̂(k)) 6.70 0.00 9.36 0.00 10.20 0.00

1000
Ê(θ0, ξ0) 0.00 0.00 0.00 0.00 0.00 0.00

Ê(θ̂(k), ξ̂(k)) 6.78 0.00 9.35 0.00 11.10 0.00

1250
Ê(θ0, ξ0) 0.00 0.00 0.00 0.00 0.00 0.00

Ê(θ̂(k), ξ̂(k)) 8.32 0.00 10.05 0.00 11.20 0.00

1500
Ê(θ0, ξ0) 0.00 0.00 0.00 0.00 0.00 0.00

Ê(θ̂(k), ξ̂(k)) 7.67 0.00 10.26 0.00 10.94 0.00

Table 3: Misclassification rates evaluated at the true parameter values and evaluated at the parameter
values that maximize the log likelihood function for each algorithm when ÊNTp(θ

0, ξ0) = [0.00%, 0.05%].
The NTp subscripts are dropped for brevity. The misclassification rates obtained with the EM algorithm
are computed using the maximum posterior probability.

misclassification rates, which leads to more biased estimates, and so on. Those results confirm the

idea that maximizing the mixture likelihood leads to an asymptotic bias that will not vanish as the

sample size increases if the component densities are not infinitely distant from each other.

Two additional sets of simulation results are shown in Appendix C.2 where ÊNTp(θ
0, ξ0) > 0.

Those results show that no algorithm is superior to the other when ÊNTp(θ
0, ξ0) is larger than

4.0% and the mixing weights are well-balanced. While Figures 7 and 8 tend to show that the EM

algorithm produces less biased mean estimates than the CEM algorithm, this is generally the oppo-

site for the variance parameters. Those figures also confirm that the EM algorithm produces more

unstable estimates than the CEM algorithm, especially when looking at the variance parameters.

Note that the weighted RMSEs portrayed in the graphs of Appendix C.2 are almost always

higher than their analogs from Figure 2. This advocates for the use of the CEM algorithm when the

number of covariates is sufficiently large such that it is reasonable to assume that ÊNTp(θ
0, ξ0) = 0.

If it is not reasonable to make such an assumption, then additional covariates should be included

in the model to reduce classification error. Other simulation results with binary choice models,

unbalanced mixing weights, and misspecification of G are available from the author upon request.
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5 Empirical Analysis

5.1 Objectives

The main objective of the empirical analysis is to group within the same component all the ob-

servations that share the same latent, unobserved individual characteristics. In this context, it is

assumed that the unobserved characteristics explain a non-null proportion of the observed varia-

tion in individual healthcare expenditures (HCE), and that the unobserved characteristics can also

influence the relationships between the outcome and the observed individual characteristics. For

instance, individuals who are more frail than others, which is unobserved, are more likely to develop

adverse health outcomes and become more dependent on the healthcare system after experiencing

a minor injury. Such poor underlying characteristics will be reflected in the data by the presence

of higher individual HCE in the periods following the minor injury.

This is similar to health state modeling in the literature on hidden Markov models (HMMs) (Luo

et al., 2021; Komariah and Sin, 2019) but using a two-step approach where the first consistently

estimates the group membership (i.e. the “health state”) and the second step models the dynamic

behavior of the group membership. Unlike this literature, I will refer to health groups rather than

“health state” given that the unobserved individual characteristics explaining HCE can be related

to non-health factors (e.g. accessibility to healthcare services, peer effects, etc.).

The second objective of the empirical analysis is to compare the results coming from both

algorithms (CEM and EM) when using real-world data with missing information. The predictive

performance of the results obtained from each algorithm is compared using cross-validation, as

detailed in Section 5.5.

5.2 Data Sources and Characteristics

The employed dataset is the Québec’s portion of the Canadian Emergency departments Team

Initiative (CETI). The CETI research program on mobility and aging is a Canadian clinical program

“which aims to improve emergency department (ED) care for older adults with minor injuries”

(Provencher et al., 2015). In the province of Québec, the CETI research program followed 1,391

patients with a medical consultation at the ED of one of three hospitals (Hôpital du Sacré-Coeur

de Montréal, Hôpital de l’Enfant-Jésus and Hôpital du Saint-Sacrement) after a minor injury that

occurred between 2009 and 2015. Individuals were included in the cohort if they were aged 65 and

older and suffered from a minor injury that did not lead to hospitalization. A detailed description

of the eligibility criteria and monitoring schedules can be found in Provencher et al. (2015).

The health administrative data for each participant has been extracted from Québec’s physician

claims database, which is managed by the Régie de l’Assurance-Maladie du Québec (RAMQ). Each

claim included a unique patient identification number, billing codes corresponding to the services

rendered, the diagnostic code according to the International Classification of Diseases, 9th Revision
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(ICD-9-CM), dates and locations of the services provided, an identification code for the physician

making the claim and the amount paid to the physician. The period covered by the dataset goes

from January 1, 2008, to June 30, 2016. Note that physician claims do not include all the HCE

that an individual could incur in a given period. However, physician claims are strongly correlated

with total HCE while being usually more precise than other cost measures (e.g. hospitalization

costs, costs of treatment episodes, etc.).

An unbalanced panel dataset containing 1,330 individuals and seven three-month periods per

individual was created using the information described above. Some individuals died before the

end of the last period, hence leading to 64 observations with no information. A weight of zero was

attributed to those 64 observations at each (C)E-step of both algorithms. Consequently, the total

number of observations with non-null weights in the dataset is 9,246. The initial ED visit occurred

at the end of the second period while two follow-up visits occurred at the end of the third and

fourth periods respectively. Price effects (inflation) were accounted for by adjusting all costs with

Québec’s all-item consumer price index (CPI) between 2008 and 2016.

5.3 Estimation Strategy

The employed model is a mixture of two-part models, where the first part corresponds to a Probit

binary choice model and where the second part uses a lognormal density. The lognormal density

accounts for the heavy-tailed distribution that is usually observed in individual HCE (Manning and

Mullahy, 2001). Conceptually speaking, the first part models the “decision” of the ith participant to

incur a strictly positive amount of HCE at the tth period, whereas the second part models the total

amount, if any, that was incurred at this period by the participant. Two-part models have been

extensively used in econometrics and health economics to model the decision-making of agents that

lead to the generation of a strictly positive, continuous outcome depending on the initial decision

of the agent (Norton et al., 2008; Neelon et al., 2011).

The specification used within each part of the model is similar to the one used for the second

simulation exercise, as formulated by eq.(13). For simplicity, it is assumed that all covariates follow

a normal distribution with means and covariance matrices varying across components. The general

form of the gth joint component’s density for the itth observation is written as follows

fg(y
c
it, xit|θg, ξg) =

[(
1− Φ(ηbitg)

)
fg(x

b
it|µb

g,Σ
b
g)
]1−dit [

Φ(ηbitg)ϕ (ηitg) fg(xit|µg,Σg)
]dit

, (15)

with ηbitg = Xb
itβ̃

b
g and ηitg =

Xitβ̃g−ycit
ω2
α+ϵ,g

, where fg(·|µg,Σg) corresponds to the multivariate normal

probability density function (pdf) with mean µg and variance-covariance matrix Σg, Φ(·) and ϕ(·)
respectively refer to the cumulative density function and the pdf of the standard normal distribution,

ycit = log(yit) stands as the log value of the HCE for the itth observation (and is set to zero if yit = 0),

and dit = 1[yit > 0] is equal to one if yit > 0 and zero otherwise. All other coefficients have the
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same interpretation as in Section 4.1.2, with the b superscript denoting the estimates of the binary

part. Note that all covariates and parameters associated to the binary part need not be equal to

those of the continuous part even if the true distributions of the common elements in xbit and xit are

identical. More details on the covariates included in each part are provided in the next subsection.

Estimation of the model is carried out using the same approaches as the ones described in

Appendix B. Two differences are however worth noting. First, each M-step uses a Newton-Raphson

procedure to update the estimates from both binary parts (one for each algorithm). Second, the

weights w
(k)
itg used for the empirical analysis are defined in Appendix B, where both the joint density

classifier zDitg(θ, ξ) and the posterior probabilities τitg(θ, ξ) are based on the joint density. Formally

speaking, this means that hg(y
c
it, xit|θ, ξ) = fg(y

c
it, xit|θg, ξg) and that τitg(θ, ξ) =

fg(ycit,xit|θg ,ξg)∑G
j=1 fj(y

c
it,xit|θj ,ξj)

,

where fg(y
c
it, xit|θg, ξg) is defined as in eq.(15). This definition of the posterior probability avoids

the need to choose between the binary and the continuous density to perform the EM algorithm.

Not introducing any mixing weight in the RHS of the posterior probability τitg(θ, ξ) also makes the

two algorithms more comparable to each other. Such a formulation also suggests that the densities

fg(x
b
it|µb

g,Σ
b
g) and fg(xit|µg,Σg) are used as prior grouping information for computing τitg(θ, ξ).

For simplicity, the unit-random effects of the binary and the continuous parts are assumed to

be independent of each other. It has been shown that assuming independence between the unit-

random effects of a two-part model is likely to introduce bias in the continuous part of the model

(Su et al., 2009). Note that this bias is different from the sample selection bias often encountered

in econometrics (Heckman, 1979). If the probability for every individual of generating a non-null

amount of HCE is never equal to zero over time, then the sample selection bias will vanish as T

increases if the sample is representative of the population of interest. Therefore, the bias introduced

by the independence assumption between the two parts of the model may still remain even in the

absence of any sample selection bias. Nonetheless, the finite mixture setup naturally (partially)

accounts for correlation that might be caused by correlated group-specific intercepts or time-fixed

effects. Introducing correlated random effects is also possible using Bayesian estimation methods

or simulated maximum likelihood, but this goes beyond the scope of this paper.

If the independence assumption between the two unit-random effects is satisfied, then consistent

estimation of the parameters can be done by estimating each part of the model separately. This

implies that only the observations with a strictly positive outcome value are used to estimate the

continuous parts of the model. On the other hand, the estimation the binary parts is performed

using an iterative weighted Newton-Raphson procedure that uses all the observations in the sample.

Convergence of the whole estimation procedure is assumed to be achieved when the relative change

between two consecutive log likelihood values is less than 0.01%. A maximum number of 100

iterations is enforced for each single iterative procedure. All computations have been performed

with Python 3.9.13 and Numpy 1.21.5.
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5.4 Covariates

The list of covariates included in Xb
it and Xit are resumed in Appendix D. The included covariates

are the same across all component densities. To proxy for frailty, I use the Elder’s Risk Assessment

(ERA) index, which predicts the hospitalization and health risks among elders (Crane et al., 2010).

Frailty is known to be an important predictor of medical resource consumption and individual HCE

over time (Sirven and Rapp, 2017). The composition of the ERA index is shown in Appendix E

and slightly differs from the original index due to data availability issues.

In addition to frailty, the global amount of comorbidity is also known to be an important

predictor of individual HCE (Charlson et al., 2008). Consequently, the Charlson index has been

used to control for the overall burden of comorbidities in both parts of the model. The composition

of the Charlson index is shown in Appendix E. Given that the ERA and Charlson indices have

comorbidities in common, the overlapping covariates were removed from the Charlson index to limit

collinearity issues. Note that only the time-averaged Charlson index was used in every specification

due to strong collinearity between the time-varying and the time-averaged Charlson indices.

Finally, the Continuity of Care Index (COCI) developed by Bice and Boxerman (1977) was also

introduced in the model to account for the peculiar relationships between each patient and the

healthcare system. Continuity of care is defined as “how one patient experiences care over time as

coherent and linked”. Values of the index range from zero to one with a zero value referring to a

total absence of continuity of care (i.e. each visit is associated with a different provider), whereas a

value of one represents perfect continuity of care (i.e. all visits are associated with the same unique

provider). Several studies have shown that the COCI is strongly associated with individual HCE

and that even modest variations in the index value are associated with large variations in medical

costs (Chu et al., 2012; Hussey et al., 2014). Given that no COCI can be computed when yit = 0,

the time-varying COCI is only used in the continuous part of the model.8

5.5 Selection of the Initial Parameter Values and Number of Groups

Between 300 and 2,000 different sets of initial parameters were assessed to estimate the model

for each algorithm and each value of G.9 The selection of the “optimal” initial parameter values

and number of groups G was performed using the maximum value of the corresponding likelihood

function and cross-validation (CV). If some observations are misclassified, then maximizing the

likelihood might select parameter estimates that are inconsistent and that are far away from the

true parameters. This is why CV was also used to select the optimal set of initial parameter values

and number of groups.

8To maintain comparability with the other coefficients, the COCI has been rescaled from 0 to 10.
9The number of initial parameter values is different for each algorithm since it is more frequent for the CEM

algorithm to experience convergence issues due to the presence of empty component(s). The exact number of initial
parameter values used for each value of G is indicated in the code provided by the author upon request.
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The goal of the CV procedure is to estimate the out-of-sample prediction error associated with

the estimated parameters and the chosen number of groups. Following the recommendations of

Zhang and Yang (2015), a 2-fold CV procedure with 10 different data splittings was performed for

for each value of G ∈ {2, 6} and each set of estimates associated with the 15 highest likelihood

values.10 All data splittings randomly allocated each unit to the training set or the test set, which

maintains the correlation structure among units in the training set. To limit the probability of

being “trapped” in a local maximum of the objective function, the estimated parameter values of

the complete dataset were used as the initial values for each repetition during the CV procedure.

