#### The Micro and Macro Productivity of Nations

Stephen AyerstDuc NguyenDiego RestucciaIMFUniversity of TorontoUniversity of Toronto<br/>and NBER

North American Summer Meeting of the Econometric Society Vanderbilt University June 14, 2024

### Firm-level productivity distribution



• About 50% of firms in Hungary with TFP below p1 in France, whereas  $\approx 10\%$  of firms in France with higher TFP than p99 in Hungary.

### **Motivation**

- Evidence of higher dispersion in firm-level productivity in less developed countries motivates two questions:
  - What accounts for differences in firm-level productivity?
  - How important are differences in firm-level productivity in accounting for international income differences?
- Our approach follows Restuccia & Rogerson (2017) in developing model linking firm-level TFP distributions to policies and institutions that misallocate resources across firms.
- Approach motivated by empirical evidence from policy reforms that find substantial effects on selection and technology upgrading from reductions in misallocation.

# What we find

- Empirically, dispersion in firm-level productivity and measured distortions higher in less developed countries.
  - Higher TFP dispersion mostly from low productivity firms operating in less developed countries.
  - ► Higher measured productivity-distortions elasticity in less developed countries.
- Quantitatively,
  - Differences in measured elasticity of distortions account for bulk of empirical patterns.
  - Measured distortions generate differences in aggregate labor productivity in the model that represent ≈2/3 variation in cross-country data.
  - Variation in firm-level productivity accounts for 60% of aggregate output differences.

### **Related literature**

- Production heterogeneity and misallocation: Restuccia & Rogerson (2008); Guner, Ventura & Xu (2008); Hsieh & Klenow (2009).
- Technology adoption, producer dynamics, and aggregate productivity: Parente and Prescott (1994); Bhattacharya, Guner & Ventura (2013); Hsieh & Klenow (2014); Bento & Restuccia (2017); Comin & Mestieri (2018); Ayerst (2022); Buera et al. (2023).
- Link of misallocation with selection/technology: Pavcnik (2002), Bustos (2011), Kanderwal et al. (2013), Yang (2021), Majerowitz (2023).
- Orbis data: Andrews, Criscuolo & Gal (2015); Poschke (2018); Alviarez, Cravino & Ramondo (2023); Kalemli-Ozcan et al. (2023); Fattal-Jaef (2022).

#### **Facts**

Using Orbis data, we document cross-country differences:

- Fact 1 Productivity:
  - ▶ Higher dispersion in firm-level TFP in less developed countries.
  - Larger dispersion mostly due to low productivity firms in poor countries.
- Fact 2 Distortions:
  - Higher dispersion in wedges in less developed countries.
  - Higher correlated distortions in less developed countries.

### Fact 1a: Productivity dispersion across countries



• Higher productivity dispersion in less developed countries.

### Fact 1b: Productivity dispersion across countries



• Higher productivity dispersion mainly driven by differences at bottom of distribution.

### **Fact 2a: Dispersion in distortions across countries**



• Higher dispersion in wedges in less developed countries.

### Fact 2b: Measured productivity elasticity of distortions



- Elasticity coefficient from regressing  $\log(wedge)$  on  $\log(TFP)$ .
- Higher correlated distortions in less developed countries.

### Model

- Standard model of production heterogeneity with distortions building on Hopenhayn (1992) and Restuccia and Rogerson (2008).
- Framework allows for productivity enhancing investment (technology) and operation decisions by firms (selection).
- Focus on a stationary competitive equilibrium.
- Time is discrete and indexed by  $t \in \{1, 2, ..., \infty\}$ .
- Representative household, standard preferences on consumption  $\log(C)$ , one unit of productive time supplied inelastically to firms.

# Technology

- At each date, a homogeneous good is produced by firms indexed by *i*.
- Each firm *i* employs labor (*n<sub>i</sub>*) to produce output (*y<sub>i</sub>*) following a decreasing-return-to-scale technology:

$$y_i = v_i z_i^{1-\gamma} n_i^{\gamma},$$

where  $z_i^{1-\gamma}$  is a permanent component of productivity,  $v_i \stackrel{\text{iid}}{\sim} H(v)$  is a transitory mean zero component and  $\gamma \in (0, 1)$ .

