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Abstract

This study models competing reinsurance syndicates vying for underwriting risk in a

common-value setting. In the market-wide follow-the-lead practice, the lead reinsurer makes

an offer directly to clients based on their risk assessment, while followers, who typically

provide capital and capacity, are locked into a single unit price determined at the tender

stage. Whether this premium alignment feature benefits the client remains underexplored.

Inspired by the design of spectrum auctions, we restructure the allocation process into

multi-stages, with information revelation occurring between these stages, referred to as the

retrocession case. In this scenario, the lead reinsurer makes an offer for the entire business

and cedes partial risk to the followers. Similar risk allocation and capital-saving outcomes

are achieved. We compare this situation with the follow-the-lead practice and find that,

under the follow-the-lead scenario, lead reinsurers shade their offers to avoid the winner’s

curse, allowing followers to benefit. Conversely, in the case of a retrocession, lead reinsurers

make more aggressive offers to signal information. This design benefits the initial client

insurer, which is achieved through an information transmission channel.
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1 Introduction

Rising threats, such as catastrophic climate change, and pandemics fuel a surge in demand for

reinsurance.1 In response, reinsurers often form syndicates to diversify risks.2 A syndicate has

a lead reinsurer and followers. The role of the lead is to determine the terms and conditions

based on expertise and experience. The role of followers is to provide capital and the capacity

to hold risk. Terms and conditions are typically uniform for all reinsurers.3 This is referred to

as the follow-the-lead practice, or premiums alignment. Does this practice truly benefit clients,

who are insurers in this market? Are there other ways to organize the market to generate better

terms for client insurers?

To address these questions, this study develops a theoretical model to analyze the follow-

the-lead practice and propose a new design, hereafter referred to as the retrocession case.4 We

show that if the allocation process is restructured into multi-stages, in which the lead reinsurer

makes an offer for the business first and cedes risks to followers, with information disclosed in

between, this may not only favor the lead reinsurer but, more importantly, benefit the initial

client insurer.

Our contributions to the literature are as follows. First, our modeling framework is novel

in reinsurance economics. We introduce asymmetric information between reinsurers and model

their competition as a first-price common-value auction, which is a natural choice given their

information structure. This contrasts with existing studies that model price formation through

Cournot-type interactions (e.g., Powers and Shubik (2001); Boulatov and Dieckmann (2013)),

Stackelberg-type interactions (e.g., Bäuerle and Glauner (2018); Chen et al. (2020)), or within a

general equilibrium framework (e.g., Borch (1992); Bernis (2002); Chi and Tan (2013); Boonen

et al. (2021)). Second, to the best of our knowledge, this is the first study to analyze this

market practice and design a reinsurance market. Third, our model is based on auctions with

resale, where the object being sold is divisible in our setting. Our results may also be applicable

to other markets with divisible goods like energy markets (Anatolitis et al., 2022). Fourth,

in addition to other financial markets featuring common values, such as IPO auctions where

1Deloitte reports that for US non-life insurance in 2022, it was the eighth consecutive year featuring at least 10
US catastrophes, causing over US$1 billion in losses. Property-catastrophe reinsurance costs for primary non-life
carriers were driven up by 30.1% in 2023, which was double the prior year’s hike of 14.8%. The US demand for
catastrophe reinsurance alone is expected to grow as much as 15% by 2024, putting further pressure on prices.

2As of 31 December 2022, there were 77 syndicates, 8 special purpose arrangements, and 7 syndicates in a
box (SIAB) at Lloyd’s, a leading insurance and reinsurance marketplace located in London, United Kingdom.
Source: https://www.lloyds.com/about-lloyds/our-market/lloyds-market

3See https://www.investopedia.com/terms/l/lead-reinsurer.asp. See also https://www.investopedia.com/
terms/c/coreinsurance.asp

4Retrocession is a transaction in which a reinsurer transfers risks it has already insured to other reinsurers.
After signing a treaty with the client insurer, the retrocedent (the original reinsurer) cedes part of the risks it
has assumed to retrocessionaires. Source: https://blog.ccr-re.com/en/what-is-retrocession
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investors have to estimate the future cash flows of firms (Sherman, 2005), or securities markets

(Yuan, 2022), we emphasize the common value feature in the insurance and reinsurance market,

given that the risk can be estimated ex-ante and realized and fixed ex-post.

Below, we briefly outline the model, key results, and underlying intuitions. The model is

depicted in Figure 1. The lead reinsurer makes an offer on behalf of the syndicate to the client.

Other syndicates also make offers, and the client selects the most favorable one to underwrite

the risk. Followers then subscribe to the pre-contractual shares at the same price as their lead

reinsurer. In the follow-the-lead case, lead reinsurers shade their offers in the tender stage

to protect themselves against the winner’s curse,5 earning a positive surplus. Since followers

subscribe to a portion of the business at the same unit price as the lead, they benefit from the

leader’s expertise in pricing and also earn positive payoffs in equilibrium.

Figure 1: An illustration of the model

In contrast, in the retrocession design, the allocation process is divided into multiple stages,

with offers disclosure occurring in between. The lead reinsurer makes an offer for the entire

business and then sells part of the risk to followers to save capital. The client insurer, as the

initial auctioneer, collects offers and reveals them to the follow market to promote transparency,

allowing followers to have some information for evaluating the risk. In the follow market,

followers with unit demand purchase the remaining risk in a first-price auction. Ultimately,

the lead reinsurer retains a share while the followers hold the remaining risk. This approach

achieves similar objectives in terms of risk allocation and capital savings as the follow-the-lead

case.

The main result is that clients benefit more from the retrocession case than from the follow-

the-lead case. In the retrocession case, a lead reinsurer balances the potential to exploit private

5The “winner’s curse” is a phenomenon often observed in auctions and competitive bidding situations. It
occurs when the winning bidder ends up overpaying for an asset due to overly optimistic estimates. This behavior
is considered irrational in auctions. One behavioral concept to model this behavior is the “cursed equilibrium”,
proposed by Eyster and Rabin (2005).
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information by retaining more shares and increasing capital savings by retaining less. Given

the informational linkage across two stages, a lead reinsurer makes a more aggressive offer.

The additional signaling component arises from the disclosure of bids, reducing uncertainty and

limiting reinsurers’ ability to leverage private information for profit. In the second stage, with

offers from the first stage made public, followers’ payoffs are reduced and drop to zero as there

is no private information to exploit. Their surplus is extracted and transferred to the client

through the lead reinsurer’s aggressive bidding in the first stage.

Justification of Our Design. The optimal selling mechanism for an object when bidders’

values are correlated is well-established in theory. Crémer and McLean (1985) (hereafter CM)

show that when bidders’ values are slightly correlated, the entire rent can be extracted. McAfee

et al. (1989) extends this result to cases where agents’ types are continuously distributed. The

details of this mechanism are provided in Appendix C.

Though the full surplus extraction result is insightful, it has been criticized as unrealistic and

has not been observed in practice. Several theoretical explanations include bidders’ risk aversion

and limited liability (See Robert (1991)), information acquisition about competitors’ types (See

Bikhchandani (2010)), and non-robustness to bidders’ beliefs (See Pham and Yamashita (2024)).

Börgers (2015) argues that “one should view the Cremer-McLean result as a paradox rather

than guidance for constructing practical mechanisms.”

Our design is motivated by Milgrom’s spectrum auction design for the Federal Communi-

cations Commission, specifically the Simultaneous Multi-Round Auction (SMRA) (Milgrom,

2000). In SMRA, the original single-round bidding process is restructured into multiple rounds,

with some bidding information revealed between stages to encourage more aggressive bidding

in subsequent rounds. Although our model is not as sophisticated as the SMRA, which involves

repeated bidding and multiunit allocation, it borrows some of its key features. For example,

we restructure the allocation process from static, one-time allocation to a two-round dynamic

allocation, accounting for the information disparity between lead reinsurers and followers. Ad-

ditionally, bidding information from the first round is disclosed before the opening of the second

round, establishing informational linkages across markets to promote aggressive bidding. More-

over, this phased disclosure enhances transparency by allowing followers to better understand

the risk environment, leading to more informed decision-making and improved price discovery.

Another merit of the retrocession design is that the lead reinsurer in the syndicate is more

willing to participate, as their equilibrium payoffs are higher under this structure. Although

the lead reinsurer bids more aggressively, the signaling component pertains only to the cession

shares allocated to followers, which is compensated by followers in secondary markets. Our
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design may shed light on the organization of this market and other markets with common-value

features for policymakers.