The predicted values of the test set for both algorithms are computed as follows

ŷcit =
̂log(yit) =

G∑
g=1

w
(k)
itgΦ(X

b
it
ˆ̃
βb,(k)
g )Xit

ˆ̃
β(k)
g ,

where w
(k)
itg is defined as in Section 5.3, and where

ˆ̃
β
b,(k)
g and

ˆ̃
β
(k)
g are the respective estimated analogs

of β̃b
g and β̃g after convergence of the algorithm. The cross-validated RMSEs were computed by

combining the prediction errors of all observations for each test set and each data splitting. Note

that all
ˆ̃
β
(k)
g correspond to semi-elasticities and that retransformation to the original scale is not

necessary to perform the CV procedure.

5.6 Results

5.6.1 Selection of the Initial Parameter Values and Number of Groups

Figure 3 shows the relative, cross-validated RMSE values obtained by the CV procedure described

in Section 5.5 for each algorithm, each value of G, and each set of initial parameter values that

produced the 15 highest likelihood values. The values shown in Figure 3 are relative to the RSME

computed when G = 1, which corresponds to a value of 2.05.

The results illustrated in Figure 3 show that the EM algorithm minimizes the cross-validated

RMSE when G = 4 while the CEM algorithm minimizes the cross-validated RMSE when G = 5.

Several repetitions of the CV procedure have been performed to ensure the stability of the lowest

RMSE values for each algorithm (results not shown). The lowest RMSE value obtained from the

CEM algorithm is equal to 0.89, which is 17.6% smaller than the lowest RMSE value obtained from

the EM algorithm. This also corresponds to a reduction of 56.6% compared to the standard, single-

component two-part model (2.05 vs. 0.89). Figure 3 also shows that the out-of-sample prediction

errors obtained from the CEM algorithm are generally lower and less variable than those obtained

from the EM algorithm, especially when G = 2. For parsimony, the subsequent subsections will

focus on the set of parameter estimates that yielded the lowest RMSE among all values.

10The 15 highest likelihood values were chosen to reduce the computational burden of the CV procedure for the
selection of the initial parameter values.
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Figure 3: Relative cross-validated RMSE values obtained by repeated 2-fold cross-validation (with 10
repetitions) for each one of the 15 highest likelihood values obtained by random initialization.

5.6.2 Groups’ Analysis

Table 4 shows the estimated mean and variance values of each covariate for each group associated

to the optimal set of estimates according to the CV procedure. Note that the distributions of the

covariates in each group are likely to overlap with each other, as denoted by the large within-group

variance values. Although each group contains observations that are homogeneous with respect to

their unobserved characteristics, this means that all groups might contain observations that appear

very different from each other based on their observed characteristics. Because of this observed

heterogeneity, it is hard to broadly characterize the observations contained within each group.

This is why the expression “mostly feature” is used below for the description of each group.

The first group contains observations that mostly feature a moderately high number of co-

morbidities, as indicated by columns (5) and (9), and low continuity of care. The second group

contains observations that mostly feature a larger number of comorbidities compared to the first

group, but also a higher contemporaneous level of continuity of care, as indicated by column (7).

The third group contains observations that mostly feature very low continuity of care and a mod-

erately high number of comorbidities. Note that this group is the largest in size and also has the

largest proportion of males. The fourth group contains observations that mostly feature a very

low number of comorbidities and a relatively high continuity of care. This group also features the

smallest proportion of males. Finally, the fifth group contains exclusively observations that feature

perfect continuity of care. It is also the smallest group in size and observations contained in this
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Group

number

Estimated

Mixing

Moment Male ERA Time-

averaged

COCI Time-

averaged

Time-

averaged

Weights ERA COCI Charlson

(1) (2) (3) (4) (5) (6) (7) (8) (9)

All

groups
1.000

Mean 0.38 2.05 2.05 3.19 4.00 1.35

Variance 0.23 2.96 2.61 9.81 4.30 1.34

1 0.224
Mean 0.38 1.46 1.57 1.34 4.01 1.50

Variance 0.24 1.28 1.41 0.60 5.33 0.94

2 0.192
Mean 0.39 3.90 3.68 3.06 3.25 2.41

Variance 0.24 3.29 2.85 3.19 2.42 2.32

3 0.232
Mean 0.40 2.03 2.06 0.99 3.49 0.93

Variance 0.24 2.64 2.38 0.31 3.66 0.63

4 0.201
Mean 0.35 1.22 1.30 3.49 1.30 0.82

Variance 0.23 0.86 0.91 1.39 2.86 0.32

5 0.151
Mean 0.37 1.83 1.80 10.00 5.67 1.18

Variance 0.23 2.46 2.08 0.00 3.65 1.00

Table 4: Descriptive statistics of the covariates contained within each group created by the optimal set of
estimates according to the CV procedure.

group mostly feature a relatively low number of comorbidities. Given that one covariate is constant

within this group, this creates a perfect collinearity issue that can be dealt with by removing the

group’s intercept.

Note that there exist large differences between the time-varying and the time-averaged COCI

in most groups. For instance, the first and third groups contain observations that mostly feature

low continuity of care at the current period, but high continuity of care on average over time. This

is the opposite for the fourth and fifth groups. Therefore, it is not unreasonable to think that

the level of continuity of care, both contemporaneously and over time, is an important factor in

determining group memberships in the sample.

Figure 4 shows the estimated time-fixed effects for each group and each part of the model that

are associated to the same set of estimates. Confidence intervals on the time-fixed effects (and all

other coefficients) are computed using eq.(11). The first period, ranging from 6 months to 3 months

before the initial ED visit, is set as the reference value for the other time-fixed effects. The shaded

areas correspond to the 95% cluster-robust confidence intervals. Given that the continuous part of

the model is in the log scale, each mean value in the graphs on the RHS of Figure 5 corresponds

to the average, relative increase in individual HCE (in %) for each period. For instance, the

observations in Group 1 feature an average increase of 70% in their individual HCE at t = 5

compared to t = 1, which is explained by the low levels of continuity of care and the poor health

of the observations contained within this group.
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Figure 4: Time-fixed effects associated to the optimal set of estimates according to the CV procedure. The
value of the first time-fixed effect is equal to zero and is set as the reference value. The initial visit to the ED
occurs at the end of the second period. The shaded areas correspond to the 95% cluster-robust confidence
interval and do not account for uncertainty in group memberships.

The marginal effects of the time-fixed effects in the binary parts can be obtained using the

estimated coefficient values shown in Appendix F.1 and the covariates’ average values presented in

Table 4. Nonetheless, the sign of the mean values of the time-fixed effects on the LHS of Figure 4

still indicates the direction of each effect on the probability of consuming medical resources. The
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very large time-fixed effects depicted in Group 4 at t = 3 and t = 4 indicate that every or almost

every observation in this group consumed a strictly positive amount of medical resources during

those two periods. Note that the initial ED visit after the minor injury did not necessarily lead

to a visit to the physician, thus explaining why some time-fixed effects at t = 2 are significantly

negative in both parts of the model.

The analogous set of time-fixed effects that are associated with the “best” parameters obtained

from the EM algorithm is shown in Appendix F.3. Trying to make formal connections between the

estimates obtained from each algorithm is, according to me, hazardous given that the two methods

do not treat the observed information similarly, and can produce results that are substantially dif-

ferent from each other. Such differences can also be appreciated by examining all other parameters

estimated by each algorithm (see Appendix F).

5.6.3 Transition Between Groups

Using the results from Table 4 and Figure 4, it is possible to broadly characterize each group.

This is shown below in Figure 5, along with the proportions of the total number of observations

contained in each group at each period. This “naming” exercise is highly subjective and does

not rely on a comprehensive analysis of all observed characteristics and results. The proposed

“names” for the groups rely exclusively on frailty and continuity of care, which are known to be

good predictors of individual HCE (Sirven and Rapp, 2017; Chu et al., 2012; Hussey et al., 2014).11

Note that the group numbers have been previously arranged in descending order so that the first

group corresponds to the “high-cost” (i.e. frail with low continuity of care) group while the fifth

group corresponds the “low-cost” group (i.e. robust with perfect continuity of care).

Figure 5 shows that the initial ED visit substantially reduced the number of units in the group

with perfect continuity of care at t = 2. This is not surprising since the initial ED visit was

associated with an unexpected minor trauma, therefore increasing the chance for the patient’s

regular healthcare provider to be unavailable at this precise moment. On the other hand, the

initial ED visit seemed to have substantially increased the number of patients in Group 3. This can

be explained by the fact that (robust) individuals who rarely consume medical resources can easily

switch from perfect continuity to low continuity of care if they see a different healthcare provider

each time they consume medical resources.

Figure 5 also shows that Group 4 experienced the largest reduction in size with a decrease of 3.4

11More precisely, it was assumed that a group is composed of frail individual-periods if at least one of the time-fixed
effects of the continuous part is significantly positive after the initial injury, and if the group mean value for the ERA
or the Charlson index is larger than its global average. It was assumed to be composed of robust individual-periods if
no time-fixed effect of the continuous part is significantly different from zero after the initial injury. Overall continuity
of care was based exclusively on the average value of the time-varying COCI covariate, as shown in column (7) of
Table 4, where the attribution of the “type” of continuity of care (i.e. low, moderate, and perfect) is obvious. Note
that the overlap between the distributions of the COCI covariate for each type of continuity of care is very small
compared to the other covariates, which advocates for the use of this covariate to broadly define the groups.
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Figure 5: Proportions of the total number of observations in each group at each period.

percentage points between period 1 and period 7, while Group 2 is the group whose size increased

the most with 2.3 additional percentage points between period 1 and period 7. This can be easily

explained by a natural transition from robustness to frailty as time passes after the minor injury.

Figure 6 depicts the estimated transition matrix of the group memberships over time. This

transition matrix shows that robustness and frailty are persistent characteristics given that transi-

tions from a robust group to another robust group account for 74% of all transitions out of a robust

group on average, whereas transitions from a frail group to another frail group account for 65% of

all transitions out of a frail group on average. Therefore, robustness appears more persistent than

frailty, which is in line with the fact that frailty is reversible provided appropriate care and healthy

lifestyle habits (Kolle et al., 2023).

Such a transition matrix can also be used to predict the group membership at period t+1 given

the group membership at period t. Using the Bayes’ rule of categorical assignment and the proba-

bilities shown in Figure 6, group membership at period t+ 1 is correctly predicted 3,226 times out

of 7,980 total memberships, which corresponds to a “success” rate of 40.4%. This success rate could

be easily improved upon using more sophisticated approaches such as dynamic multinomial logit

models, namely to include additional observed factors that might affect future group memberships.

An applied version of this paper details the results of such a categorical model.
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Figure 6: Estimated transition matrix of the group memberships based on the optimal set of estimates
according to the CV procedure.

6 Conclusion

This paper showed that maximizing the likelihood function of a mixture density, as generally defined

by eq.(5), leads to inconsistent estimates of the parameters governing any kind of finite mixtures

under weak regularity conditions. It is worth emphasizing that this inconsistency does not depend

on the chosen algorithm to maximize the mixture likelihood. Indeed, the motivation behind the

widespread use of the EM algorithm is that it maximizes the mixture likelihood function just as

any other numerical optimization method, but is easier to implement in practice. Still, it is true

that for the same initial parameter values, different algorithms might converge to different local

maxima. This does not however invalidate any of the claims made in this paper.

Rather than relying on the mixture likelihood function, this paper showed that maximizing the

max-component log likelihood function combined with a consistent classifier leads to the consistent

estimation of all parameters in the mixture. As shown in Section 3.3, consistency of the classifier

is essential to obtain consistent estimates of the component parameters and the mixing weights.

Although uniform consistency of the chosen classifier is a desirable property, Theorem 3.5 showed

that it is not necessary to obtain consistent estimates of all parameters in the mixture. Nonetheless,

Corollary 3.3 showed that the Mahalanobis distance classifier is uniformly consistent as the number

of covariates goes to infinity at a faster rate than the sample size for a fixed number of groups,

which leads to estimation issues. Given that the covariates used for each step of the CEM algorithm

need not be the same, one could still use a setup where p >> NT to compute the Mahalanobis

distance classifier, and then select only a relevant subset of the available covariates at each M-step

using standard regularization techniques.

Contrary to the recent papers on the subject, the estimation strategy proposed in this paper has

the benefit of leaving group membership completely unrestricted. This has important implications
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from a policy perspective given that transitions between groups over time allow for the prediction

of future group memberships, which can then be used to improve decision-making in healthcare.

Achieving such an objective implies that group membership has to be consistently estimated in the

first step. The dynamic behavior of the group membership can then modeled in the second step

using a consistent estimator for categorical outcomes. Such a two-step procedure is advocated by

Bonhomme et al. (2019) in the context of matched employer-employee panel data analysis while

being more in line with the literature on finite mixtures where, typically, no restriction is imposed

on group memberships to estimate the mixture parameters.

A general recommendation concerning the estimation of any kind of finite mixture models (e.g.

Gaussian mixture models, mixture of experts, latent group panel structure, etc.) with unrestricted

group membership can thus be formulated : instead of using the EM algorithm, one should always

use the CEM algorithm combined to a consistent classifier with as many covariates as possible.

If the large number of covariates makes the computational burden too heavy, then reducing the

number of covariates should be considered during the realization of each M-step. If the number

of covariates is still too large, then one should remove most of the covariates that have a very

high degree of collinearity between each other. It is however important to recognize that high

collinearity does not necessarily imply classification irrelevance, and doing so might increase the

misclassification rate. In the context where no covariate is available, a multivariate outcome can

be used to reduce the misclassification rate under the assumption that group memberships do not

change within any single observation. If the outcome is univariate and no covariate is available,

then it is impossible to obtain consistent estimates of the mixture parameters and the size of the

asymptotic bias will depend on the degree of overlap between the component densities.