- To attain productivity z, a firm incurs a productivity investment cost of  $\psi \frac{z^{\phi}}{\chi_i}$  in units of output where  $\chi_i$  is an innovation ability drawn from iid cdf  $G(\chi)$ .
- Selection: Firm face an operating fixed cost  $c_f$  in units of labor every period.

### Market structure and distortions

- Competitive economy where households and firms take prices as given.
- Price of output normalized to 1, wage rate denoted by *w*.
- Firms face idiosyncratic distortions, modeled as a proportional tax  $\tau_i$  on revenues:

$$(1-\tau_i) = \left(z_i^{-\rho} \epsilon_i\right)^{1-\gamma},$$

where  $\rho$  is the elasticity of distortions with respect to firm TFP and  $\epsilon_i$  is a random component of distortions drawn from iid cdf  $F(\epsilon)$ .

- *ρ* represents a general form of "correlated distortions" motivated by different policies studied in earlier literature.
- Endogenous entry and exogenous exit with rate  $\lambda$  every period.

# Equilibrium

A stationary competitive equilibrium comprises a wage w; decision functions for firms: labor demand  $n(z, \tau)$ , profits  $\pi(z, \tau)$ , operating decision  $o(z, \tau)$ , value of incumbent firm  $W(z, \tau)$ , productivity  $z(\chi, \epsilon)$ , net value of firm  $V(\chi, \epsilon)$ , value of entry  $V_e$ , a distribution of firms  $\mu(\chi, \epsilon)$ , mass of firms M and entrants E; and allocation Cfor households such that:

- (i) Given w, allocation C solves the household's problem.
- (*ii*) Given w,  $n(z, \tau)$  and  $o(z, \tau)$  solve the incumbent's firm problem, determining  $\pi(z, \tau)$  and  $W(z, \tau)$ .
- (*iii*) Given w, entrants choose  $z(\chi, \epsilon)$  to maximize net value of firm  $V(\chi, \epsilon)$ .
- (iv) Zero profit entry condition  $V_e = 0$ .
- (v) Invariant distribution of firms  $\mu$ .
- (vi) Markets clear.

## **Calibration to France as Benchmark Economy**

| Parameter         | Value | Targeted moments          | Model | Data |
|-------------------|-------|---------------------------|-------|------|
| ho                | 0.525 | Elasticity of distortions | 0.75  | 0.75 |
| $\sigma_\epsilon$ | 1.4   | sd log distortions        | 0.55  | 0.55 |
| $\sigma_{\chi}$   | 11.0  | sd log employment         | 1.31  | 1.31 |
| $\sigma_v$        | 0.2   | sd log TFP                | 0.68  | 0.66 |
| $c_f$             | 0.14  | Average firm size         | 14.7  | 14.9 |

- Calibrated  $\rho = 0.525$  implies measured elasticity of distortions 0.75.
- Gap between model parameter and measured elasticity due to strong operation selection of firms.

### **Firm-level TFP distribution**



# **Cross-country experiments**

- We examine the model's fit and ability of calibrated distortions to account for cross-country data.
- We vary the set  $(\rho, \sigma_{\epsilon}, \sigma_{v})$  within the cross-country range.
- Model well replicates cross-country variation, bulk of effects from *ρ*.
   Distortions Productivity Employment Allocative Efficiency
- Model implies the estimator of measured elasticity is biased upward, especially for richer economies due to strong selection. Estimation Bias
- Aggregate labor productivity in model  $\approx 2/3$  variation cross-country data.