Related Literature. Our study relates to the literature on economics of reinsurance. The

pioneering work by Borch (1992) studies optimal risk-sharing among reinsurers to rationalize the

syndication structure in the general equilibrium framework. Plantin (2006) provides a rationale

for reinsurers arising endogenously from risk managers by focusing on their ability to mitigate

the moral hazard problem faced by the cedant. Studies on the strategic interaction between

insurers and reinsurers, typically in actuarial pricing. Zhu et al. (2023) study how competing

reinsurers strategically set prices using the Stackelberg model. However, little attention has

been given to follow-the-lead practices from an economic perspective. This study is the first to

explore market-wide practices and design this market.

We are related to the literature on common-value auctions with a resale market. Bukhchan-

dani and Huang (1989) model speculators bidding to resell investors to study the debatable

question of which payment rule, uniform pricing or discrimination, is advantageous in treasury

bill auctions. Haile (2003) studies the first-stage winner reselling a single-unit good to first-

stage losers instead of a third party in our setting. In our model, the object is divisible and we

allow the bidder to resell arbitrary shares. This is relevant not only to the insurance market,

where risks are inherently divisible, but also to other markets, such as the energy market (e.g.,

Anatolitis et al. (2022)). In the auctions with resale literature, there are different motives for

resale, such as cooperation on collusion through resale (Garratt et al., 2009), misperception of

the resale market (Georganas, 2011), asymmetry leading to inefficiency (Hafalir and Krishna,

2008), and delaying the resale to achieve an expected gain (Khurana, 2024). In our model, the

resale motive is the lead reinsurer’s need to save capital. We endogenize the retention ratio by

introducing capital constraints. The lead reinsurer balances ceding more to conserve capital

with ceding less to retain greater uncertainty, which preserves the potential to exploit private

information.

Our paper relates to auctions with signaling concerns. Perry et al. (2000) propose a two-

round selling procedure in which only the two highest buyers are allowed to participate in the

second round and bid above their first-round bid. This is equivalent to an English auction in

an interdependent value setting. The revenue comparison between our model and an English

auction was ambiguous. In independent private value settings, several studies have examine

how different post-auction competitions, such as Cournot or Bertrand competition or disclosure

policies, shape first-stage bidding behavior (e.g., Jehiel and Moldovanu (2000); Rhodes-Kropf

and Katzman (2001); Varma (2003); Goeree (2003)). Calzolari and Pavan (2006) study optimal
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mechanisms under resale to third parties and inter-bidder resale. Dworczak (2020) characterizes

the optimal mechanism with an aftermarket in a private value setting within the set of cutoff

mechanisms. Bos and Pollrich (2022) analyze the optimal disclosure policy when bidders have

concave or convex signaling concerns.

Plan for the Paper. The rest of the paper is organized as follows: Section 2 outlines the

model and justifies the key assumptions in the follow-the-lead and retrocession cases. Section 3

analyzes the equilibrium strategies and compares the payoffs of the client insurer and reinsurers

in the two settings. Section 4 is an extension section, which shows that the main results are

robust against the disclosure of private information by the client insurer and the reserve price.

Section 5 discusses the design. Section 5 concludes. Proofs and background information are

provided in the appendix.

2 The Model

Competing Syndicates. Consider a setting where n ≥ 2 reinsurance syndicates compete to

underwrite reinsurance risks denoted by a random variable V for a client insurer in a first-price

auction. Each lead reinsurer i has a private signal Xi, where i = 1, 2, ..., n. A signal can be

understood as their assessment of risk. V and all signals X1, X2, . . . , Xn are assumed to be

affiliated, as defined in Definition 1.

Definition 1. (Affiliation Condition) For all x1,x2 ∈ [x, x̄]n, and v1, v2 ∈ [v, v̄]n, the random

variables X1, X2, . . . , Xn and V are said to be strictly affiliated if the following condition holds:

f ((v1,x1) ∨ (v2,x2)) · f ((v1,x1) ∧ (v2,x2)) > f (v1,x1) · f (v2,x2) ,

where “ ∨” denotes component-wise maximum and “ ∧” denotes component-wise minimum.

Let f(v, x) denote the joint density function of V and the vector of signalsX = (X1, X2, ..., Xn).

It is assumed that f , strictly positive, with full support and twice continuously differentiable

on [v, v] × [x, x]n, is symmetric in the last n arguments. A bidding strategy is a measurable

function denoted as b(Xi) : [x, x] → R, for i = 1, 2, ..., n.

Small followers are assumed to be uninformed.6 The role of followers is to provide capital

and capacity to hold the risks. They do not approach clients directly to compete with the lead

because they are either less experienced or are smaller firms that cannot take on a large share

6The assumption of an exogenous information structure will be discussed later in the discussion section. We
maintain a minimal assumption in this section. In the extension section, we allow followers to have information,
provided certain technical conditions hold. The main results remain qualitatively unaffected.

6



of the risks.7 Their roles can vary depending on the types of associated risk; here, we focus on

one specific business. All reinsurers are assumed to be risk-neutral.8 Each syndicate, consisting

of a lead reinsurer and multiple followers, is assumed to be able to provide full coverage for the

client insurer.

Affiliation is a strong form of positive correlation. Intuitively, it means if a subset of X ′
is

are all large, then this implies an increased likelihood that the remaining X ′
js are also large.

Suppose the insurance companies Amlin, Beazley and Catlin believe that a flood is more likely

to occur in southern Germany, then it is likely that their competitor, Hiscox, would also tend

to hold a similar belief. The lemmas implied bylied the affiliation condition used in the analysis

of equilibrium are presented below.

Lemma 1 (Milgrom and Weber, 1982, Theorem 3). If random variables Z1, . . . , Zk are affili-

ated, and g1, . . . , gk are all increasing functions, then g1 (Z1) , . . . , gk (Zk) are also affiliated.

Lemma 2 (Milgrom and Weber, 1982, Theorem 4). If random variables Z1, . . . , Zk are affili-

ated, and g1, . . . , gk are all increasing functions, then g1 (Z1) , . . . , gk (Zk) are also affiliated.

Lemma 3 (Milgrom and Weber, 1982, Theorem 5). Let Z1, . . . , Zk be affiliated, and let H be

any increasing function. Then the function h defined by

h (a1, b1; . . . ; ak, bk) = E [H (Z1, . . . , Zk) | a1 ≤ Z1 ≤ b1, . . . , ak ≤ Zk ≤ bk]

is increasing in all of its arguments. In particular, for l = 1, . . . , k, the functions hl (z1, . . . , zl) =

E [H (Z1, . . . , Zk) | z1, . . . , zl] are all increasing.

Throughout the analysis, we keep the following technical assumption.

Assumption 1. E [V |X1, . . . , Xn] := g (x1, . . . , xn) is supermodular in signals; i.e., ∂2g
∂xi∂xj

≥ 0.

The assumption roughly means signals are information complements to value. This is stan-

dard in common value models with resale and ensures the monotonicity of bidding strategies.

This assumption does not contradict strict affiliation; to illustrate, we construct a numerical

example based on the normal distribution.

A Numerical Example. Let V , X1, and X2 be jointly normally distributed random variables

7Source: https://blog.ccr-re.com/en/what-is-a-follower
8This assumption makes the analysis tractable. Introducing risk aversion or non-linearity of utility in monetary

transfer would render the differential equation in the leader’s decision problem non-linear and hard to solve
analytically.
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with means µV , µX1 , and µX2 and a covariance matrix

Σ =


σ2
V σV X1 σV X2

σV X1 σ2
X1

σX1X2

σV X2 σX1X2 σ2
X2

 .

By the projection theorem,9 the conditional expectation E[V |X1, X2] is a linear function of

X1 and X2: E[V |X1, X2] = β1X1 + β2X2. The vector β = (β1, β2)
T is given by β = ΣV XΣ−1

XX ,

where ΣV X = (σV X1 , σV X2)
T and ΣXX is the covariance matrix of X1 and X2. The joint

density function is f(v, x1, x2) =
1

(2π)3/2|Σ|1/2 exp
(
−1

2Z
TΣ−1Z

)
, where Z = (v, x1, x2)

T . Taking

the natural logarithm of f , we obtain ln f(v, x1, x2) = −3
2 log(2π) −

1
2 log |Σ| −

1
2Z

TΣ−1Z.

Expanding the last term gives ZTΣ−1Z = a11v
2+a22x

2
1+a33x

2
2+2a12vx1+2a13vx2+2a23x1x2,

where aij are elements of Σ−1, the inverse of the covariance matrix. Hence, the cross-partial

derivative is ∂2

∂x1∂x2
(ln f) = −a23, as the first two terms in ln f are constant.