Results from the simulation exercises and a real-world application showed that the estimation

procedure leads to less biased and more stable estimates than those obtained by standard MLE

procedures such as the EM algorithm. Results from the empirical analysis also show that the

proposed estimation strategy identified five heterogeneous health groups that account for a large

part of the unobserved heterogeneity in the sample. The use of the proposed estimation strategy

reduced the out-of-sample prediction error by more than 55% compared to the single-component

model and by 17.6% compared to the best results obtained from standard, widely used MLE

procedures.

Compared to other algorithms, the proposed estimation strategy contrasts with HMMs where

the dynamic behavior of the latent variable is estimated simultaneously with the parameters of each

component density. Although this method has been proven to be consistent (Douc and Matias,

2001), the two-step estimation procedure proposed in this paper seems more efficient and more

robust to random initialization than HMMs. Comparison of the proposed two-step approach to

other machine learning techniques, such as random forests, and inclusion of feedback effects remain

open areas for future research (Chamberlain, 2022).
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A Appendix - Proofs

A.1 Lemma 3.1

Proof. Maximizing E0[log f(yit|xit; θ, π̃)] with respect to θ is similar to maximizing E0

[
log
(

f(yit|xit;θ,π̃)
f(yit|xit;θ0,π0)

)]
with respect to θ given that f(yit|xit; θ0, π0) > 0 by Assumption 1(ii). By Jensen’s inequality, we

have that

E0

[
log

(
f(yit|xit; θ, π̃)
f(yit|xit; θ0, π0)

)]
≤ log

(
E0

[
f(yit|xit; θ, π̃)
f(yit|xit; θ0, π0)

])
,

≤ log

(∫
Y

f(yit|xit; θ, π̃)
f(yit|xit; θ0, π0)

f(yit|xit; θ0, π0)υ(dyit)

)
,

≤ log

(∫
Y
f(yit|xit; θ, π̃)υ(dyit)

)
,

≤ 0,
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given that f(yit|xit; θ, π̃) is a well-defined density that integrates to one over Y. Therefore, we have

that

E0[log(f(yit|xit; θ, π̃))] ≤ E0[log(f(yit|xit; θ0, π0))],

with equality if and only if θ = θ0 and π̃ = π0, otherwise Assumption 1(v) would be violated.

Therefore, we have that

E0[log(f(yit|xit; θ0, π̃))] < E0[log(f(yit|xit; θ0, π0))],

for any π̃ ∈ ζ. A similar argument can be made by looking at the expected value of the score

function when evaluated at θ0. The first-order condition for consistency implies that

E0[sit(θ)]
∣∣
θ=θ0

= E0

[
∂ log f(yit|xit; θ, π)

∂θ

] ∣∣∣∣
θ=θ0

= 0,

by Assumption 1(vi), which can be rewritten as∫
Y

f(yit|xit; θ0, π0)

f(yit|xit; θ0, π)
∂f(yit|xit; θ, π)

∂θ
υ(dyit)

∣∣∣∣
θ=θ0

= 0.

It is easy to see that, under interchangeability of the derivative and the integral, this condition is

satisfied for any (θ, π) ∈ Θ×Π if π = π0 given that this reduces to

∂

∂θ

∫
Y
f(yit|xit; θ, π)υ(dyit)

∣∣∣∣
θ=θ0

=
∂1

∂θ
= 0.

If π ̸= π0, this condition does not generally hold. However, it is true that there could exists a

π̃ ∈ ζ such that this condition holds, but such a (π̃, θ0) would be located at a local maximum of

the expected log likelihood function as a consequence of Assumption 1(v).

A.2 Corollary 3.1

Proof. Define π∗ /∈ Π such that π∗ = (0, ..., 1, ..., 0), where the mixture problem is treated as a single-

component density, non-mixture estimation problem. Clearly, we have that plimN,T→∞ θ̂NT (π
∗) ̸=

θ0, otherwise a single-component density would suffice to get consistent estimates of θ. Therefore,

we have that

lim
π̃→π∗

plim
N,T→∞

θ̂NT (π̃) ̸= θ0,

and that

plim
N,T→∞

θ̂NT (π̃ϵ,π∗) ̸= θ0,

where π̃ϵ,π∗ corresponds to any π̃ ∈ ζ that lies within a ball B(ϵ, π∗) centered around π∗ and of

radius ϵ > 0, otherwise Assumption 1(vi) would not be satisfied. However, it is true that there
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could exist a finite number of values π̃δ,π∗ ∈ B(δ, π∗) with δ > ϵ such that π0 /∈ B(δ, π∗), and such

that

plim
N,T→∞

θ̂NT (π̃δ,π∗) = θ0,

while still satisfying Assumption 1(vi). This implies that for almost every vector π̃ ∈ ζ, θ̂NT (π̃)

will not converge in probability to θ0 as N,T → ∞.

A.3 Proposition 3.1

Proof. Maximizing the log likelihood with respect to π leads to a corner solution given that

∂l(θ, π)

∂π
=

N∑
i=1

T∑
t=1

∑G
g=1

∂πgfg(yit|xit;θg)
∂π∑G

j=1 πjfj(yit|xit; θj)
=

N∑
i=1

T∑
t=1

∑G
g=1 fg(yit|xit; θg)∑G

j=1 πjfj(yit|xit; θj)
.

By Assumption 1(ii), the NT terms in the sum are all strictly positive, including the mixing

weight πj in the denominator. Therefore, ∂l(θ,π)
∂π can never be equal to zero, except in cases where

||θg||2 → ∞ implies that fg(yit|xit; θg) → 0 for all g ∈ G. This means that the log likelihood

function has no well-defined maximum nor minimum in the interior of Π, which is indicative of a

corner solution. This can also be deduced by looking at the expression of l(θ, π) when θ and (y,x)

are taken as given : under Assumption 1, the vector of estimated mixing weights π̂θ will put a

weight of one on the component that yields the largest log likelihood value, and a weight of zero

on all the other components.

A.4 Lemma 3.2

Proof. Taking all τitg(θ, π) as constants, the derivative of Ez[l
C(θ, π)] with respect to πg leads to

∂Ez[l
C(θ, π)]

∂π
=

∂

∂π

G∑
g=1

log πg

N∑
i=1

T∑
t=1

τitg(θ, π).

This expression corresponds to the derivative of the negative cross entropy function between πg

and
∑N

i=1

∑T
t=1 τitg(θ, π). From information theory, we know that the cross entropy function is

minimized only when the two variables are identically distributed. Therefore, the negative cross

entropy function is maximized if and only if πg = α
∑N

i=1

∑T
t=1 τitg(θ, π) for all values of g ∈ G,

where α is a normalizing constant. Since the mixing weights have to sum to one, this implies that

α

G∑
g=1

N∑
i=1

T∑
t=1

τitg(θ, π) = 1,

thus leading to

α =
1∑G

g=1

∑N
i=1

∑T
t=1 τitg(θ, π)

=
1

NT
,
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given that
∑G

g=1 τitg(θ, π) = 1 by construction. Therefore, we have that πg(θ) =
1

NT

∑N
i=1

∑T
t=1 τitg(θ, π)

is the MLE of πg when Ez[l
C(θ, π)] is used as the objective function.

A.5 Theorem 3.1

Proof. From equations (7) and (8), we have that

π̂g(θ
0) =

1

NT

N∑
i=1

T∑
t=1

π̂g(θ
0)fg(yit|xit; θ0g)∑G

j=1 π̂j(θ
0)fj(yit|xit; θ0j )

.

Since both π̂g(θ) and fg(yit|xit; θg) are continuous functions of θ for any g ∈ G, we can apply the

WLLN and Slutsky’s theorem on π̂1(θ
0) such that

π̂1(θ
0)

p−→ E0

[
π̂1(θ

0)f1(yit|xit; θ01)∑G
j=1 π̂j(θ

0)fj(yit|xit; θ0j )

]
,

=

∫
Y

π̂1(θ
0)f1(yit|xit; θ01)

∑G
g=1 π

0
gfg(yit|xit; θ0g)∑G

j=1 π̂j(θ
0)fj(yit|xit; θ0j )

υ(dyit),

=

∫
Y

π̂1(θ
0)π0

1(f1(yit|xit; θ01))2 + π̂1(θ
0)f1(yit|xit; θ01)

∑G
g=2 π

0
gfg(yit|xit; θ0g)∑G

j=1 π̂j(θ
0)fj(yit|xit; θ0j )

υ(dyit),

= π0
1

∫
Y

π̂1(θ
0)(f1(yit|xit; θ01))2∑G

j=1 π̂j(θ
0)fj(yit|xit; θ0j )

υ(dyit) +

∫
Y

π̂1(θ
0)f1(yit|xit; θ01)

∑G
g=2 π

0
gfg(yit|xit; θ0g)∑G

j=1 π̂j(θ
0)fj(yit|xit; θ0j )

υ(dyit),

as N,T → ∞. In other words, we have that

π̂1(θ
0)

p−→ aπ0
1 + b,

as N,T → ∞, where

a =

∫
Y

π̂1(θ
0)(f1(yit|xit; θ01))2∑G

j=1 π̂j(θ
0)fj(yit|xit; θ0j )

υ(dyit),

and

b =

∫
Y

π̂1(θ
0)f1(yit|xit; θ01)

∑G
g=2 π

0
gfg(yit|xit; θ0g)∑G

j=1 π̂j(θ
0)fj(yit|xit; θ0j )

υ(dyit).

Therefore, π̂1(θ
0) will be consistently estimated if and only if a = 1 and b = 0. It is easy to

see that constant part of the bias, b, will be go to zero if and only if all component densities are

infinitely distant from each other at θ = θ0, which means that the integral of the product of any

two different densities will go to zero in the limit (i.e.
∫
Y fg(yit|xit; θ0g) × fj(yit|xit; θ0j )υ(dyit) → 0
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as ||θ0g − θ0j || → ∞ for any j ∈ G\g, any g ∈ G, and any xit ∈ X ). Furthermore, we also have that

a =

∫
Y

π̂1(θ
0)(f1(yit|xit; θ01))2∑G

j=1 π̂j(θ
0)fj(yit|xit; θ0j )

υ(dyit),

→
∫
Y

π̂1(θ
0)(f1(yit|xit; θ01))2

π̂1(θ0)f1(yit|xit; θ01)
υ(dyit),

→
∫
Y
f1(yit|xit; θ01)υ(dyit) = 1,

as all densities get infinitely distant from each other. The logic is similar for all other π̂g(θ
0).

A.6 Corollary 3.2

Proof. The corollary is a direct consequence of Corollary 3.1 and Theorem 3.1 under Assumption

1(ii) where the component density fg(yit|xit; θg) > 0 for each g ∈ G such that π̂(θ0) does not

converge in probability to π0 unless all component densities are infinitely distant from each other.

A.7 Proposition 3.2

Proof. As in Theorem 3.1, the WLLN implies that

π̂1(θ
0)

p−→ E0

[
f1(yit|xit; θ01)∑G
j=1 fj(yit|xit; θ0j )

]
,

= π0
1

∫
Y

(f1(yit|xit; θ01))2∑G
j=1 fj(yit|xit; θ0j )

υ(dyit) +

∫
Y

f1(yit|xit; θ01)
∑G

g=2 π
0
gfg(yit|xit; θ0g)∑G

j=1 fj(yit|xit; θ0j )
υ(dyit),

as N,T → ∞. If each π0
g = 1

G , then we have that

π̂1(θ)
p−→ 1

G

∫
Y

(f1(yit|xit; θ01))2∑G
j=1 fj(yit|xit; θ0j )

υ(dyit) +
1

G

∫
Y

f1(yit|xit; θ01)
∑G

g=2 fg(yit|xit; θ0g)∑G
j=1 fj(yit|xit; θ0j )

υ(dyit),

=
1

G

∫
Y

f1(yit|xit; θ01)
∑G

g=1 fg(yit|xit; θ0g)∑G
j=1 fj(yit|xit; θ0j )

υ(dyit),

=
1

G

∫
Y
f1(yit|xit; θ01)υ(dyit) =

1

G
= π0

1,

so the estimated mixing weight will converge to its true value as N,T → ∞. If each π0
g ̸= 1

G , the

former result does not hold anymore and we have that

π̂1(θ
0)

p−→ aπ0
1 + b,
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where

a =

∫
Y

(f1(yit|xit; θ01))2∑G
j=1 fj(yit|xit; θ0j )

υ(dyit),

and

b =

∫
Y

f1(yit|xit; θ01)
∑G

g=2 π
0
gfg(yit|xit; θ0g)∑G

j=1 fj(yit|xit; θ0j )
υ(dyit).

As in Theorem 3.1, we have that a → 1 and b → 0 as all component densities get infinitely distant

from each other.

A.8 Proposition 3.3

Proof. If all component densities get very similar to each other, this implies that

G∑
j=1

fj(yit|xit; θ0j ) ≊ Gf1(yit|xit; θ01).