### Static versus dynamic misallocation

|                                           | Value of $\rho$ |       |      |      |      |
|-------------------------------------------|-----------------|-------|------|------|------|
|                                           | 0.00            | 0.525 | 0.65 | 0.80 | 0.90 |
| Aggregate output                          | 1.49            | 1.00  | 0.75 | 0.41 | 0.23 |
| – Static misallocation                    | 1.09            | 1.00  | 0.88 | 0.69 | 0.55 |
| Contribution (%)                          | 22              | _     | 44   | 42   | 41   |
| <ul> <li>Dynamic misallocation</li> </ul> | 1.37            | 1.00  | 0.89 | 0.59 | 0.42 |
| <i>Contribution</i> (%)                   | 78              | _     | 56   | 58   | 59   |

- Static misallocation measures effect of distortions in same set of producers and technologies as BE.
- Dynamic misallocation accounts for around 60% of aggregate productivity loss.
- Technology and selection each account for half of changes in firm-level TFP distribution. 
   Technology vs. Selection

# Dynamic misallocation and allocative efficiency

|                                    | Value of $\rho$ |       |      |      |      |
|------------------------------------|-----------------|-------|------|------|------|
|                                    | 0.00            | 0.525 | 0.65 | 0.80 | 0.90 |
| Dynamic misallocation              |                 |       |      |      |      |
| Firm-level productivity            | 1.34            | 1.00  | 0.88 | 0.70 | 0.56 |
| <i>Contribution</i> (%)            | 73              | _     | 44   | 40   | 40   |
| Firm productivity with distortions | 1.02            | 1.00  | 0.97 | 0.86 | 0.77 |
| Contribution (%)                   | 5               | _     | 12   | 18   | 19   |
|                                    |                 |       |      |      |      |
| Allocative efficiency $(Y/Y_e)$    | 0.85            | 0.76  | 0.65 | 0.45 | 0.32 |

• Firm-level productivity contributes bulk of dynamic misallocation, one-third to allocative efficiency.

# Conclusions

- The productivity costs of misallocation extend beyond static misallocation.
- Costs substantial due to changes in firm-level productivity distribution (technology and selection), account for 60% of output differences (1/3 of allocative efficiency).
- In less developed countries, correlated distortions lead to:
  - Under-investment in technology by productive producers.
  - Lack of selection explaining prevalence of unproductive producers.
- Technology and selection each account for half of changes in firm-level TFP distribution.
- Standard misallocation measures biased due to sample selection, stronger in more productive countries.

# Elasticity and dispersion of distortions



- Models fit cross-country data well, bulk of effects from *ρ*.
- Aggregate labor productivity in model  $\approx 2/3$  variation cross-country data. Back

### **Dispersion measures firm-level TFP**



- Model fits data relatively well, bulk of effects from *ρ*.
- Variation in  $\sigma_{\epsilon}$ ,  $\sigma_v$  move model closer to data. Back

# **Dispersion in employment**



- Correlated distortions compress employment distribution across firms.
- Variation  $\sigma_{\epsilon}$  captures lack of systematic relationship in data. Back



- AE benchmark economy 0.76 (France 0.65),  $\rho$  reduces AE 44 p.p., data range 48.
- Unlike aggregate output, AE more susceptible to mismeasurement  $(\sigma_v)$ . Back

### Estimation bias in measured elasticity of distortions



- Measured bias due to ex-post *v*, selection, and endogeneity (technology choice).
- Substantial bias in measured elasticity, mostly selection, larger in more productive countries. Back

# **Technology versus selection**

|                      | Value of $\rho$ |       |      |      |      |
|----------------------|-----------------|-------|------|------|------|
|                      | 0.00            | 0.525 | 0.65 | 0.80 | 0.90 |
| Technical efficiency | 2.38            | 1.00  | 0.76 | 0.52 | 0.38 |
| – Technology         | 1.38            | 1.00  | 0.88 | 0.72 | 0.58 |
| Contribution (%)     | 37              | _     | 46   | 52   | 58   |
| – Selection          | 1.72            | 1.00  | 0.86 | 0.73 | 0.68 |
| Contribution (%)     | 63              | _     | 54   | 48   | 42   |

- Measure impact of selection and technology on technical efficiency (aggregate TFP in efficient allocation).
- Selection more important in less distorted economies, roughly equally shared in most distorted. Back