We assume each variable has zero mean (i.e., µV = µX1 = µX2 = 0) and specific values for

the covariance matrix:

Σ =


1 0.8 0.6

0.8 1 0.5

0.6 0.5 1

 .

The conditional expectation is E[V |X1, X2] =
2
3X1 +

1
3X2, so the cross-partial derivative is

zero and Assumption 1 is satisfied. The inverse of Σ can be computed as

Σ−1 =


2.439 −1.707 −0.805

−1.707 2.927 −0.878

−0.805 −0.878 1.707

 ,

where the off-diagonal elements are negative. The cross-partial derivative is ∂2 ln f
∂x1∂x2

= −(−0.878) =

0.878, which shows that strict affiliation holds. Hence, the constructed example satisfies both

assumptions.

Capital-constrained Reinsurers. Reinsurers are capital-constrained. The amount of

capital needed to underwrite the entire risk is denoted by I.10 The leader i’s retention ratio is

denoted by αi. We assume that the lead reinsurer i has an initial net capital K < I for all i.

We consider a symmetric case for simplicity. If this assumption is violated, one reinsurer would

9See, e.g., DeGroot (2005)
10For current capital requirements in the insurance industry in Europe, see Solvency II: https://www.eiopa.

europa.eu/browse/regulation-and-policy/solvency-ii en
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suffice to provide the coverage, which is rare in the reinsurance market. Lead reinsurers can tap

followers who jointly have sufficient financial capacity to provide coverage. Such logic resembles

that in syndicated loans.11

Structure of the Game in the Follow-the-Lead Case. The sequence of moves under

the follow-the-lead practice is as follows.

(1) Pre-contractual Stage. The lead reinsurer i decides on the retention ratio α∗
i .

(2) Tender Stage. The lead reinsurer i makes an offer b(Xi) to compete for underwriting the

risk in a first-price auction. The winner is the one with the best offer, and the payment

is the winner’s offer.12

(3) Subscription Stage. Suppose syndicate i wins. Then, the leader i subscribes to an αi

share of the risk, and its followers jointly subscribe to the remaining share, 1− αi, at the

same unit price determined during the tender stage.

(4) All payoffs are realized.

Payoffs in the Follow-the-lead Case. In the first-price auction, the price p̃ is the winner’s

offer: p̃ = b(Xi).
13 Assuming that the winning offer is made by i = 1. Given the price p̃ and

retained share α1, the wining lead reinsurer 1’s payoff is π̃L = α1(V − p̃). Since the unit price

of risk is mandated uniformly, the followers’ payoff is π̃F = (1 − α1) (V − p̃). The reinsurance

syndicate 1’s payoff is π̃1 = V − p̃. The expected payoff of lead reinsurer 1, conditional on

winning, is Eπ̃L = α1E[V − b(X1)|X1 = x, Y1 < x], where Y1 is highest order statistics of

(X2, . . . , Xn), i.e., the highest competing signal.14 The client insurer, as the initial auctioneer,

with payoff π̃C = p̃ is better off with a higher p̃.

Structure of the Game in the Retrocession Case. In the retrocession case, the follow

market is no longer locked into the same unit price as determined in the tender stage. Suppose

there are mi followers in the winning syndicate i. As in the follow-the-lead case, the leader i

determines the retention ratio αi prior to the contract. The remaining share is split into k < mi

11The details of loan syndication are provided in Appendix B.
12Ties (if any) are assumed to be broken at random.
13One can consider a negative p̃ to mean the premium cost paid by the client insurer to get coverage from

reinsurers, so a higher negative p̃ means a lower premium cost in absolute value to get full coverage. We use a
standard forward auction here to simplify comparison with the literature; the results do not change qualitatively
in a reverse auction, but the analysis introduces additional complexity.

14The implicit assumption is that bids are monotonic in signals, which can be verified after explicitly deriving
it. This is the logic in Milgrom and Weber (1982) and applies similarly in our retrocession game. Moreover,
they establish the existence of equilibrium by explicitly identifying a candidate using the first-order differential
equation derived from the incentive compatibility condition, and showing that the equilibrium payoff is positive
so that individual rationality holds. We follow the same approach.
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units and sold to followers in a first-price auction, with each follower assumed to have unit

demand for simplicity.15 The retrocession price for the shares ceded to its followers is denoted

by pre. Between the two stages, it is assumed that all bids in the tender stage are revealed

publicly.16 The sequence of moves is as follows. The difference is that the lead reinsurer secures

the entire business and then cedes portions to the followers, with bidding information disclosed

between the stages.

(1) Pre-contractual Stage. The lead reinsurer i decides the retention ratio α∗
i .

(2) Tender Stage. The lead reinsurer i makes an offer b(Xi) to compete for underwriting the

risk in a first-price auction. The winner is the one with the best offer, and the payment

is the winner’s offer.

(3) All offers are disclosed after the tender stage.

(4) Subscription Stage. The winning leader i sells the remaining k units of risk to mi followers

in a first-price auction.

(5) All payoffs are realized.

Payoffs in the Retrocession Case. In the retrocession case, followers hold 1− αi share

of risk, their ex-post payoff is π̂F = (1 − αi)V − pre. The lead reinsurer i keeps αi share of

the business, receives pre for reselling 1 − αi share of the business, and pays p̂ for the entire

business initially, so the lead reinsurer’s payoff is π̂L = αiV + pre− p̂. Assume that the winning

bid is made by i = 1. Since the price p̂ is the winner’s offer b(X1), the leader’s interim payoff

conditional on winning is Eπ̂L = E[α1V + pre − b(X1)|X1 = x, Y1 < x]. The followers’ joint

expected payoff is given by Eπ̂F = E[(1−α1)V −pre|X1, . . . , Xn]. Similar to the follow-the-lead

case, the client insurer, as the initial auctioneer, benefits from a high price and his payoff is

π̂C = p̂.

Solution Concept. We focus on separating equilibrium, in which bidders of different types

submit distinct bids, and followers’ beliefs are Bayesian updated wherever possible.

15Suppose two or more units are sold to two followers. In this case, both followers bidding zero is an equilibrium
point, as they would still acquire the share at the lowest cost. However, if only one unit is sold to two followers,
bidding zero is no longer an equilibrium since one would have an incentive to deviate. Thus, we require the
number of bidders to exceed the number of units to prevent this situation.

16In government auctions, it is mandated that all bids are revealed afterward. Relaxing this assumption would
significantly complicate the derivation of continuation payoffs. We do not address the optimal disclosure policy
of bids in this paper. In the independent value setting within a class of cutoff mechanisms, Dworczak (2020)
characterizes the optimal disclosure policy to the aftermarket. Full disclosure of bids is also an assumption made
in the literature, such as Bukhchandani and Huang (1989) and Haile (2003).
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3 Equilibrium Analysis

In this section, we analyze the equilibria in the follow-the-lead and retrocession case. We then

compare the price for the client insurer and the payoffs of reinsurers in the two cases.

3.1 Equilibrium Price in the Follow-the-lead Case

Tender Stage. The lead reinsurer 1 chooses b(X1) to maximize his expected payoff conditional

on winning, Eπ̃L = α1E[V − b(X1)|X1 = x, Y1 < x]. This is the standard first-price common

value auction with affiliated signals (see, e.g., Krishna (2009)).

Pre-contractual Stage. The expected joint equilibrium payoff of reinsurers in the winning

is nonnegative, otherwise bidding zero would be preferable. For the lead reinsurer, retaining

more shares leads to a weakly higher payoff, so the leader 1 chooses to pool his capital to retain

a share α∗
1 = K/I < 1. The equilibrium result is summarized in the following proposition.

Proposition 1. In the follow-the-lead case, the equilibrium price p̃ is equal to b̃(x). The winning

lead retains α∗ = K/I share of business, and b̃(x) is the symmetric equilibrium bidding strategy

of the lead with signal x, defined as:

b̃(x) = q(x, x)−
∫ x

x
L(s | x)dq(s, s),

with

q(x, y) = E[V |X1 = x, Y1 = y];

L(s | x) = exp

{
−
∫ x

s

fY1(t | t)
FY1(t | t)

dt

}
.

Proof. See Krishna (2009).

The second term,
∫ x
x L(s | x)dq(s, s), represents bid shading. Due to this term, the equi-

librium bid is less than the expected value conditional on winning, expressed as b̃(X1) <

E [V | X1 = x, Y1 < x] .17 A rational lead reinsurer shade his offer to protect himself from the

winner’s curse. In the follow-the-lead case, followers benefit from the lead reinsurer’s expertise

and also gain positive payoffs in equilibrium. In the next section, we study the retrocession

case.