Using the same logic as in Proposition 3.2, we have that

π̂1(θ
0)

p−→ π0
1

∫
Y

(f1(yit|xit; θ01))2∑G
j=1 fj(yit|xit; θ0j )

υ(dyit) +

∫
Y

f1(yit|xit; θ01)
∑G

g=2 π
0
gfg(yit|xit; θ0g)∑G

j=1 fj(yit|xit; θ0j )
υ(dyit),

= π0
1

∫
Y

(f1(yit|xit; θ01))2

Gf1(yit|xit; θ01)
υ(dyit) +

∫
Y

f1(yit|xit; θ01)f1(yit|xit; θ01)
∑G

g=2 π
0
g

Gf1(yit|xit; θ01)
υ(dyit),

=
π0
1

G

∫
Y
f1(yit|xit; θ01)υ(dyit) +

(1− π0
1)

G

∫
Y
f1(yit|xit; θ01)υ(dyit),

=
π0
1

G
+

1− π0
1

G
=

1

G
,

as N,T → ∞. Hence, removing the mixing weights from the RHS of eq.(3) is identical to including

informative priors of 1/G on each π0
g , which will “dominate” the likelihood if the component

densities are too similar to each other.

A.9 Lemma 3.3

Proof. Unbiasedness of all three classifiers are treated separately. For notational convenience, I

drop the “0” subscript in the expected value E0 for all remaining proofs. All expectations are taken

with respect to the true joint density fz0it
(yit, xit|θ0z0it , ξ

0
z0it
) unless stated otherwise.

1. Joint density classifier From Definition 2 and Definition 5, we can write that

E[fz0it(yit, xit|θ
0
z0it
, ξ0z0it

)] > E[fj(yit, xit|θ0j , ξ0j )] ⇒ argmax
g∈G

E[fg(yit, xit|θ0g , ξ0g)] = z0it,

for any value j ̸= z0it if θ0j = θ0g ⇔ j = g or if ξ0j = ξ0g ⇔ j = g, which is satisfied if
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µ0
j = µ0

g ⇔ j = g. Furthermore, we can write that

argmax
g∈G

E[fg(yit, xit|θ0g , ξ0g)] ⇔ argmax
g∈G

E

[
log

(
fg(yit, xit|θ0g , ξ0g)

fz0it
(yit, xit|θ0z0it , ξ

0
z0it
)

)]
,

given that fz0it
(yit, xit|θ0z0it , ξ

0
z0it
) > 0 for any (yit, xit) ∈ Y × X and any z0it ∈ G by Assumption

1(ii). Therefore, we can apply Jensen’s inequality on the LHS and obtain the following

E

[
log

(
fg(yit, xit|θ0g , ξ0g)

fz0it
(yit, xit|θ0z0it , ξ

0
z0it
)

)]
≤ log

(
E

[
fj(yit, xit|θ0j , ξ0j )

fz0it
(yit, xit|θ0z0it , ξ

0
z0it
)

])
,

≤ log

(∫
Y

∫
X

fj(yit, xit|θ0j , ξ0j )
fz0it

(yit, xit|θ0z0it , ξ
0
z0it
)
fz0it

(yit, xit|θ0z0it , ξ
0
z0it
)υ(dyit)ν(dxit)

)
,

≤ log

(∫
Y
fj(yit|xit; θ0j )υ(dyit)

∫
X
fj(xit|ξ0j )ν(dxit)

)
,

≤ log (1) = 0.

By Assumption 1(ii) and Assumption 2(v), the upper bound of Jensen’s inequality will be

reached if and only if j = z0it, thus implying that argmax
g∈G

E[fg(yit, xit|θ0g , ξ0g)] = z0it.

2. Euclidean distance classifier Following the same logic as above, we have that

E[||xit − µ0
z0it
||2] < E[||xit − µ0

j ||2] ⇒ argmax
g∈G

E[−||xit − µg||2] = z0it,

for any value j ̸= z0it. From Appendix A.20, we also have that

E[||xit − µj ||2] =
p∑

l=1

σ2
z0it,ll

+

p∑
l=1

(ajz0it,l
)2 >

p∑
l=1

σ2
z0it,ll

= E[||xit − µz0it
||2],

given that at least one element in ajz0it
= µ0

j − µ0
z0it

is non-zero if j ̸= z0it.

3. Mahalanobis distance classifier Following the same logic as above, we have that

E[d2(xit,µ0
z0it
,Σ0

z0it
)] < E[d2(xit,µ0

j ,Σ
0
j )] ⇒ argmax

g∈G
E[−d2(xit,µ

0
g,Σ

0
g)] = z0it,

for any value j ̸= z0it. From Appendix A.22, we also have that

E[d2(xit,µ0
j ,Σ

0
j )] = p+

p∑
l=1

(bjz0it,l
)2 > p = E[d2(xit,µ0

z0it
,Σ0

z0it
)],

if Σj = Σz0it
and given that at least one term in the sum

∑p
l=1(bjz0it,l

)2 is strictly positive.
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A.10 Lemma 3.4

Proof. From Definition 2 and Definition 5, we can write that

E[d2(xit,µ0
z0it
,Σ0

z0it
)] < E[d2(xit,µ0

j ,Σ
0
j )] ⇒ argmax

g∈G
E[−d2(xit,µg,Σg)] = z0it,

for any j ̸= z0it. Using the results from Appendix A.21 and Appendix A.22, we have that

E[d2(xit,µ0
z0it
,Σ0

z0it
)] = p,

and that

E[d2(xit,µ0
j ,Σ

0
j )] = p+

p∑
l=1

∑
m≤l

(vjz0it,lm
)2 +

p∑
l=1

(bjz0it,l
)2 − 2

p∑
l=1

vjz0it,ll
,

= p+

p∑
l=1

∑
m≤l

(vjz0it,lm
)2 − 2

p∑
l=1

vjz0it,ll
,

if µ0
j = µ0

z0it
. This implies that the Mahalanobis distance classifier will be unbiased if

2

p∑
l=1

vjz0it,ll
<

p∑
l=1

∑
m≤l

(vjz0it,lm
)2,

for any j ̸= z0it. This inequality will be satisfied if p is sufficiently large given that the expression

on the RHS is a sum of p(p + 1)/2 positive terms while the expression on the LHS is a sum of p

terms that can be either positive, negative, or null depending on the sign of the diagonal elements

of Ajz0it
= Wz0it

−Wj .

A.11 Theorem 3.2

Proof. From Definition 5(c), we have that

P[∪G
g=1(z

M
it(g)(µ

0,Σ0) ̸= z0itg)] ⇔ P[d2(xit,µ0
z0it
,Σ0

z0it
) ≥ d2(xit,µ

0
j ,Σ

0
j )]

for at least one value j ̸= z0it. Hence, we can also write

P[∪G
g=1(z

M
it(g)(µ

0,Σ0) ̸= z0itg)] = 1− P[∩j ̸=z0it
(d2(xit,µ

0
z0it
,Σ0

z0it
) < d2(xit,µ

0
j ,Σ

0
j ))],

= 1−
∏
j ̸=z0it

P[d2(xit,µ0
z0it
,Σ0

z0it
) < d2(xit,µ

0
j ,Σ

0
j )],

= 1−
∏
j ̸=z0it

(1− P[d2(xit,µ0
z0it
,Σ0

z0it
) ≥ d2(xit,µ

0
j ,Σ

0
j )]),

where the second equality comes from the fact that µ0
j and Σ0

j are taken as given for any j ∈ G.
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Using the result from Appendix A.23, we have that

P[d2(xit, z0it) ≥ d2(xit, j)] ≤
E[d2(xit, z0it)]− Cov[d2(xit, j),1[d2(xit,z0it)≥d2(xit,j)]

]

E[d2(xit, j)]
,

where d2(xit, j) = d2(xit,µ
0
j ,Σ

0
j ) for any j ∈ G. Note that Cov[d2(xit, j),1[d2(xit,z0it)≥d2(xit,j)]

] is

always negative since P[1[d2(xit,z0it)≥d2(xit,j)]
= 0] = 1 as d2(xit, j) → ∞. Note also that it is

independent of p given that the distribution of both d2(xit, j)−E[d2(xit, j)] and 1[d2(xit,z0it)≥d2(xit,j)]
−

P[d2(xit, z0it) ≥ d2(xit, j)] are independent of p. To see this, we can write

P[d2(xit, j) ≥ aE[d2(xit, j)]] = P[d2(xit, j)a−1 − E[d2(xit, j)] ≥ 0] ≤ E[d2(xit, j)]
aE[d2(xit, j)]

=
1

a

for any a > 0 using the standard Markov’s inequality. Furthermore, we have that

P[b1[d2(xit,z0it)≥d2(xit,j)]
− P[d2(xit, z0it) ≥ d2(xit, j)] ≥ 0] = P[d2(xit, z0it) ≥ d2(xit, j)],

for any b ≥ P[d2(xit, z0it) ≥ d2(xit, j)]. Consequently, there exists a finite value M ∈ R such that

|Cov[d2(xit, j),1[d2(xit,z0it)≥d2(xit,j)]
]| ≤ M as p → ∞. Applying the result from Appendix A.22 and

the fact that E[d2(xit, z0it)] = p to the above inequality, we have that

P[d2(xit, z0it) ≥ d2(xit, j)] ≤
p− Cov[d2(xit, j),1[d2(xit,z0it)≥d2(xit,j)]

]

p+
∑p

l=1[
∑

m≤l(vjz0it,lm
)2 + (bjz0it,l

)2 − 2vjz0it,ll
]
.

As p → ∞, the last term inside the bracket in the denominator gets dominated by the other

term in the denominator since vjz0it,ll
can be either negative, positive, or null. Therefore, there

exists a constant 0 < k < ∞ such that

p+

p∑
l=1

∑
m≤l

(vjz0it,lm
)2 + (bjz0it,l

)2 − 2vjz0it,ll

 ≥ p+
kp(p+ 1)

2
+ kp = p

(
2 + pk + 3k

2

)
,

for any p > p∗, where p∗ is a large positive discrete number. From this, we can also write

p− Cov[d2(xit, j),1[d2(xit,z0it)≥d2(xit,j)]
]

p+
∑p

l=1[
∑

m≤l(vjz0it,lm
)2 + (bjz0it,l

)2 − 2vjz0it,ll
]
≤ p

p
(
2+pk+3k

2

) −
Cov[d2(xit, j),1[d2(xit,z0it)≥d2(xit,j)]

]

p
(
2+pk+3k

2

) ,

=
2

2 + pk + 3k
−

2Cov[d2(xit, j),1[d2(xit,z0it)≥d2(xit,j)]
]

p(2 + pk + 3k)
,

= O(p−1) +Op(p
−2) = Op(p

−1),

given that Cov[d2(xit, j),1[d2(xit,z0it)≥d2(xit,j)]
] is a random sequence in p, hence leading to

P[d2(xit, z0it) ≥ d2(xit, j)] = Op(p
−1).
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This implies that there exists a constant 0 < k̃ < ∞ such that

P[∪G
g=1(z

M
it(g)(µ

0,Σ0) ̸= z0itg)] ≤ 1− (1− k̃p−1)(G−1),

for p sufficiently large. If G is a finite constant, then P[∪G
g=1(z

M
it(g)(µ

0,Σ0) ̸= z0itg)] = Op(p
−1) since

p(1− (1− k̃p−1)(G−1)) = p− p

(
1− (G− 1)k̃

p
+O(p−2)

)
→ (G− 1)k̃ as p → ∞.

A.12 Theorem 3.3

Proof. From Definition 4 and the proof of Theorem 3.2, we can write that

P[∪N
i=1 ∪T

t=1 ∪G
g=1(z

M
it(g)(µ

0,Σ0) ̸= z0itg)] = 1− P[∩N
i=1 ∩T

t=1 ∩G
g=1(z

M
it(g)(µ

0,Σ0) = z0itg)],

= 1−
N∏
i=1

T∏
t=1

P[∩G
g=1(z

M
it(g)(µ

0,Σ0) = z0itg)],

= 1−
N∏
i=1

T∏
t=1

(1− P[∪G
g=1(z

M
it(g)(µ

0,Σ0) ̸= z0itg)]),

≤ 1− (1− k̃p−1)NT (G−1),

for p sufficiently large. The second equality comes from the fact that all vectors xit are independent

from each other by Assumption 2(v). Relaxing this assumption to include serial correlation in xit

would lead to

P[∩N
i=1 ∩T

t=1 ∩G
g=1(z

M
it(g)(µ

0,Σ0) = z0itg)] =
N∏
i=1

T∏
t=1

P[∩G
g=1(z

M
it(g)(µ

0,Σ0) = z0itg)| ∩j<t ∩G
g=1(z

M
ij(g)(µ

0,Σ0) = z0ijg)],

which is different from
∏N

i=1

∏T
t=1 P[∩G

g=1(z
M
it(g)(µ

0,Σ0) = z0itg)] if xit. However, relaxing this inde-

pendence assumption does not necessarily invalidate the conclusion of the theorem.

If we assume that p = a(NT )b and that G = ã(NT )b̃ with (a, b, ã, b̃) ∈ R4
>0, then

lim
N,T→∞

1− (1− k̃(a(NT )b)−1)(ã(NT )b̃−1)NT =


1 if 0 < b < b̃+ 1,

1− exp−ãk̃/a if b = b̃+ 1,

0 if b > b̃+ 1,

which implies that zMitg(µ
0,Σ0) is a uniformly consistent classifier if the number of covariates p

increases at a strictly higher-order rate than the number of groups relative to the sample size. For

instance, if b̃ = 1, then the number of groups is proportional to the sample size, and the number of

covariates has to increase at a rate that is more than twice the growth rate in the sample size for

zMitg(µ
0,Σ0) to be uniformly consistent. Note that if b̃ > 1, then the average number of observations

within each group goes to zero in the limit. In practice, it is important to impose b̃ ≤ 1 so that the
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number of groups does not increase at a faster rate than the sample size.

A.13 Corollary 3.3

Proof. This corollary is a special case of Theorem 3.3 where G is constant. If b̃ = 0, then uniform

consistency of zMitg(µ
0,Σ0) requires that p increases at a faster rate than the sample size. Note

that if P[d2(xit, z0it) ≥ d2(xit, j)] = Op(p
−λ) with λ > 1, then zMitg(µ

0,Σ0) would be a uniformly

consistent classifier when b > 1/λ. This would allow the number of observations to increase at a

higher rate than the number of covariates when G is constant.

A.14 Corollary 3.4

Proof. From Definition 3, we can write that

ÊNTp(θ
0, ξ0) =

N∑
i=1

T∑
t=1

G∑
g=1

1[z0itg ̸= zMit(g)(µ
0,Σ0)]

2NT
,

=

N∑
i=1

T∑
t=1

1[z0it ̸= zMit (µ
0,Σ0)]

NT

p−→ P[z0it ̸= zMit (µ
0,Σ0)] as N,T → ∞.,

which is equivalent to P[∪G
g=1(z

M
it(g)(µ

0,Σ0) ̸= z0itg)]. By Theorem 3.2, we know that

P[∪G
g=1(z

M
it(g)(µ

0,Σ0) ̸= z0itg)] ≤ 1− (1− k̃p−1)(G−1).

Following a similar logic as in the proof of Theorem 3.3 and assuming that G = apb with (a, b) ∈
R2
>0, we obtain that

lim
p→∞

1− (1− k̃p−1)(ap
b−1) = 0 if 0 < b < 1,

which means that the number of covariates has to grow at a strictly higher rate than the number

of groups.

A.15 Theorem 3.4

Proof. Using the same strategy as the proof of Theorem 3.2 and the results from Appendix A.20

and Appendix A.23, we can write that

P[||xit − µ0
z0it
||2 ≥ ||xit − µ0

j ||2] ≤
E[||xit − µ0

z0it
||2]− Cov[||xit − µ0

j ||2,1[||xit−µ0
z0
it

||2≥||xit−µ0
j ||2]

]

E[||xit − µ0
j ||2]

,

≤

∑p
l=1 σ

2
z0it,ll∑p

l=1 σ
2
z0it,ll

+
∑p

l=1(ajz0it,l
)2

−
Cov[||xit − µ0

j ||2,1[||xit−µ0
z0
it

||2≥||xit−µ0
j ||2]

]∑p
l=1 σ

2
z0it,ll

+
∑p

l=1(ajz0it,l
)2

,

≤ 1

1 + ãjz0it
+Op(p

−1)
p−→ cj,it ≥ 0 as p → ∞,
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where ãjz0it
=

||µ0
j−µ0

z0
it

||2

tr(Σ0
z0
it

)
, and where cj,it is a positive random variable whose distribution will

depend on the distribution of the true mean values µ0
j and µ0

z0it
, and on the distribution of the

variance σ2
z0it,ll

. Therefore, we can write that

P[∪G
g=1(z

E
it(g)(µ

0) ̸= z0itg)] = P[||xit − µ0
z0it
||2 ≥ ||xit − µ0

j ||2] for at least one j ̸= z0it,

= 1−
∏
j ̸=z0it

P[||xit − µ0
z0it
||2 < ||xit − µ0

j ||2],

= 1−
∏
j ̸=z0it

(1− P[||xit − µ0
z0it
||2 ≥ ||xit − µ0

j ||2]),

≤ 1−
∏
j ̸=z0it

(
1− 1

1 + ãjz0it
−Op(p

−1)

)
p−→ c̄it as p → ∞,

where c̄it ≥ 0. Therefore, we have that P[∪G
g=1(z

E
it(g)(µ

0,Σ0) ̸= z0itg)]
p−→ cit where cit ≥ 0 is also a

random variable whose value will vary between zero and c̄it if c̄it < 1.

A.16 Corollary 3.5

Proof. Akin to the proof of Corollary 3.4, we can write that

ÊNTp(θ
0, ξ0) =

N∑
i=1

T∑
t=1

1[z0it ̸= zEit (µ
0)]

NT

p−→ P[z0it ̸= zEit (µ
0)] as N,T → ∞.

By Definition 5(b) and as shown in the proof of Theorem 3.4, we know that

P[z0it ̸= zEit (µ
0)] ≤ 1−

∏
j ̸=z0it

(
1− 1

1 + ãjz0it
−Op(p

−1)

)
p−→ c̄it as p → ∞.

Therefore, we have that 0 ≤ P[z0it ̸= zEit (µ
0)] ≤ c̄it as p → ∞, where c̄it will be equal to zero if and

only if ãjg → ∞ as p → ∞ for all possible pairs (g, j) ∈ G×G\g.

A.17 Theorem 3.5

Proof. Let’s look at the CEM algorithm equipped with the joint density classifier. The first M-step

of the algorithm can be written as follows :

θ̂
(1)
NT := argmax

θ∈Θ

N∑
i=1

T∑
t=1

G∑
g=1

zDitg(θ
(0), ξ(0)) log(fg(yit|xit, θ)),

ξ̂
(1)
NT := argmax

ξ∈Ξ

N∑
i=1

T∑
t=1

G∑
g=1

zDitg(θ
(0), ξ(0)) log(fg(xit|ξ)).
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Note that the first equation can be rewritten as follows :

θ̂
(1)
NT =argmax

θ∈Θ

N∑
i=1

T∑
t=1

G∑
g=1

1[zD
it(g)

(θ(0),ξ(0))=z0itg ]
zDitg(θ

(0), ξ(0)) log(fg(yit|xit, θ))

+
N∑
i=1

T∑
t=1

G∑
g=1

1[zD
it(g)

(θ(0),ξ(0) )̸=z0itg ]
zDitg(θ

(0), ξ(0)) log(fg(yit|xit, θ)). (16)

An analogous equation can be formulated for ξ̂
(1)
NT . Given that zDitg(θ, ξ) is binary and that the

joint density f(yit, xit|θ, ξ) is continuous in both θ and ξ by definition of the joint density (and

similarly for zMitg(θ, ξ)), there exists a set (θ∗, ξ∗) ̸= (θ0, ξ0) in the neighborhood of (θ0, ξ0) such

that zDitg(θ
0, ξ0) = zDitg(θ

∗, ξ∗). If θ(0) = θ∗ and if ξ(0) = ξ∗, there exists a sample size (NT )∗ and a

number of covariates p∗ such that

zDitg(θ̂
(1)
NT , ξ̂

(1)
NT ) = zDitg(θ̂

∗(1)
NT , ξ̂

∗(1)
NT ),

for all sample sizes (NT ) > (NT )∗ and all values of p > p∗, and where

θ̂
∗(1)
NT = argmax

θ∈Θ

N∑
i=1

T∑
t=1

G∑
g=1

1[zD
it(g)

(θ(0),ξ(0))=z0itg ]
zDitg(θ

(0), ξ(0)) log(fg(yit|xit, θ)),

ξ̂
∗(1)
NT = argmax

ξ∈Ξ

N∑
i=1

T∑
t=1

G∑
g=1

1[zD
it(g)

(θ(0),ξ(0))=z0itg ]
zDitg(θ

(0), ξ(0)) log(fg(xit|ξ)).

The equality zDitg(θ̂
(1)
NT , ξ̂

(1)
NT ) = zDitg(θ̂

∗(1)
NT , ξ̂

∗(1)
NT ) is valid given that the second term of eq.(16) be-

comes arbitrarily small for any (NT ) > (NT )∗ and any p > p∗ by consistency of zDitg(θ, ξ). If

zDitg(θ̂
(1)
NT , ξ̂

(1)
NT ) = zDitg(θ̂

∗(1)
NT , ξ̂

∗(1)
NT ) = zDitg(θ

(0), ξ(0)) = zDitg(θ
0, ξ0), then the CEM algorithm has con-

verged to a stationary point given that all estimated group memberships remained constant between

two consecutive iterations. Therefore, we can write that

θ̂
(2)
NT =argmax

θ∈Θ

1

NT

N∑
i=1

T∑
t=1

G∑
g=1

zDitg(θ
0, ξ0) log(fg(yit|xit, θ)),

p−→ argmax
θ∈Θ

G∑
g=1

E
[
zDitg(θ

0, ξ0) log(fg(yit|xit, θ))
]
as N,T, p → ∞,

=argmax
θ∈Θ

G∑
g=1

E[zDitg(θ0, ξ0)]E[log(fg(yit|xit, θ))] +
G∑

g=1

Cov[zDitg(θ
0, ξ0), log(fg(yit|xit, θ))],

=argmax
θ∈Θ

G∑
g=1

P[zDitg(θ0, ξ0) = 1]E[log(fg(yit|xit, θ))] + Cov[

G∑
g=1

zDitg(θ
0, ξ0), log(fg(yit|xit, θ))],

=argmax
θ∈Θ

E[log(fz0it(yit|xit, θ))] = θ0,
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where I use the fact that zDitg(θ
0, ξ0) = 1 w.p.a. 1 if and only if g = z0it, and zDitg(θ

0, ξ0) = 0 w.p.a.

1 if and only if g ̸= z0it by consistency of zDitg(θ
0, ξ0). Furthermore, the covariance term is always

equal to zero given that
∑G

g=1 z
D
itg(θ

0, ξ0) = 1 for any (θ0, π0) ∈ Θ× Π by construction. Note that

the probability P[zDitg(θ0, ξ0) = 1] ̸= {0, 1} in finite samples even if zDitg(θ
0, ξ0) is binary, thus leading

to a finite-sample misclassification bias.

If zDitg(θ̂
(1)
NT , ξ̂

(1)
NT ) = zDitg(θ̂

∗(1)
NT , ξ̂

∗(1)
NT ) ̸= zDitg(θ

(0), ξ(0)) = zDitg(θ
0, ξ0), then the CEM algorithm

has not converged to a stationary point and other iterations of the algorithm are needed to reach

a stationary point. Since the MCL function never decreases between two consecutive iterations

of the CEM algorithm and its expected value is bounded from above by Assumption 2(i), there

exists a discrete number k < ∞ such that zDitg(θ̂
(k)
NT , ξ̂

(k)
NT ) = zDitg(θ̂

(k+1)
NT , ξ̂

(k+1)
NT ), which implies that

θ̂
(k+2)
NT = θ̂

(k+1)
NT and that ξ̂

(k+2)
NT = ξ̂

(k+1)
NT , and the algorithm has converged to a stationary point

such that (θ̂
(k+2)
NT , ξ̂

(k+2)
NT )

p−→ (θ0, ξ0) as N,T → ∞.

If θ(0) and ξ(0) are too distant from θ0 and ξ0 respectively, then the CEM algorithm may converge

to a stationary point such that θ̂
(k+2)
NT = θ̂

(k+1)
NT

p−→ θ̄ ̸= θ0 and such that ξ̂
(k+2)
NT = ξ̂

(k+1)
NT

p−→ ξ̄ ̸= ξ0 as

N,T, p → ∞. In this case, other values of θ(0) and ξ(0) have to be assessed to ensure consistency of

the estimation procedure, as it is well known in the literature on the EM and the CEM algorithms

(Frühwirth-Schnatter, 2006; McLachlan and Peel, 2000).

A.18 Theorem 3.6

Proof. The derivation of the asymptotic distribution of the CEM algorithm is identical to the

derivation of the asymptotic distribution of any ML estimator with cluster-robust variance but at

the group level with the inclusion of the binary classifier zitg(θ, ξ) in the definition of sig(θ). See

Section 12.3 of Wooldridge (2010) for a general proof. The scaling factor
√
ng(θ̂(k), ξ̂(k)) comes from

the fact that group membership is not restricted over time so that each unit i does not equally

contribute to the estimation of the parameters θ̂
(k)
g .

A.19 Example of inconsistency of θ when the mixing weights do not converge

Let Assumption 1 hold, and let the true mixture density be defined as follows

f(yi|θ0, π0) := π0
1λ

0
1 exp(−λ0

1yi) + π0
2λ

0
2 exp(−λ0

2yi),

with π0
1 = 1 − π0

2. Then, the ML estimates λ1 and λ2 will be asymptotically biased if π1 does not

converge to π0
1.

Proof. Under Assumption 1(vi), we have that the first-order condition

∂E[log(f(yi|θ, π))]
∂θ

∣∣∣∣
θ=θ0

= 0,

is necessary (but insufficient) for θ to converge to θ0 as the sample size tends to infinity. If we
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assume that π = π̃ ̸= π0, then we have that

∂E[log(f(yi|θ, π̃))]
∂θ

∣∣∣∣
θ=θ0

=

∫
Y

f(yi|θ0, π0)

f(yi|θ0, π̃)
∂f(yi|θ, π̃)

∂θ

∣∣∣∣
θ=θ0

dyi,

=

∫
Y

π0
1λ

0
1 exp(−λ0

1yi) + π0
2λ

0
2 exp(−λ0

2yi)

π̃1λ0
1 exp(−λ0

1yi) + π̃2λ0
2 exp(−λ0

2yi)
[π̃1 exp(−λ0

1yi) + π̃2 exp(−λ0
2yi)]dyi

−
∫
Y
yi(π

0
1λ

0
1 exp(−λ0

1yi) + π0
2λ

0
2 exp(−λ0

2yi))dyi.