3.2 Equilibrium Price in the Retrocession Case

We analyze the game using backward induction. We first analyze the retrocession price in the

subscription stage, then derive the equilibrium bidding strategy of the lead reinsurers in the

17See p.100 in Krishna (2009) for details.
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tender stage. Finally, we determine the pre-contractual retention ratio.

Retrocession Price in the Subscription Stage. In the subscription stage, followers

can learn information from bid revelation if the bidding strategy is separating. Given their

information, the retrocession price of the risk in the secondary market is the 1− α share of the

expected value V , conditional on all publicly available information from the first-round bids,

i.e., pre = (1 − α)E [V | X1, Y1, . . . , Yn−1], where Y1, . . . , Yn−1 are the order statistics from the

highest to the lowest of signals (X2, . . . , Xn).

Bidding Strategy in the Tender Stage. Suppose that lead reinsurers i = 2, . . . , n adopt

strategy b̂ and lead reinsurer 1 receives information X1 = x and submits a bid equal to b. Then if

the lead reinsurer 1 wins and followers believe that he is following b̂, the retrocession price will be

(1− α)E
[
V | X1 = b̂−1(b), Y1, . . . , Yn−1

]
:= (1−α)q

(
b̂−1(b), Y1, . . . , Yn−1

)
, where b̂−1 denotes

the inverse of b̂. Define p (x′, x, y) = E
[
q
(
b̂−1(b), Y1, . . . , Yn−1

)
| X1 = x, Yn−1 = y

]
, which is

the expected retrocession price conditional on lead 1’s true signal x, highest competing signal

y, and the followers’ perception of lead 1’s signal x′ when the lead 1 wins. By the assumption

of strict affiliation, both p and q are increasing in each of their arguments. The payoff of lead

reinsurer 1, denoted as π(b|x), is the resale price of the 1− α share, plus the retained value of

the α share, minus the initial price paid, which can be written in the integral form:

π(b | x) ≡ E
[(

(1− α)q
(
b̂−1(b), Y1, . . . , Yn−1

)
+ αV − b

)
· 1

(
b ≥ b̂ (Y1)

)
| X1 = x

]
= E

[
E
[(

(1− α)q
(
b̂−1(b), Y1, . . . , Yn−1

)
+ αV − b

)
· 1

(
b ≥ b̂ (Y1)

)
| X1, Y1

]
| X1 = x

]
= E

[(
(1− α)p

(
b̂−1(b), X1, Y1

)
+ αq(x, y)− b

)
· 1

(
b ≥ b̂ (Y1)

)
| X1 = x

]
=

∫ b̂−1(b)

x

[
(1− α)p

(
b̂−1(b), x, y

)
+ αq(x, y)− b

]
· fY1(y | x)dy.

The second equality applies the law of iterated expectation. The third follows from the definition

of q(x, y), and the last equation is in integral form, where fY1(y | x) is the conditional density

of the order statistic Y1. The equilibrium bidding strategy b̂(x) for solving the optimization

problem is presented below, where β = 1− α is the retrocession share to followers.

b̂(x) = (1− α)p(x, x, x) + αq(x, x)−
∫ x

x
L(s | x)dp(s, s, s) + (1− α)

∫ x

x

J(s)

fY1(s | s)
dL(s, x)

= p(x, x, x)−
∫ x

x
L(s | x)dp(s, s, s) + β

∫ x

x

J(s)

fY1(s | s)
dL(s, x),
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where

L(s | x) = exp

{
−
∫ x

s

fY1(t | t)
FY1(t | t)

dt

}
,

J(s) =

∫ s

x
p1(s, s, y) · fY1(y | s)dy.

Retention Ratio in the Pre-contractual stage. The optimal retention ratio is α∗ =

K/I. This follows from the observation that the signaling component in p̂ = b̂(x) price increases

proportionally with the shares β ceded to the followers, or equivalently, decreases with the

retention ratio α. The payoffs for the client insurer and reinsurers are p̂ and V − p̂, respectively.

Since the followers’ payoffs are zero, the lead reinsurer’s payoff is V − p̂, which decreases as

the ceding share β increases. On the one hand, ceding more leads to more aggressive bidding,

reduces the potential to leverage private information for profit, and results in lower profits.

On the other hand, ceding more shares results in capital savings. Hence, given the capital

constraint, the lead reinsurer at most retains a share α∗ = K/I, i.e., they pool their capital into

the business.

Proposition 2. In the retrocession case, the price of the entire risk, p̂ is equal to b̂(x), where

b̂(x) is the symmetric equilibrium bidding strategy of lead reinsurer with signal x, defined as:

b̂(x) = (1− α∗)p(x, x, x) + α∗q(x, x)−
∫ x

x
L(s | x)dp(s, s, s) + (1− α∗)

∫ x

x

J(s)

fY1(s | s)
dL(s | x)

= p(x, x, x)−
∫ x

x
L(s | x)dp(s, s, s) + β∗

∫ x

x

J(s)

fY1(s | s)
dL(s | x),

where

α∗ = K/I,

L(s | x) = exp

{
−
∫ x

s

fY1(t | t)
FY1(t | t)

dt

}
,

J(s) =

∫ s

x
p1(s, s, y) · fY1(y | s)dy.

Proof. See the Appendix.

In this equilibrium, J(s) measures the average of the responsiveness of the retrocession

price to the perceived signal. The third term S(β∗, x) := β∗ ∫ x
x

J(s)
fY1 (s|s)

dL(s | x) captures the

informational linkage between the primary and secondary markets, where β∗ is the retrocesion

shares to followers. The retrocession price factors into the lead reinsurer’s decision problem

initially and causes them to bid more aggressively. It is the disclosure of bids across markets
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that gives the lead reinsurer an incentive to signal.

Technically, his result can be viewed as a weighted average of two extreme settings. In

the no-resale setting (α = 1 or β = 0), the bidding strategy in Proposition 2 corresponds to

b̃(x) = q(x, x) −
∫ x
x L(s | x) dq(s, s), as in the follow-the-lead case. In this setting, since the

followers’ payoff is zero, the lead reinsurer’s payoff is the syndicate’s payoff Eπ̃1 without resale.

In the full resale setting (α = 0 or β = 1), the strategy in Proposition 2 becomes b̂Full(x) =

p(x, x, x)−
∫ x
x L(s | x) dp(s, s, s)+

∫ x
x

J(s)
fY1 (s|s)

dL(s|x). In this setting, the lead reinsurer’s payoff

is the syndicates’s payoff Eπ̂Full
1 since the followers’s payoff is zero. Taken together, when partial

risk α is held by lead reinsurer and the rest β is ceded, the equilibrium bidding strategy b̂(x) is

a weighted average of the two settings, i.e., b̂(x) = αb̃(x) + βb̂Full(x) as reflected in Proposition

2. Also, the payoff of the lead reinsurer is a weighted average of their payoffs in the two settings,

i.e., π̂L = απ̃1 + βπ̂Full
1 , where α+ β = 1.

Corollary 1. Under Assumption 1, the equilibrium bidding function b̂(x) is monotone increas-

ing in signal x.

Proof. See the Appendix.

The separating bidding strategy is monotonic, enabling reinsurers in the follow market to

invert lead reinsurers’ bids from the tender stage to glean information.

3.3 Comparison of Payoffs in the Follow-the-lead Case and Retrocession Case

Given the equilibrium results in the follow-the-lead case (Proposition 1) and retrocession case

(Proposition 2), we can compare the payoffs of client and reinsurers in the two cases.

Proposition 3. The client insurer is better off in the retrocession case than in the follow-the-

lead case, i.e., π̃C > π̂C . Reinsurers are better off in the follow-the-lead case, i.e., π̂1 > π̃1.

Specifically, the lead reinsurer is better off in the retrocession case, i.e., π̃L > π̂L, while the

followers are better off in the follow-the-lead case, i.e., π̂F > π̃F .

Proof. See the Appendix.

The main results of the paper can be summarized in Figure 2. α∗ is the equilibrium retention

ratio. The left panel show the follow-the-lead case. The upper rectangle represents the client’s

payoff varying with α, the middle triangle corresponds to the followers’ payoff, and the lower

triangle denotes the lead reinsurer’s payoff.