Reorganizing the terms then leads to

∂E[log(f(yi|θ, π̃))]
∂θ

∣∣∣∣
θ=θ0

=

∫
Y

π0
1λ

0
1 + π0

2λ
0
2 exp(yi(λ

0
1 − λ0

2))

π̃1λ0
1 + π̃2λ0

2 exp(yi(λ
0
1 − λ0

2))
[π̃1 exp(−λ0

1yi) + π̃2 exp(−λ0
2yi)]dyi −

π0
1

λ0
1

− π0
2

λ0
2

,

given that ayi exp(−ayi) integrates to
1
a when yi goes from 0 to +∞ for any a ∈ R. If π̃ = π0, then

∂E[log(f(yi|θ, π0))]

∂θ

∣∣∣∣
θ=θ0

=

∫
Y
[π0

1 exp(−λ0
1yi) + π0

2 exp(−λ0
2yi)]dyi −

π0
1

λ0
1

− π0
2

λ0
2

,

= π0
1

∫
Y
exp(−λ0

1yi)dyi + π0
2

∫
Y
exp(−λ0

2yi)dyi −
π0
1

λ0
1

− π0
2

λ0
2

,

=
π0
1

λ0
1

+
π0
2

λ0
2

− π0
1

λ0
1

− π0
2

λ0
2

= 0,

which satisfies the FOC for consistency. If π̃ ̸= π0, then we need to have∫
Y

π0
1λ

0
1 + π0

2λ
0
2 exp(yi(λ

0
1 − λ0

2))

π̃1λ0
1 + π̃2λ0

2 exp(yi(λ
0
1 − λ0

2))
[π̃1 exp(−λ0

1yi) + π̃2 exp(−λ0
2yi)]dyi =

π0
1

λ0
1

+
π0
2

λ0
2

,

to ensure that the true parameter values λ0
1 and λ0

2 are located at a maximum of the expected log

likelihood function. By distributing the right parenthesis and reorganizing the terms, we get to

this condition :∫
Y

π̃1π
0
1λ

0
1 exp(−λ0

1yi) + (π̃1π
0
2λ

0
2 + π̃2π

0
1λ

0
1) exp(−λ0

2yi) + π̃2π
0
2λ

0
2 exp(yi(λ

0
1 − 2λ0

2))

π̃1λ0
1 + π̃2λ0

2 exp(yi(λ
0
1 − λ0

2))
dyi =

π0
1

λ0
1

+
π0
2

λ0
2

.

We can integrate each term on the LHS with yi going from 0 to ∞ using an appropriate change in

variable. For instance, if we set ci = π̃2λ
0
2 exp(yi(λ

0
1 − λ0

2)), we have that

dci
dyi

= (λ0
1 − λ0

2)π̃2λ
0
2 exp(yi(λ

0
1 − λ0

2)) = (λ0
1 − λ0

2)ci,

which implies that

exp(−λ0
1yi) =

(
ci

π̃2λ0
2

)− λ01
λ01−λ02 .
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Hence, we get that the first term in the integral is equal to :

∫
Y

π̃1π
0
1λ

0
1 exp(−λ0

1yi)

π̃1λ0
1 + π̃2λ0

2 exp(yi(λ
0
1 − λ0

2))
dyi =

∫
C

π̃1π
0
1λ

0
1

(π̃1λ0
1 + ci)(λ0

1 − λ0
2)ci

(
π̃2λ

0
2

ci

) λ01
λ01−λ02

dci,

=
π̃1π

0
1λ

0
1(π̃2λ

0
2)

λ01
λ01−λ02

λ0
1 − λ0

2

∫
C

(π̃1λ0
1 + ci)c

λ01
λ01−λ02

+1

i

−1

dci,

=
π̃1π

0
1λ

0
1(π̃2λ

0
2)

λ01
λ01−λ02

λ0
1 − λ0

2

(λ0
1 − λ0

2)(π̃2λ
0
2)

−λ01
λ01−λ02 2F 1(1,

−λ0
1

λ0
1−λ0

2
,

−λ0
2

λ0
1−λ0

2
,
−π̃2λ0

2

π̃1λ0
1
)

π̃1(λ0
1)

2

 ,

=
π0
1

λ0
1

× 2F 1

(
1,

−λ0
1

λ0
1 − λ0

2

,
−λ0

2

λ0
1 − λ0

2

,
−π̃2λ

0
2

π̃1λ0
1

)
,

where the third equality comes from the fact that yi ∈ [0,∞] ⇒ ci ∈ [π̃2λ
0
2, 0] if (λ

0
1 − λ0

2) < 0, and

where 2F 1(a, b, c, z) refers to the hypergeometric function. It is defined for |z| < 1, which implies

that

π̃2λ
0
2 < π̃1λ

0
1 ⇒ π̃2 < π̃1,

since we just assumed that (λ0
1 − λ0

2) < 0. Using the same strategy, we can show that the integral

of the second and the third terms in the original integral are respectively equal to∫
Y

(π̃1π
0
2λ

0
2 + π̃2π

0
1λ

0
1) exp(−λ0

2yi)

π̃1λ0
1 + π̃2λ0

2 exp(yi(λ
0
1 − λ0

2))
dyi =

(
π0
2

λ0
1

+
π̃2π

0
1

π̃1λ0
2

)
× 2F 1

(
1,

−λ0
2

λ0
1 − λ0

2

,
λ0
1 − 2λ0

2

λ0
1 − λ0

2

,
−π̃2λ

0
2

π̃1λ0
1

)
,∫

Y

π̃2π
0
2λ

0
2 exp(yi(λ

0
1 − 2λ0

2))

π̃1λ0
1 + π̃2λ0

2 exp(yi(λ
0
1 − λ0

2))
dyi =

π0
2

λ0
2

× π̃2λ
0
2

π̃1λ0
1(2− λ0

1/λ
0
2)

× 2F 1

(
1,

λ0
1 − 2λ0

2

λ0
1 − λ0

2

,
2λ0

1 − 3λ0
2

λ0
1 − λ0

2

,
−π̃2λ

0
2

π̃1λ0
1

)
.

For the first-order condition to be satisfied, it requires that

2F 1

(
1,

−λ0
1

λ0
1 − λ0

2

,
−λ0

2

λ0
1 − λ0

2

,
−π̃2λ

0
2

π̃1λ0
1

)
= 1,(

π0
2

λ0
1

+
π̃2π

0
1

π̃1λ0
2

)
× 2F 1

(
1,

−λ0
2

λ0
1 − λ0

2

,
λ0
1 − 2λ0

2

λ0
1 − λ0

2

,
−π̃2λ

0
2

π̃1λ0
1

)
= 0,

π̃2λ
0
2

π̃1λ0
1(2− λ0

1/λ
0
2)

× 2F 1

(
1,

λ0
1 − 2λ0

2

λ0
1 − λ0

2

,
2λ0

1 − 3λ0
2

λ0
1 − λ0

2

,
−π̃2λ

0
2

π̃1λ0
1

)
= 1,

since no hypergeometric function contains π0
1 nor π0

2 as arguments. However, the second equality

can never be true given that

π0
2

λ0
1

+
π̃2π

0
1

π̃1λ0
2

= 0 ⇒ λ0
2

λ0
1

= − π̃2π
0
1

π̃1π0
2

,

which is only possible if both ratios are equal to zero, a contradiction since all elements on each

60



side of the equation are strictly positive by assumption. Moreover, we have that

2F 1(a, b, c, z) =
Γ(c)

Γ(a)Γ(b)

∞∑
j=0

Γ(a+ j)Γ(b+ j)

Γ(c+ j)j!
zj ,

where Γ(·) denotes the Gamma function, and which is never equal to zero for any value a, b, c, and z

such that 2F 1(a, b, c, z) is well-defined, although it becomes arbitrarily close to zero as π̃2 → 0.

A.20 Lemma S.1

Let Assumptions 1(ii)-(iii) and 2 hold. Then

E[||xit − µ0
j ||2] =

p∑
l=1

σ2
z0it,ll

+

p∑
l=1

(ajz0it,l
)2,

where ajg,l is the l
th element of the p-sized column-vector ajg := µ0

j−µ0
g for any pair (j, g) ∈ G×G.

Proof. Given that E[||xit − µ0
j ||2] is a scalar, we have that

E[||xit − µ0
j ||2] = tr(E[||xit − µ0

j ||2]),
= tr(E[(xit − µ0

j )
⊤(xit − µ0

j )]),

= tr(E[(xit − µ0
z0it

− ajz0it
)(xit − µ0

z0it
− ajz0it

)⊤]),

= tr(Σ0
z0it
)− 2× tr(E[(xit − µ0

z0it
)a⊤

jz0it
]) + tr(ajz0it

a⊤
jz0it

),

=

p∑
l=1

σ2
z0it,ll

+

p∑
l=1

(ajz0it,l
)2,

given that E[xit] = µ0
z0it

and that ajz0it
is non-random, and where tr(·) is the trace operator.

A.21 Lemma S.2

Let Assumptions 1(ii)-(iii) and 2 hold. Then

tr({Σ0
j}−1Σ0

z0it
) = p− 2

p∑
l=1

vjz0it,ll
+

p∑
l=1

∑
m≤l

(vjz0it,lm
)2,

where vjg,lm corresponds to the entry located at the lth row and at the mth column of Vjg = W−1
g Ajg,

with Wg and Ajg both corresponding to p× p lower triangular matrices for any pair (j, g) ∈ G×G.

Proof. Given that Σ0
j is a p× p symmetric, positive-definite matrix, there exists a lower triangular

matrix Wj such that {Σ0
j}−1 = WjW

⊤
j for each j ∈ G. If we define the lower triangular matrix
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Ajz0it
:= Wz0it

−Wj for any j ̸= z0it, we have that

tr({Σ0
j}−1Σ0

z0it
) = tr(WjW

⊤
j Σ0

z0it
),

= tr((Wz0it
−Ajz0it

)(Wz0it
−Ajz0it

)⊤Σ0
z0it
),

= p+ tr(Ajz0it
A⊤

jz0it
Σ0
z0it

−Ajz0it
W⊤

z0it
Σ0
z0it

−Wz0it
A⊤

jz0it
Σ0
z0it
),

= p+ tr(Ajz0it
A⊤

jz0it
{W⊤

z0it
}−1W−1

z0it
−Ajz0it

W⊤
z0it
{W⊤

z0it
}−1W−1

z0it
−Wz0it

A⊤
jz0it

{W⊤
z0it
}−1W−1

z0it
),

= p+ tr(A⊤
jz0it

{W⊤
z0it
}−1W−1

z0it
Ajz0it

)− tr(Ajz0it
W−1

z0it
)− tr(A⊤

jz0it
{W⊤

z0it
}−1),

= p+ tr({W−1
z0it

Ajz0it
}⊤W−1

z0it
Ajz0it

)− 2tr(W−1
z0it

Ajz0it
),

= p+ tr(V ⊤
jz0it

Vjz0it
)− 2tr(Vjz0it

),

= p− 2

p∑
l=1

vjz0it,ll
+

p∑
l=1

∑
m≤l

(vjz0it,lm
)2

given that each element of Vjz0it
= W−1

z0it
Ajz0it

above the main diagonal is equal to zero.

A.22 Lemma S.3

Let Assumptions 1(ii)-(iii) and 2 hold. Then

E[(xit − µ0
j ){Σ0

j}−1(xit − µ0
j )

⊤] = p− 2

p∑
l=1

vjz0it,ll
+

p∑
l=1

∑
m≤l

(vjz0it,lm
)2 +

p∑
l=1

(bjz0it,l
)2

where vjg,lm is defined as in Appendix A.21 and where bjg,l corresponds to the lth element of the

p-sized row-vector bjg = a⊤jgWj for any pair (j, g) ∈ G×G, with ajg defined as in Appendix A.20

and where Wj is a p× p lower triangular matrix such that {Σ0
j}−1 = WjW

⊤
j for any j ∈ G.

Proof. From the proof in Appendix A.21, we can write that

E[(xit − µ0
j ){Σ0

j}−1(xit − µ0
j )

⊤] = tr(E[(xit − µ0
j )

⊤{Σ0
j}−1(xit − µ0

j )]),

= tr({Σ0
j}−1E[(xit − µ0

z0it
− ajz0it

)(xit − µ0
z0it

− ajz0it
)⊤]),

= tr({Σ0
j}−1Σ0

z0it
) + tr({Σ0

j}−1E[2(µ0
z0it

− xit)a
⊤
jz0it

+ ajz0it
a⊤
jz0it

]),

= tr({Σ0
j}−1Σ0

z0it
) + tr(WjW

⊤
j ajz0it

a⊤
jz0it

),

= tr({Σ0
j}−1Σ0

z0it
) +

p∑
l=1

(bjz0it,l
)2,

From the same proof, we also know that

tr({Σ0
j}−1Σ0

z0it
) = p− 2

p∑
l=1

vjz0it,ll
+

p∑
l=1

∑
m≤l

(vjz0it,lm
)2,

where vjz0it,lm
is defined as in Appendix A.21. Combining the two results completes the proof.

62



A.23 Lemma S.4

Let f(x) and g(x) be two distinct, univariate and positive functions of the p-variate random variable

X, where f : Rp → R≥0 and g : Rp → R≥0 such that the two functions share the same support and

the same image. Let also f(x) ̸= g(x) for at least one x ∈ X with E[f(x)] < ∞ and E[g(x)] < ∞
for any |x|1 < ∞, where | · |1 denotes the L1 norm. Then

P[f(x) ≥ g(x)] ≤
E[f(x)]− Cov[g(x),1[f(x)≥g(x)]]

E[g(x)]
,

provided that E[g(x)] ̸= 0.

Proof. This lemma is a generalization of Markov’s inequality to univariate functions of X on both

sides of the inequality that is contained within the probability. The standard Markov’s inequality

for functions of X states that

P[f(x) ≥ a] ≤ E[f(x)]
a

,

for any constant a > 0 and any function f(x), which is a special case of the generalized inequality

when g(x) = a. The argument for the generalized Markov’s inequality goes as follows. Let the

indicator function 1[f(x)≥g(x)] be equal to one if and only if f(x) ≥ g(x) and zero otherwise.