The right panel shows the retrocession case. The purple dotted line corresponds to the

price function p̂ derived in Proposition 2, which decreases with the pre-contractual retention
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Figure 2: Payoffs Comparison in the Two Organizational Structures

ratio α. At the right boundary (α = 1), the price converges to p̃, as in the follow-the-lead

case. At the left boundary (α = 0), it is full resale. The followers’ payoffs are divided by this

pricing function into two small triangles, which are then allocated to the client and the lead

reinsurer, respectively. The upper trapezoid above p̂ represents the client’s payoff, while the

lower trapezoid below p̂ corresponds to the lead reinsurer’s payoff. In the retrocession case, the

followers’ payoffs are zero.

Intuitively, for followers, their rent is zero in the retrocession case, whereas in the follow-

the-lead case, they benefit from the lead reinsurer’s expertise, shielding themselves from the

winner’s curse. Their rent comes from sharing the lead reinsurer’s private knowledge of the

risk. For the lead reinsurer, although they bid aggressively, this is only for the portion ceded

to the followers, while their retention share remains unaffected. The partial surplus transferred

from the followers compensates for their aggressive bidding on the ceded share, leaving them

better off. For the client insurer, the additional signaling component in the first-stage offers

improves their position. The extra surplus for the client insurer is extracted from the reinsurance

syndicates, achieved through reselling risk and signaling to the follower market.

4 Several Extensions

This section provides a robustness check when some assumptions of the model are altered.

4.1 Announcement of Client Insurer’s Information

In the main section, we assume that the client insurer does not have information because it is the

reinsurers who assess, understand, and price the risk. We then relax this assumption and intro-

duce a disclosure stage at the beginning of the games, allowing for pre-trading communication

between the client insurer and reinsurers. We assume that the client has private information

X0 that satisfies the affiliation condition defined in Definition 1 and supermodularity condition
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defined in Assumption 1, i,e., E [V |X1, . . . , Xn] := g (x1, . . . , xn;x0) is supermodular in signals;

i.e., ∂2g
∂xi∂xj

≥ 0. We show that the disclosure of the client insurer’s private information does not

qualitatively change the main results from the previous section.

4.1.1 Equilibrium Price in the Follow-the-Lead Case

To study the client insurer’s disclosure policy, we first derive the equilibrium price when X0 is

revealed. Assume w.l.o.g. that syndicate 1 wins the business. In a similar way, the joint interim

expected payoff conditional on winning, is given by E [V − b(X1) | X1 = x, Y1 < X1;X0] , where

Y1 is the highest signal among the competitors, i.e., Y1 = max(X2, . . . , Xn). When the client

insurer reveals publicly X0, the equilibrium price of the reinsurance contract is summarized in

the following proposition.

Proposition 4. Under the follow-the-lead case, when X0 is revealed, the equilibrium price of the

entire contract p̃ is equal to b̃I(X1;X0). α
∗ = K/I, and b̃I(X1;X0) is the symmetric equilibrium

bidding strategy of leader 1 with signal x, defined as:

b̃I(X1;X0) = q(x, x;x0)−
∫ x

x
L(s | x;x0)dq(s, s;x0),

with

q(x, y;x0) = E[V |X1 = x, Y1 = y;X0 = x0];

L(s | x;x0) = exp

{
−
∫ x

s

fY1(t | t;x0)
FY1(t | t;x0)

dt

}
.

Proof. See the Appendix.

To show that publicly revealing X0 before trading benefits the client, we need the revenue

ranking result or the linkage principle as shown in Lemma 4. Let W (z, x) be the expected price

paid by bidder 1 if he is the winning bidder when he receives a signal x but bids as if his signal

were z, i.e., W (z, x) = b(z). Let W2(z, x) denote the partial derivative of the function W (z, x)

with respect to the second argument. Then the following result holds.

Lemma 4. Let A and B be two auctions in which the highest bidder wins. Suppose that each auc-

tion has a symmetric and increasing equilibrium such that (1) for all x, WA
2 (x, x) ≥ WB

2 (x, x);

(2) WA(x, x) = E [V | X1 = x, Y1 = x] = WB(x, x). Then the expected revenue in A is at least

as large as that in B.

Proof. See Proposition 7.1 in Krishna (2009).

In our setting, auctions A and B correspond to the scenarios with and without revealing

X0, respectively. Based on Lemma 4, we obtain the following result.
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Proposition 5. Under the follow-the-lead case, publicly revealing X0 benefits the client.

Proof. See the Appendix.

Based on the above results, we know that the client insurer would disclose X0 to reinsurers

in the disclosure stage. One might wonder would the client insurer censor information, say,

she discloses information if it is above some threshold and withhold it otherwise. A simple

unraveling argument under passive beliefs of reinsurers rules out such a possibility.18

4.1.2 Equilibrium Price in the Retrocession Case

Given that the client insurer has private information X0, we consider the impact of reveal-

ing X0 on the equilibrium price of the reinsurance business. Let b̂(x;x0) be the symmetric

bidding strategy in the tender stage conditional on X0 = x0. Then if the lead reinsurer

1 wins and followers believe that he is following b̂(X1;X0), the retrocession price will be

(1− α)q
(
b̂−1(b;x0), Y1, . . . , Yn−1;X0

)
= E

[
(1− α)V | X1 = b̂−1(b), Y1, . . . , Yn−1;X0

]
, where

b̂−1(·;x0) denotes the inverse of b̂(·;x0).

Define p (x′, x, y;x0) = E [q (x′, Y1, . . . , Yn−1;X0) | X1 = x, Y1 = y] , which is the expected

retrocession price conditional on X1 and Y1 when the lead 1 wins and followers believe that

bidder 1’s private signal is equal to x′. The payoff of lead reinsurer 1, denoted as π(b | x;x0),

by a similar way, can be written in the following integral form:

π(b | x;x0) ≡ E
[(

(1− α)q
(
b̂−1(b), Y1;X0

)
+ αV − b

)
· 1

(
b ≥ b̂ (Y1)

)
| X1 = x;X0 = x0

]
=

∫ b̂−1(b)

x

[
(1− α)p

(
b̂−1(b), x, y;x0

)
+ αq(x, y;x0)− b

]
· fY1(y | x;x0)dy.

In the Appendix, we derive the first-order condition using the Leibniz integral rule, solve the

differential equation, and demonstrate that the bidding strategy leads to a maximum payoff,

not a minimum. From this, we obtain the following equilibrium result.

Proposition 6. In the retrocession case, when X0 is revealed, the winning leader keeps a share

α∗ = K/I of risks and cedes the rest β∗ = 1−α∗ to followers. The price of the entire business p̂

is equal to b̂(x1;x0), where b̂(x;x0) is the symmetric equilibrium bidding strategy of lead reinsurer

18Suppose X0 is uniformly distributed on [0, 1] and such a cutoff x∗ ∈ [0, 1] exists. Upon not receiving
information, reinsurers believe that x is uniformly in [0, x∗] with an average x∗/2. Thus, a client insurer with
value x ∈ (x∗/2, 1] would disclose to avoid being perceived as a low type. After n rounds of reasoning, a client
insurer with value x ∈ (x∗/2n, 1] would disclose. Hence, full disclosure is optimal when there are no other
frictions, such as disclosure costs (Dye (1985)), uncertainty of information endowment(Wagenhofer (1990)), etc.
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with signal x, defined as:

b̂(x;x0) = (1− α∗)p(x, x, x;x0) + α∗q(x, x;x0)−
∫ x

x
L(s | x;x0) dp(s, s, s;x0)

+ β∗
∫ x

x

J(s;x0)

fY1(s | s;x0)
dL(s, x;x0)

= p(x, x, x;x0)−
∫ x

x
L(s | x;x0) dp(s, s, s;x0) + β∗

∫ x

x

J(s;x0)

fY1(s | s;x0)
dL(s, x;x0)

where

L(s | x;x0) = exp

{
−
∫ x

s

fY1(t | t;x0)
FY1(t | t;x0)

dt

}
,

J(s;x0) =

∫ s

x
p1(s, s, y;x0) · fY1(y | s;x0)dy.

Proof. See the Appendix.

Based on the linkage principle, we have the following revenue ranking result.

Proposition 7. In the retrocession case, publicly revealing X0 benefits the clients.

Proof. See the Appendix.

Based on the above result, we know that under the retrocession case, the client insurer

reveals X0 publicly to reinsurers, and the price of the reinsurance business is p̂ as defined in

Proposition 6. The clients are better off since the equilibrium price in Proposition 6 is higher

than p̃ in Proposition 4 by the signaling component.

4.2 Followers’ Information

We relax the assumption that followers are uninformed. Our main results remain unaffected if

the followers have some information, provided that their information is garbled by that of the

lead, as defined in Definition 2.