Therefore, we have that

f(x) ≥ g(x)1[f(x)≥g(x)],

which is always satisfied. Hence, we can take expectation on both sides of the inequality and it will

never be reversed since

E[g(x)1[f(x)≥g(x)]] =

∫
X
g(x)1[f(x)≥g(x)]pX(x)dx,

=

∫
f(x)≥g(x)

g(x)pX(x)dx,

≤
∫
f(x)≥g(x)

f(x)pX(x)dx ≤
∫
X
f(x)pX(x)dx = E[f(x)],

where pX(x) corresponds to the true generating density of X. The last inequality comes from the

fact that f(x) ≥ 0 for any x ∈ X . Note also that equality occurs when g(x) = f(x) for all x ∈ X\x∗ ,

where x∗ is a set of measure zero in X . Therefore we can write that

E[f(x)] ≥ E[g(x)1[f(x)≥g(x)]],

≥ Cov[g(x),1[f(x)≥g(x)]] + E[g(x)]E[1[f(x)≥g(x)]],

≥ Cov[g(x),1[f(x)≥g(x)]] + E[g(x)]P[f(x) ≥ g(x)].

Subtracting Cov[g(x),1[f(x)≥g(x)]] and then dividing by E[g(x)] on each side of the inequality leads

to the generalized Markov’s inequality.
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B Details of the estimation procedure for the second simulation

exercise

In practice, both the EM and the CEM algorithms correspond to an iterative weighted generalized

least squares (IWGLS) procedure where the weights depend on the chosen algorithm. It is a form

of generalized least squares (GLS) procedure given that the variance of the unit-random effects σ2
α,j

is taken into account through the use of the following equation

ˆ̃
β(k+1)
g = (

N∑
i=1

{X̃(k)
ig }⊤{Ω̂(k)

g }−1X̃
(k)
ig )−1(

N∑
i=1

{X̃(k)
ig }⊤{Ω̂(k)

g }−1ỹ
(k)
ig ), (17)

where X̃
(k)
ig = (w

(k)
i1gX

⊤
i1, ..., w

(k)
iTgX

⊤
iT )

⊤, ỹ
(k)
ig = (w

(k)
i1gyi1, ..., w

(k)
iTgyiT )

⊤, with

w
(k)
itg =

zDitg(
ˆ̃
β(k), Ω̂(k−1), ξ̂(k−1)) if the CEM algorithm is used,

τitg(
ˆ̃
β(k), Ω̂(k−1), π̂(k−1)) if the EM algorithm is used,

(18)

where Ω̂(k) = (Ω̂
(k)
1 , ..., Ω̂

(k)
G ) refers to the set of variance-covariance matrices of the outcome for

each group, and where π̂(k) = (π̂
(k)
1 , ..., π̂

(k)
G ) is estimated using eq.(7) and eq.(8). The elements on

the main diagonal of Ω̂
(k)
g are estimated using

ω̂
2(k)
α+ϵ,g =

∑N
i=1

∑T
t=1(w

(k)
itg ϵ̂

(k)
itg )

2∑N
i=1

∑T
t=1w

(k)
itg − 2p− T

, (19)

which corrects for the finite-sample bias, while the off-diagonal elements are estimated using

ω̂2(k)
α,g =

1

Ng

N∑
i=1

∑T
t=1w

(k)
itg ϵ̂

(k)
itg∑T

t=1w
(k)
itg

− 1

Ng

N∑
j=1

(∑T
t=1w

(k)
jtg ϵ̂

(k)
jtg∑T

t=1w
(k)
jtg

)2

, (20)

where ϵ̂
(k)
itg = yit−Xit

ˆ̃
β
(k)
g , Ng =

∑N
i=1 1[

∑T
t=1w

(k)
itg ̸= 0], and where w

(k)
itg is defined as above. When

using the CEM algorithm, one has to make sure that
∑T

t=1w
(k)
itg ̸= 0 for any i ∈ {1, ..., N}, which

never occurs with the EM algorithm. Finally, ξ̂(k) = (µ̂(k), Σ̂(k)) is computed using the following

equations

µ̂(k)
g =

N∑
i=1

T∑
t=1

w
(k)
itg xit∑N

j=1

∑T
l=1w

(k)
jlg

, Σ̂(k)
g =

∑N
i=1w

(k−1)
itg (xit − µ̂(k)

g )(xit − µ̂(k)
g )⊤

(
∑N

j=1

∑T
t=1w

(k)
jtg)− p

.

Note that the estimators presented in eq.(17) and eq.(19) do not correspond to the estimators

typically used in the literature on the EM algorithm and finite mixtures (see, for instance, Celeux
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(2019)). Those more “typical” estimators are represented by the following equations

ˆ̃
β(k+1)
g = (

N∑
i=1

{X̃(k)
ig }⊤{Ω̂(k)

g }−1Xi)
−1(

N∑
i=1

{X̃(k)
ig }⊤{Ω̂(k)

g }−1yi),

and

ω̂
2(k)
α+ϵ,g =

∑N
i=1

∑T
t=1w

(k)
itg (ϵ̂

(k)
itg )

2∑N
i=1

∑T
t=1w

(k)
itg − 2p− T

,

where Xi = (X⊤
i1, ..., X

⊤
iT )

⊤ and where yi = (yi1, ..., yiT )
⊤. However, those two estimators yielded

very poor performance in the context of the iterative GLS approach, which explains why they were

discarded for the second simulation exercise.
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C Additional Simulation Results

C.1 First Simulation Exercise

µ0 E(θ0, π0)

(%)

N l(θ̂, π̂)− l(θ0, π0) RMSE,

EM

lMC(θ̂, π̂)− lC(θ0, π0) RMSE,

CEM

(1) (2) (3) (4) (5) (6) (7)

2,000 2.614 2.58488 982.1 0.60388

10,000 0.816 2.57130 4840.7 0.58816

(-0.25,
40.1

20,000 0.031 2.47074 9621.9 0.57935

0.25) 50,000 1.425 2.41382 24246.1 0.58406

200,000 -3.344 0.76522 96596.7 0.58118

1,000,000 -12.122 0.09716 483152.0 0.57993

2,000 3.189 1.05061 875.9 0.48139

10,000 -7.132 0.91988 4224.2 0.43543

(-0.5,
30.9

20,000 3.388 0.72230 8349.5 0.43733

0.5) 50,000 1.964 0.09274 21240.7 0.43996

200,000 2.207 0.11510 84543.9 0.43986

1,000,000 -0.187 0.09766 421934.5 0.44062

(-1, 1) 15.9

2,000 1.660 0.15334 566.4 0.36339

10,000 2.248 0.00785 2561.1 0.37335

20,000 5.436 0.06951 4933.1 0.38264

50,000 1.485 0.00616 12777.9 0.38766

200,000 1.769 0.02440 51345.8 0.38348

1,000,000 0.884 0.01423 254605.4 0.38570

(-2, 2) 2.3

2,000 2.620 0.02663 108.5 0.18752

10,000 3.828 0.00676 447.8 0.16991

20,000 4.196 0.01332 739.4 0.14588

50,000 2.830 0.00904 1941.6 0.13660

200,000 1.624 0.00247 7993.7 0.14377

1,000,000 0.685 0.00085 39168.4 0.13756

Table 5: Root mean square errors (RMSEs) of the estimated mean values and differences in log likelihood
values when G = 2 and π0 = (0.25, 0.75); the true variances are all equal to one.
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Algorithm µ0 π̂1 π̂2 µ̂1 µ̂2 σ̂1 σ̂2

(1) (2) (3) (4) (5) (6) (7) (8)

EM

(-0.25, 0.25) 0.00000 1.00000 -0.19285 0.12505 3.16313 1.02349

(-0.5, 0.5) 0.19334 0.80666 -0.63267 0.46162 0.97664 1.00657

(-1, 1) 0.25499 0.74501 -0.98112 1.00699 1.00801 0.99772

(-2, 2) 0.24995 0.75005 -2.00118 2.00020 1.00143 1.00024

CEM

(-0.25, 0.25) 0.49900 0.50100 -0.69324 0.94005 0.61924 0.61468

(-0.5, 0.5) 0.49328 0.50672 -0.63225 1.10893 0.67170 0.64087

(-1, 1) 0.44343 0.55657 -0.69554 1.45259 0.86439 0.71105

(-2, 2) 0.27751 0.72249 -1.82512 2.08522 1.09129 0.91621

Table 6: Estimated values for each scenario when G = 2, π0 = (0.25, 0.75), and N = 1, 000, 000.
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µ0 E(θ0, π0)

(%)

N l(θ̂, π̂)− l(θ0, π0) RMSE,

EM

lMC(θ̂, π̂)− lC(θ0, π0) RMSE,

CEM

(1) (2) (3) (4) (5) (6) (7)

3,000 7.062 0.82353 2653.3 0.75456

15,000 7.985 0.29892 13070.8 0.70468

(-0.25,
60.0

30,000 2.764 0.29072 26068.5 0.70865

0, 0.25) 75,000 1.607 0.51585 65618.5 0.70856

300,000 0.990 0.52223 261714.4 0.70774

1,500,000 1.686 0.51465 1309189.5 0.70765

3,000 4.823 1.05944 2490.3 0.58624

15,000 6.376 0.26268 12273.4 0.55455

(-0.5,
53.5

30,000 4.895 0.37070 24317.5 0.55477

0, 0.5) 75,000 3.152 0.49155 61451.0 0.55747

300,000 1.762 0.42158 245027.0 0.55629

1,500,000 1.057 0.41918 1226337.5 0.55690

3,000 8.089 0.87639 2014.0 0.37785

15,000 5.904 0.27492 9905.0 0.33807

(-1, 0,
41.1

30,000 2.704 0.30480 19608.5 0.34539

1) 75,000 4.140 0.40140 49342.0 0.33863

300,000 0.401 0.39097 196468.9 0.33955

1,500,000 -10.171 0.37673 982396.2 0.33981

3,000 1.728 0.11972 1060.2 0.11688

15,000 6.249 0.20071 5079.3 0.11967

(-2, 0,
21.2

30,000 6.388 0.05679 10043.3 0.11239

2) 75,000 3.624 0.07909 25627.2 0.10628

300,000 3.213 0.04284 100468.7 0.10024

1,500,000 1.063 0.00650 503814.6 0.09927

3,000 3.193 0.02519 172.5 0.02161

15,000 8.119 0.02359 672.3 0.01736

(-4, 0,
3.0

30,000 4.563 0.01481 1414.9 0.02137

4) 75,000 4.624 0.00558 3715.3 0.00696

300,000 2.414 0.00083 14440.6 0.00729

1,500,000 2.229 0.00048 71910.0 0.00537

Table 7: Root mean square errors (RMSEs) of the estimated mean values and differences in log-likelihood
values when G = 3 and π0 = (0.33, 0.33, 0.33); the true variances are all equal to one.
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Algorithm µ0 π̂1 π̂2 π̂3 µ̂1 µ̂2 µ̂3 σ̂1 σ̂2 σ̂3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

EM

(-0.25, 0, 0.25) 0.01078 0.42347 0.56575 -1.10053 -0.26507 0.21926 0.89502 0.97883 0.99398

(-0.5, 0, 0.5) 0.00730 0.30079 0.69191 -0.92592 -0.52649 0.23927 0.91388 0.99304 1.03159

(-1, 0, 1) 0.49942 0.15715 0.34342 -0.75353 0.57987 0.83027 1.04830 1.05685 1.03924

(-2, 0, 2) 0.33473 0.32860 0.33667 -1.99669 -0.00699 1.99180 1.00167 0.99196 1.00376

(-4, 0, 4) 0.33340 0.33319 0.33342 -3.99988 0.00026 3.99921 1.00077 1.00009 1.00243

CEM

(-0.25, 0, 0.25) 0.32979 0.33561 0.33461 -1.12162 -0.00643 1.11171 0.53858 0.25226 0.54084

(-0.5, 0, 0.5) 0.33200 0.33495 0.33304 -1.18319 -0.00163 1.18093 0.56821 0.26772 0.56922

(-1, 0, 1) 0.33573 0.32810 0.33617 -1.41648 -0.00147 1.41588 0.65189 0.32674 0.65265

(-2, 0, 2) 0.34597 0.30693 0.34710 -2.12326 -0.00417 2.11981 0.81654 0.52904 0.81851

(-4, 0, 4) 0.33501 0.32989 0.33510 -4.00703 -0.00028 4.00609 0.97402 0.91287 0.97574

Table 8: Estimated values for each scenario when G = 3, π0 = (0.33, 0.33, 0.33), and N = 1, 500, 000.
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µ0 E(θ0, π0)

(%)

N l(θ̂, π̂)− l(θ0, π0) RMSE,

EM

lMC(θ̂, π̂)− lC(θ0, π0) RMSE,

CEM

(1) (2) (3) (4) (5) (6) (7)