Definition 2. (Garbling Condition) A random variable Zn+k is a garbling of (Z1, Z2, . . . , Zn) if

the joint density of V,Z1, Z2, . . . , Zn, Zn+k can be written as g (V,Z1, . . . , Zn)·h (Zn+k | Z1, . . . , Zn),

where g and h are joint density and conditional density of respective variables.

It is a strong sufficient statistic condition.19 Should a following reinsurer denoted as n + k

ground her estimate Zn+k on the information accessible to lead reinsurers, the garbling condition

19Milgrom and Weber (1982) use this to show that when a less-informed bidder competes with better-informed
bidders in a common value auction, she receives zero payoffs in an equilibrium.
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is satisfied. In an extreme case where followers are uninformed and leaders are informed, this

condition holds as well, because empty information sets are subsets of any non-empty set. One

implication from the garbling condition is Lemma 5.

Lemma 5. If a random variable Zn+k is a garbling of random variables Z1, Z2, . . . , Zn, then

for k = 1, 2, . . . ,m, it holds that

E [V | Z1, Z2, . . . , Zn, Zn+k] = E [V | Z1, Z2, . . . , Zn] .

Proof. See the Appendix.

Lemma 5 says that the evaluation of reinsurance risk V at a more precise information set

(Z1, Z2, . . . , Zn) remains unchanged when an additional piece of coarse information Zn+k is in-

troduced. To see that the retrocession price is not affected, note that the signals of followers

are garbled by those of lead reinsurers. For an individual follower, her evaluation of the risk

conditional on her private signal Xn+k and the lead reinsurers’ signals, is equivalent to evalu-

ating it based on the lead reinsurers’ signals by Lemma 5, i.e., E [V | X1, Y1, . . . , Yn−1, Xn+k] =

E [V | X1, Y1, . . . , Yn−1] , where k = 1, 2, . . . ,m. Given that their value remains unaffected, the

analysis in the main section remains unchanged.

4.3 Reserve Price

This section discusses the introduction of a reserve price or participation fee. These two are

equivalent to excluding some bidders with lower values from participation. We exclude this

in the main section for two reasons. First, from a technical perspective, it could lead to the

nonexistence of monotone equilibria when signals are affiliated (See Landsberger (2007) for

counterexamples). Second, in cases where equilibrium exists with a reserve price r ∈ [v, v̄], the

main result remains qualitatively unaffected. In the follow-the-lead case, given a reserve price

r, any lead reinsurer with a signal x below r would not participate, as their payoff would be

negative if they win. For lead reinsurers participating in the business, the boundary condition

for the lowest type changes to b̂(r) = q(r, r). The rest of the derivation remains unchanged.

Hence, the symmetric equilibrium bidding strategy for the lead reinsurer with signal x is given

by:

b̃(r, x) = q(x, x)−
∫ x

r
L(s | x)dq(s, s).
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In the retrocession case, the same set of lead reinsurers with value X < r are excluded. The

boundary changes to b̂(r) = p(r, r, r), and the symmetric bidding strategy is given by:

b̂(r, x) = p(x, x, x)−
∫ x

r
L(s | x)dp(s, s, s) + β∗

∫ x

r

J(s)

fY1(s | s)
dL(s | x),

and the comparison of prices remains unaffected.

5 Discussion of the Model

Below, we discuss several assumptions in the model.

Collusive Bidders. Our model assumes no collusive behavior in either scenario, as rein-

surers typically interact across various business lines and prioritize long-term reputations, dis-

couraging deceptive or illegal actions. We acknowledge that preventing bidder collusion is a key

aspect of auction design. In the retrocession scenario, the lead reinsurer profits more than in

the follow-the-lead case. This increased profit incentive encourages the lead reinsurer’s partici-

pation but may also heighten collusion risks, such as forming tacit alliances to demand higher

premiums and share surplus after winning. Exploring a collusion-proof design is an intriguing

avenue for future research.

Exogenous Information Structure. The information structure in our model is exoge-

nously given. We assume that the leader has information while followers are uninformed, mod-

eling followers’ reliance on the leader’s expertise to price risk. The leader’s role often depends on

specialized expertise; for example, Tokio Marine excels in assessing earthquake risks, while Taip-

ing Re specializes in typhoons. Their roles as leaders and followers may interchange depending

on the business context. Our model focuses on one specific business line, and the information

assumption is a simplification of reality. A potential direction for future research could be to

allow reinsurers to acquire information and study their information acquisition behavior under

various organizational structures.

6 Concluding Remarks

This paper presents a model for studying the organization of the reinsurance market by compar-

ing the current follow-the-lead practice with a proposed retrocession design that offers greater

benefits to clients. In follow-the-lead practice, a capital-constrained lead reinsurer sets the

terms of the offer, and followers subscribe to the remaining shares at a uniform price. The lead

reinsurer benefits from private information about the underlying risk, while the followers earn
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rent by leveraging the lead’s expertise in risk assessment.

In the proposed retrocession design, the allocation process is divided into two stages with

information revelations occurring between them. In the first stage, the lead reinsurer balances

leveraging their potential to exploit private information by retaining more shares and increasing

capital savings by retaining fewer shares. In the second stage, with all information public,

followers’ payoffs drop to zero as there is no private information to exploit. Their surplus is

extracted and transferred to the client through aggressive bidding by the lead reinsurer.

This retrocession design is not widely observed in practice, possibly for reasons similar to the

initial introduction of the SMRA in spectrum auctions. There may be a lack of understanding

regarding its mechanism, as restructuring a simple allocation process into a dynamic one intro-

duces additional complexity and requires more effort to organize the subsequent interactions.
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A Appendix A

A.1 Proof of Proposition 2

Proof. Given the lead reinsurer’s payoff, the first-order condition, derived using the Leibniz

rule, is expressed as follows:

b̂′(x) =
[
(1− α)p(x, x, x) + αq(x, x)− b̂(x)

]
· fY1(x | x)
FY1(x | x)

+ (1− α)

∫ x

x
p1(x, x, y) ·

fY1(y | x)
FY1(x | x)

dy

= [p(x, x, x)− b̂(x)] · fY1(x | x)
FY1(x | x)

+ (1− α)

∫ x

x
p1(x, x, y) ·

fY1(y | x)
FY1(x | x)

dy

With the boundary condition of the lowest type b̂(x) = p(x, x, x), the solution to the above

differential equation is

b̂(x) = (1− α)p(x, x, x) + αq(x, x)−
∫ x

x
L(s | x)dp(s, s, s) + (1− α)

∫ x

x

J(s)

fY1(s | s)
dL(s, x)

= p(x, x, x)−
∫ x

x
L(s | x)dp(s, s, s) + (1− α)

∫ x

x

J(s)

fY1(s | s)
dL(s, x).

where

L(s | x) = exp

{
−
∫ x

s

fY1(t | t)
FY1(t | t)

dt

}
,

J(s) =

∫ s

x
p1(s, s, y) · fY1(y | s)dy.

To demonstrate that the lead reinsurer indeed achieves the maximum profit, not the min-

imum, consider that if x′ < x, her payoff when bidding b̂ (x′) is then π
(
b̂ (x′) | x

)
. Note that

∂π(b̂(x′)|x′)
∂b̂

= 0, and the following inequality holds.

∂π
(
b̂ (x′) | x′

)
∂b

=

[
p (x′, x′, x′)− b̂(x)

]
· fY1 (x

′ | x′) +
∫ x′

x (1− α)p1 (x
′, x′, y) · fY1 (y | x′) dy

b̂′ (x′)

− FY1

(
x′ | x′

)
=
[
b̂′
(
x′
)]−1

FY1

(
x′ | x′

)
(
p (x′, x′, x′)− b̂ (x′)

)
fY1 (x

′|x′)

FY1
(x′|x′)

+
∫ x
x (1− α)p1 (x

′, x′, y) · fY1 (y|x
′)

FY1
(x′|x′)dy − b̂′ (x′)


≤
[
b̂′
(
x′
)]−1

FY1

(
x′ | x′

)
(
p (x′, x, x′)− b̂ (x′)

)
fY1 (x

′|x)
FY1

(x′|x)

+
∫ x
x (1− α)p1 (x

′, x, y) · fY1 (y|x)
FY1

(x′|x)dy − b̂′ (x′)


=

[
FY1 (x

′ | x′)
FY1 (x

′ | x)

] [
∂π (b (x′) | x)

∂b̂

]
.

The above inequality holds because FY1(· | x) dominates FY1(· | x′) in terms of reverse hazard
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rate for all x′ < x (see p. 287 in the Appendix of Krishna, 2009). Moreover, p and its derivative

p1 are nondecreasing in their arguments due to affiliation and Assumption 1, and
FY1

(·|x′)

FY1
(x′|x′)

first-order dominates
FY1

(·|x)
FY1

(x′|x) , also by affiliation. Note that ∂π(b̂(x′))

∂b̂
≥ 0 implies that when

the true signal of a lead reinsurer is x and he bids b(x′) where x′ ≤ x, he would increase the

bid to maximize his payoff. Symmetrically, it holds that ∂π(b̂(x′))

∂b̂
≤ 0 if x′ ≥ x. The lead

would lower his bid b̂(x′) to increase his payoff if x′ ≤ x. We must also have that for all x,

αp(x, x, x) + (1− α)q(x, x) − b̂(x) = p(x, x, x) − b̂(x) > 0 holds for all x in [x, x̄], otherwise a

bid of zero would be better. Note the following results hold.

p(x, x, x)− b̂(x) =

∫ x

x
L(s | x) dp(s, s, s)− (1− α)

∫ x

x

J(s)

fY1(s | s)
dL(s, x)

=

∫ x

x
L(s | x) [p1(s, s, s) + p2(s, s, s) + p3(s, s, s)] ds− (1− α)

∫ x

x
L(s, x)

J(s)

FY1(s | s)
ds

=

∫ x

x
L(s | x)

[
p1(s, s, s) + p2(s, s, s) + p3(s, s, s)− (1− α)

J(s)

FY1(s | s)

]
ds

≥
∫ x

x
L(s | x) [p2(s, s, s) + p3(s, s, s)] ds > 0.

The first equality uses total differentiation of dp and the fact that dL(s,x)
L(s,x) =

fY1 (s|s)
FY1

(s|s)ds. The

inequality uses (1 − α) J(s)
FY1

(s|s) := β J(s)
FY1

(s|s) = β
∫ s
x p1(s, s, y) ·

fY1 (y|s)
FY1

(s|s)dy ≤ p1(s, s, s) for y ≤ s

and 0 ≤ β ≤ 1. The last inequality holds since p2 > 0 and p3 > 0 by affiliation. Hence, bidding

b(x) is indeed an equilibrium when the lead’s signal is x. This completes the proof.

A.2 Proof of Corollary 1

Proof. In the proof of Proposition 2, we establish that p(x, x, x) − b(x) > 0. Substituting this

result into the expression for b̂′(x) and noting that p1(x, x, y) ≥ 0 by Assumption 1, we conclude

that the derivative b̂′(x) is positive. This completes the proof.

A.3 Proof of Propostion 3

Proof. First, for the client, in the follow-the-lead case, the client’s payoff is π̂C = p̂, while in

the retrocession case, the client’s payoff is π̃C = p̃. Since p̃ − p̂ = S(β∗, x) > 0, the client is

better off in the retrocession case. This is illustrated in Figure 2, where the distance between

the purple dotted line and the upper bound of the box is greater than that between the orange

dotted line and the upper bound of the box.
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Second, for the followers, in the follow-the-lead case, the followers’ payoff is π̃F = (1 −

α∗)(V − p̃) > 0, whereas in the retrocession case, their payoff is zero, i.e., π̂F = 0. Therefore,

followers are better off in the follow-the-lead case. This is illustrated in Figure 2, where the

middle triangle is divided by the purple line into two parts in the right-hand panel, which are

transferred to the client and the lead reinsurers.

Third, for the lead reinsurer, in the follow-the-lead case, the leader’s payoff is π̃L = α∗π̃1 > 0.

In the retrocession case, the lead’s payoff is π̂L = α∗π̃1 + β∗π̂Full
1 > π̃L, where α∗ + β∗ = 1.

The fact that π̂Full
1 > 0 can be seen in the proof of Proposition 2 that the equilibrium payoff

is positive if α = 0 or β = 1. This is illustrated in Figure 2, where the lower trapezoid in the

right-hand panel covers the lower triangle in the left-hand panel.

Fourth, for the reinsurers, in the common-value setting, their joint payoff, V − p, and the

client’s payoff, p, sum to a constant V in both cases. If the client is better off in the retrocession

case than in the follow-the-lead case, the reinsurers are correspondingly better off in the follow-

the-lead case. This can be seen in Figure 2, where the lower rectangle in the left panel covers

the trapezoid below the purple dotted line in the right panel.

A.4 Proof of Proposition 4

Proof. Taking the FOC of equilibrium payoff to get the equilibrium bidding strategy candidate

b̃(x) = q(x, x;x0)−
∫ x

x
L(s | x;x0) dq(s, s;x0).

We need to show that the bidding strategy candidate b̃(x;x0) leads to a maximum in payoff.

If the leader bids b̃(x′;x0) instead when his signal is x, the payoff is π(b̃(x′;x0) | x). Taking the

derivative:

∂π(b̃(x′;x0) | x)
∂x′

= (q(x, x′;x0)− b̃(x′;x0))fY1(x
′ | x;x0)− b̃′(x;x0)FY1(x

′ | x;x0)

= FY1(x
′ | x;x0)

[
(q(x, x′;x0)− b̃(x′;x0))

fY1(x
′ | x;x0)

FY1(x
′ | x;x0)

− b̃′(x;x0)

]
.

If x′ < x, then since q(x, x′;x0) > q(x′, x′;x0) and
fY1 (x

′|x;x0)

FY1
(x′|x;x0)

>
fY1 (x

′|x′;x0)

FY1
(x′|x′;x0)

, it holds that

∂π(b̃(x′;x0) | x)
∂x′

> FY1(x
′ | x;x0)

[
(q(x′, x′;x0)− b̃(x′;x0))

fY1(x
′ | x′;x0)

FY1(x
′ | x′;x0)

− b̃′(x;x0)

]
=

∂π(b̃(x′;x0) | x′)
∂x′

= 0.
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In words, the payoff increases with a higher bid when x′ < x. Similarly, we have that

∂π(b̃(x′;x0)|x)
∂x′ < 0 when x′ > x. The payoff increases with a lower bid when x′ < x. Hence,

choosing b̃(x;x0) when the signal is x indeed leads to a maximum payoff. This completes the

proof.

A.5 Proof of Proposition 5

Proof. When X0 is revealed, the expected payment of a winning leader when he receives a signal

x but bids as if his signal were z (i.e., for all X0 = x0, he bids b̃(z;x0)) is

WA(z, x) = E
[
b̃I(z;x0) | X1 = x

]
,

so WA
2 (z, x) ≥ 0, because X0 and X1 are affiliated.

When X0 is not revealed, similarly we have that

WB(z, x) = b̃(z),

so WB
2 (z, x) = 0.

Hence, WA
2 (z, x) ≥ WB

2 (z, x). Publicly revealing X0 raises p̃.

A.6 Proof of Proposition 6

Proof. The proof is similar to that in Proposition 2. The FOC is derived using the Lebnitz’s

integral rule, and b̂(x;x0) satisfies a first-order differential equation:

b̂′(x) =
[
(1− α)p(x, x, x;x0) + αq(x, x;x0)− b̂(x;x0)

]
· fY1(x | x;x0)
FY1(x | x;x0)

+ (1− α)

∫ x

x
p1(x, x, y;x0) ·

fY1(y | x;x0)
FY1(x | x;x0)

dy

= [p(x, x, x;x0)− b̂(x;x0)] ·
fY1(x | x;x0)
FY1(x | x;x0)

+ (1− α)

∫ x

x
p1(x, x, y;x0) ·

fY1(y | x;x0)
FY1(x | x;x0)

dy.
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With the boundary condition of the lowest type b̂(x;x0) = p(x, x, x;x0), the solution to the

above differential equation is

b̂(x;x0) = (1− α)p(x, x, x;x0) + αq(x, x;x0)−
∫ x

x
L(s | x;x0)dp(s, s, s;x0)

+ (1− α)

∫ x

x

J(s;x0)

fY1(s | s;x0)
dL(s, x;x0)

= p(x, x, x;x0)−
∫ x

x
L(s | x;x0)dp(s, s, s;x0) + (1− α)

∫ x

x

J(s;x0)

fY1(s | s;x0)
dL(s, x;x0),

where

L(s | x;x0) = exp

{
−
∫ x

s

fY1(t | t;x0)
FY1(t | t;x0)

dt

}
,

J(s;x0) =

∫ s

x
p1(s, s, y;x0) · fY1(y | s;x0)dy.

Given the equilibrium bidding strategy candidate, to show that the lead reinsurer indeed

achieves the maximum profit, not the minimum, consider that if x′ < x, their payoff when bid-

ding b̂ (x′;x0) is then π
(
b̂ (x′;x0) | x

)
. Note that

∂π(b̂(x′;x0)|x′)
∂b̂

= 0, and the following inequality

holds.