3,000 3.657 2.52930 2684.8 0.76083

15,000 1.828 2.51983 13065.7 0.71051

(-0.25,
60.0

30,000 0.880 2.01044 26111.1 0.72044

0, 0.25) 75,000 -0.336 1.50215 65795.0 0.70565

300,000 -1.053 1.42663 262800.7 0.71203

1,500,000 0.389 1.08786 1314054.2 0.70950

3,000 2.924 1.02572 2563.2 0.59841

15,000 2.556 0.10369 12437.3 0.57450

(-0.5,
53.5

30,000 1.006 0.22664 24647.7 0.57466

0, 0.5) 75,000 0.504 0.24050 62337.4 0.57338

300,000 1.496 0.15410 248502.9 0.56899

1,500,000 1.828 0.39178 1243552.9 0.56916

3,000 3.642 0.85642 2108.2 0.54906

15,000 6.196 0.76961 10329.7 0.40603

(-1, 0,
41.1

30,000 3.261 0.71102 20296.1 0.40375

1) 75,000 1.718 0.57232 51538.1 0.43594

300,000 3.031 0.66091 205069.9 0.42943

1,500,000 0.724 0.57985 1025338.2 0.43783

3,000 2.995 0.29103 1177.3 0.55276

15,000 6.864 0.20622 5601.3 0.59551

(-2, 0,
21.2

30,000 8.495 0.16203 11069.8 0.59692

2) 75,000 3.917 0.09940 28538.7 0.51499

300,000 2.727 0.03457 113209.0 0.56665

1,500,000 2.601 0.01603 563246.0 0.57190

3,000 3.343 0.01737 183.0 0.07314

15,000 7.144 0.01578 717.6 0.06637

(-4, 0,
3.0

30,000 6.789 0.01481 1397.2 0.06635

4) 75,000 2.383 0.00902 3701.2 0.05595

300,000 2.203 0.00211 14878.7 0.06305

1,500,000 2.615 0.00099 73359.0 0.06297

Table 9: Root mean square errors (RMSEs) of the estimated mean values and differences in log-likelihood
values when G = 3 and π0 = (0.167, 0.33, 0.50); the true variances are all equal to one.
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Algorithm µ0 π̂1 π̂2 π̂3 µ̂1 µ̂2 µ̂3 σ̂1 σ̂2 σ̂3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

EM

(-0.25, 0, 0.25) 0.00025 0.99974 0.00000 -2.09923 0.08381 0.60173 0.45722 1.01764 3.42487

(-0.5, 0, 0.5) 0.26489 0.73511 0.00001 -0.40353 0.37203 1.05926 1.00303 1.01502 2.70881

(-1, 0, 1) 0.00484 0.46835 0.52681 -1.94502 -0.33621 0.94938 0.68833 1.11344 1.01268

(-2, 0, 2) 0.17078 0.32996 0.49926 -1.97632 0.01442 2.00168 1.00944 0.99699 1.00143

(-4, 0, 4) 0.16660 0.33350 0.49989 -4.00138 -0.00040 4.00096 1.00137 1.00095 1.00137

CEM

(-0.25, 0, 0.25) 0.33150 0.33576 0.33274 -1.03147 0.08228 1.19483 0.53883 0.25142 0.53733

(-0.5, 0, 0.5) 0.33104 0.33514 0.33382 -1.00657 0.16769 1.32890 0.56975 0.26364 0.55726

(-1, 0, 1) 0.32736 0.33341 0.33923 -1.06787 0.34915 1.66976 0.68134 0.31255 0.60695

(-2, 0, 2) 0.31474 0.31603 0.36923 -1.49399 0.70851 2.47243 0.97691 0.47570 0.69843

(-4, 0, 4) 0.17548 0.32881 0.49571 -3.92188 0.06899 4.03216 1.03303 0.90627 0.95769

Table 10: Estimated values for each scenario when G = 3, π0 = (0.167, 0.33, 0.50), and N = 1, 500, 000.
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C.2 Second Simulation Exercise

Figure 7: Evolution of the estimation error when G = 3 and when ÊNTp(θ
0, ξ0) = [4.52%, 6.87%] with

p = 3. The estimates selected to compute the weighted RMSEs are the ones that maximize the log likelihood
function associated with each algorithm. The y-axis stands as the weighted RMSE for each total number
of periods T , and each type of parameter (mean and variance). The “true” mixing weights all lie between
0.234 and 0.504.
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N Ê(·)
T = 4 T = 6 T = 8

EM (%) CEM (%) EM (%) CEM (%) EM (%) CEM (%)

(1) (2) (3) (4) (5) (6) (7) (8)

100
Ê(θ0, ξ0) 4.75 4.75 6.50 6.50 5.63 5.63

Ê(θ̂(k), ξ̂(k)) 30.50 5.50 37.83 36.17 41.50 24.88

250
Ê(θ0, ξ0) 5.00 5.00 6.87 6.87 6.10 6.10

Ê(θ̂(k), ξ̂(k)) 34.60 74.30 35.27 31.73 38.95 31.15

500
Ê(θ0, ξ0) 4.55 4.55 6.13 6.13 6.38 6.38

Ê(θ̂(k), ξ̂(k)) 22.30 17.75 35.70 64.23 37.55 66.03

750
Ê(θ0, ξ0) 4.57 4.57 6.31 6.31 6.15 6.15

Ê(θ̂(k), ξ̂(k)) 20.43 74.57 38.53 28.96 38.83 67.30

1000
Ê(θ0, ξ0) 4.52 4.52 5.82 5.82 6.06 6.06

Ê(θ̂(k), ξ̂(k)) 21.65 29.18 35.42 64.57 38.73 66.43

1250
Ê(θ0, ξ0) 4.92 4.92 5.91 5.91 6.14 6.14

Ê(θ̂(k), ξ̂(k)) 20.56 74.10 24.96 64.79 38.26 66.86

1500
Ê(θ0, ξ0) 6.14 6.14 6.47 6.47 6.39 6.39

Ê(θ̂(k), ξ̂(k)) 20.05 57.27 25.43 64.74 38.98 67.28

Table 11: Misclassification rates evaluated at the true parameter values and evaluated at the parameter
values that maximize the log likelihood function for each algorithm when ÊNTp(θ

0, ξ0) = [4.52%, 6.87%].
The NTp subscripts are dropped for brevity. The misclassification rates of the EM algorithm are computed
with the maximum posterior probability. CEM = CEM.
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Figure 8: Evolution of the estimation error when G = 3 and when ÊNTp(θ
0, ξ0) = [13.00%, 16.20%] with

p = 2. The estimates selected to compute the weighted RMSEs are the ones that maximize the log likelihood
function associated with each algorithm. The y-axis stands as the weighted RMSE for each total number
of periods T , and each type of parameter (mean and variance). The “true” mixing weights all lie between
0.234 and 0.504.
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N Ê(·)
T = 4 T = 6 T = 8

EM (%) CEM (%) EM (%) CEM (%) EM (%) CEM (%)

(1) (2) (3) (4) (5) (6) (7) (8)

100
Ê(θ0, ξ0) 13.00 13.00 14.33 14.33 14.63 14.63

Ê(θ̂(k), ξ̂(k)) 46.75 39.75 69.00 38.50 68.38 43.00

250
Ê(θ0, ξ0) 16.20 16.20 15.53 15.53 15.80 15.80

Ê(θ̂(k), ξ̂(k)) 44.80 73.80 61.20 40.67 62.25 39.35

500
Ê(θ0, ξ0) 13.95 13.95 13.67 13.67 13.73 13.73

Ê(θ̂(k), ξ̂(k)) 45.20 75.05 48.47 39.27 53.03 46.95

750
Ê(θ0, ξ0) 14.37 14.37 14.04 14.04 14.02 14.02

Ê(θ̂(k), ξ̂(k)) 43.63 34.03 47.87 41.62 50.22 72.75

1000
Ê(θ0, ξ0) 14.63 14.63 14.90 14.90 14.40 14.40

Ê(θ̂(k), ξ̂(k)) 44.15 78.33 48.15 40.62 51.73 49.28

1250
Ê(θ0, ξ0) 13.50 13.50 13.65 13.65 13.45 13.45

Ê(θ̂(k), ξ̂(k)) 46.20 51.92 50.11 84.95 54.88 52.33

1500
Ê(θ0, ξ0) 14.12 14.12 13.81 13.81 13.58 13.58

Ê(θ̂(k), ξ̂(k)) 46.95 31.05 51.12 84.68 52.31 84.82

Table 12: Misclassification rates evaluated at the true parameter values and evaluated at the parameter
values that maximize the log likelihood function for each algorithm when ÊNTp(θ

0, ξ0) = [13.00%, 16.20%].
The NTp subscripts are dropped for brevity. The misclassification rates of the EM algorithm are computed
with the maximum posterior probability. CEM = CEM.
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D Covariates included in the empirical analysis

Covariate Binary Part Continuous Part

Time-varying ERA X X

Time-varying COCI X

Time-averaged ERA X X

Time-averaged Charlson X X

Time-averaged COCI X X

Gender X X

Time-fixed effects X X

Unit-random effects X X

Intercept X X

Table 13: Covariates included in all component densities for each part of the model. COCI = Continuity
of care indicator, ERA = Elder’s risk assessment.
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E Definition of the ERA and the Charlson Indices

(a) Charlson index (b) ERA index

Figure 9: The scoring systems of the modified ERA index and the modified Charlson index. CAD =
Coronary artery disease; MI = Myocardial infarction; CHF = Chronic heart failure; COPD = Chronic
obstructive pulmonary disorder; AIDS = Acquired immune deficiency syndrome. Underlined items are
removed from the index to avoid collinearity.
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F Additional Empirical Results

F.1 Estimates Obtained from the Best Model, CEM Algorithm

Coefficients
Group/Component

1 2 3 4 5

Binary Part

ERA
-5.413*** 19.666*** -14.607*** 4.341* 174.416**
(0.904) (5.046) (1.755) (1.785) (55.578)

Time-averaged Charlson
-46.186*** 31.002*** 52.267*** 35.537*** -758.674***
(2.099) (4.890) (2.355) (4.457) (65.068)

Time-averaged COCI
-2.129*** 329.400*** -6.345*** -2.077* 1789.412***
(0.279) (29.245) (0.600) (0.867) (122.124)

Time-averaged ERA
1.179 47.679*** 8.680*** 0.449 659.342***
(0.923) (5.181) (1.553) (2.298) (110.359)

Male
1.157 277.050*** -9.908*** 5.760 381.782***
(1.355) (27.497) (1.693) (3.222) (22.582)

Number of observations 2142 1392 2075 1774 1863

Continuous Part

ERA
-0.340*** -0.003 -0.669*** 0.085* -0.119***
(0.050) (0.028) (0.066) (0.037) (0.034)

COCI
0.608*** 0.391 0.349*** -0.103*** -0.085***
(0.043) (2.4E06) (0.039) (0.018) (0.013)

Time-averaged Charlson
0.102 0.005 0.014 0.043* -0.116***
(0.070) (0.021) (0.081) (0.021) (0.028)

Time-averaged COCI
-0.171*** 0.013 -0.128*** -0.032 -0.005
(0.017) (0.012) (0.027) (0.020) (0.011)

Time-averaged ERA
0.549*** 0.043 0.809*** -0.062 0.170***
(0.052) (0.031) (0.063) (0.043) (0.035)

Male
0.251*** -0.012 0.078 -0.051 -0.015
(0.066) (0.043) (0.079) (0.061) (0.038)

Number of observations 1801 1330 1097 1720 1828

Table 14: Additional estimates associated to the optimal set of estimates obtained from the CEM algorithm.
Cluster-robust standard errors are shown in parentheses. The number of observations refers to the sum of
the estimated group memberships within each group. * = p-value< 0.05, ** = p-value< 0.01, *** = p-
value< 0.001.
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F.2 Estimates Obtained from the Best Model, EM Algorithm

Coefficients
Group/Component

1 2 3 4

Binary Part

ERA
-110.673*** -922.474 -1.195 54144.590***
(29.091) (476.582) (0.705) (1830.669)

Time-averaged Charlson
-420.397*** 205.818 -42.752*** 487254.501***
(14.880) (360.249) (2.808) (20966.975)

Time-averaged COCI
-2329.817*** -1363.916*** -1.363*** 22241.703***

(78.736) (118.584) (0.291) (751.892)

Time-averaged ERA
705.402*** 3824.340*** 2.434** -63320.044***
(34.534) (582.868) (0.815) (2140.879)

Male
-232.246*** 2166.655*** -1.726 -44511.269***
(28.839) (644.333) (1.056) (1504.569)

Number of observations 2452.8 2784.1 1956.5 2052.5

Continuous Part

ERA
-0.124*** -0.011 -0.469*** -0.272***
(0.030) (0.031) (0.076) (0.043)

COCI
-0.292*** -0.006 0.153*** 0.098***
(0.027) (0.006) (0.017) (0.018)

Time-averaged Charlson
-0.132*** 0.060** -15.542*** -11.622
(0.025) (0.021) (1.573) (51.432)

Time-averaged COCI
-0.073*** -0.026* -0.021 0.089***
(0.017) (0.012) (0.025) (0.023)

Time-averaged ERA
0.230*** 0.039 0.541*** 0.372***
(0.033) (0.034) (0.085) (0.055)

Male
0.150** 0.000 0.014 0.186*
(0.049) (0.041) (0.090) (0.092)

Number of observations 2402.0 2782.9 540.6 2050.6

Table 15: Additional estimates associated to the optimal set of estimates obtained from the EM algorithm.
Cluster-robust standard errors are shown in parentheses. The number of observations refers to the sum of
the estimated posterior probabilities within each group. * = p-value< 0.05, ** = p-value< 0.01, *** =
p-value< 0.001.
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F.3 Estimated Time-Fixed Effects, EM Algorithm

Figure 10: Time-fixed effects associated to the optimal set of estimates obtained from the EM algorithm.
The value of the first time-fixed effect is equal to zero and is set as the reference value. The initial visit
to the ED occurs at the end of the second period. The shaded areas correspond to the 95% cluster-robust
confidence interval and do not account for uncertainty in group memberships.
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