∂π
(
b̂ (x′;x0) | x′

)
∂b̂

=

[
p (x′, x′, x′;x0)− b̂(x)

]
· fY1 (x

′ | x′;x0) +
∫ x′

x (1− α)p1 (x
′, x′, y;x0) · fY1 (y | x′;x0) dy

b̂′ (x′;x0)

− FY1

(
x′ | x′;x0

)
=
[
b̂′
(
x′;x0

)]−1
FY1

(
x′ | x′;x0

)
(
p (x′, x′, x′;x0)− b̂ (x′;x0)

)
fY1 (x

′|x′;x0)

FY1
(x′|x′;x0)

+
∫ x
x (1− α)p1 (x

′, x′, y;x0) ·
fY1 (y|x

′;x0)

FY1
(x′|x′;x0)

dy − b̂′ (x′;x0)


≤
[
b̂′
(
x′;x0

)]−1
FY1

(
x′ | x′;x0

)
(
p (x′, x, x′;x0)− b̂ (x′;x0)

)
fY1 (x

′|x;x0)

FY1
(x′|x;x0)

+
∫ x
x (1− α)p1 (x

′, x, y;x0) ·
fY1 (y|x;x0)

FY1
(x′|x;x0)

dy − b̂′ (x′;x0)


=

[
FY1 (x

′ | x′;x0)
FY1 (x

′ | x;x0)

]∂π
(
b̂ (x′;x0) | x

)
∂b̂

 .

The above inequality holds because FY1(· | x;x0) dominates FY1(· | x′;x0) in terms of reverse

hazard rate for all x′ < x (see p.287 in the Appendix of Krishna, 2009). Moreover, p and its

derivative p1 are nondecreasing in their arguments due to affiliation and Assumption 1, and

FY1
(·|x′;x0)

FY1
(x′|x′;x0)

first-order dominates
FY1

(·|x;x0)

FY1
(x′|x;x0)

, also by affiliation. Note that ∂π(b̂(x′))

∂b̂
≥ 0 implies

that when the true signal of a lead reinsurer is x and he bids b̂(x′;x0) where x′ ≤ x, he would

increase the bid to maximize his payoff. Symmetrically, it holds that ∂π(b̂(x′;x0))

∂b̂
≤ 0 if x′ ≥ x.

The lead would lower his bid b̂(x′) to increase his payoff if x′ ≤ x. We must also have that for
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all x, αp(x, x, x;x0) + (1− α)q(x, x;x0) − b̂(x;x0) = p(x, x, x;x0) − b̂(x;x0) > 0 holds for all x

in [x, x̄], otherwise a bid of zero would be better.

p(x, x, x;x0)− b̂(x;x0) =

∫ x

x
L(s | x;x0) dp(s, s, s;x0)− (1− α)

∫ x

x

J(s;x0)

fY1(s | s;x0)
dL(s, x;x0)

=

∫ x

x
L(s | x;x0) [p1(s, s, s;x0) + p2(s, s, s;x0) + p3(s, s, s;x0)] ds− (1− α)

∫ x

x
L(s, x;x0)

J(s;x0)

FY1(s | s;x0)
ds

=

∫ x

x
L(s | x;x0)

[
p1(s, s, s;x0) + p2(s, s, s;x0) + p3(s, s, s;x0)− (1− α)

J(s;x0)

FY1(s | s;x0)

]
ds

≥
∫ x

x
L(s | x;x0) [p2(s, s, s;x0) + p3(s, s, s;x0)] ds ≥ 0.

The first equality uses total differentiation of dp and the fact that dL(s,x;x0)
L(s,x;x0)

=
fY1 (s|s;x0)

FY1
(s|s;x0)

ds. The

inequality uses J(s;x0)
FY1

(s|s;x0)
=

∫ s
x p1(s, s, y;x0) ·

fY1 (y|s;x0)

FY1
(s|s;x0)

dy ≤ p1(s, s, s;x0) for y ≤ s. The last

inequality holds since p2 ≥ 0 and p3 ≥ 0 by affiliation. Hence, bidding b̂(x;x0) is indeed an

equilibrium when the lead’s signal is x. This completes the proof.

A.7 Proof of Corollary 2

Proof. The proof of corollary 2 is similar to that in the proof of corollary 1. In the proof of

proposition 6, we establish that p(x, x, x;x0) − b̂(x;x0) > 0. Substituting this result into the

derivative of b̃(x) and noting that p1(x, x, y;x0) ≥ 0 by Assumption 1, we then conclude the

derivative b̂′(x;x0) is positive. This completes the proof.

A.8 Proof of Proposition 7

Proof. When X0 is revealed, the expected payment of a winning leader when he receives a signal

x but bids as if his signal were z (i.e., for all X0 = x0, he bids b̂(z;x0)) is

WA(z, x) = E
[
b̂(z;x0) | X1 = x

]
,

so WA
2 (z, x) ≥ 0, because X0 and X1 are affiliated.

When X0 is not revealed, similarly we have that

WB(z, x) = b̂(z),

so WB
2 (z, x) = 0. Hence, WA

2 (z, x) ≥ WB
2 (z, x).

Thus, publicly revealing X0 raises p̂ by Lemma 4.
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A.9 Proof of Lemma 5

Proof.

E [V | Z1, Z2, . . . , Zn, Zn+k] =

∫
R
v · fV |Z1,Z2,...,Zn,Zn+k

(v | z1, z2, . . . , zn, zn+k) dv

=

∫
R
v ·

fV,Z1,z2,...,Zn,Zn+k
(v, z1, z2, . . . , zn, zn+k)

fZ1,Z2,...,Zn,Zn+k
(z1, z2, . . . , zn, zn+k)

dv

=

∫
R
v ·

fV,Z1,Z2,...,Zn (v, z1, z2, . . . , zn) · fZn+k|Z1,Z2...,Zn
(zn+k | z1, z2, . . . , zn)

fZ1,Z2...,Zn,Zn+k
(z1, z2, . . . , zn, zn+k)

dv

=

∫
R
v ·

fV,Z1,Z2,...,Zn (v, z1, z2, . . . , zn) ·
fZ1,Z2,...,Zn,Zn+k

(z1,z2,...,zn,zn+k)

fZ1,Z2,...,Zn (z1,z2,...,zn)

fZ1,Z2,...,Zn,Zn+k
(z1, z2, . . . , zn, zn+k)

dv

=

∫
R
v ·

fV,Z1,Z2,...,Zn (v, z1, z2, . . . , zn)

fZ1,Z2,...,Zn (z1, z2, . . . , zn)
dv

= E [V | Z1, Z2, . . . , Zn] .

The first and last equalities correspond to the definitions of conditional expectation. The second

equality uses

fV |Z1,Z2,...,Zn,Zn+k
(v | z1, z2, . . . , zn, zn+k) =

fV,Z1,Z2,...,Zn,Zn+k
(v, z1, z2, . . . , zn, zn+k)

fZ1,Z2,...,Zn,Zn+k
(z1, z2, . . . , zn, zn+k)

.

The numerator in the third equality follows the definition of the garbling condition. The fourth

equality uses

fZn+k|Z1,Z2,...,Zn
(zn+k | z1, z2, . . . , zn) =

fZ1,Z2,...,Zn,Zn+k
(z1, z2, . . . , zn, zn+k)

fZ1,Z2,...,Zn (z1, z2, . . . , zn)
.

This completes the proof.
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B Appendix B

This section contrasts syndicated loans with reinsurance syndicates, as these two are similar in

organization, and the former is extensively studied in banking.

B.1 Comparison of Syndicated Loan and Reinsurance Syndicate

Below we briefly describe the basic background of syndicated loans and reinsurance syndicates.

A syndicated loan is provided by a group of lenders to a single borrower, often for large-scale

loans exceeding a single lender’s capacity. It is formed by banks or financial institutions, with

a lead bank arranging and managing the loan. The loan amount is divided among participants,

limiting each lender’s risk to their portion.

In a co-reinsurance syndicate, multiple reinsurers pool resources to underwrite large or

complex risks. A lead reinsurer is responsible for determining the terms and conditions, which

are binding for the follow market. Reinsurers each assume a portion of the risk according to

their participation percentages. Large risks are spread to reduce the financial impact on any

single insurer.

Both organizations share similarities, requiring multiple banks or reinsurers to jointly raise

capital and share risks. They adopt a leader-follower structure to reduce transaction costs in

business. Though the organizational structures have some commonalities between a syndicated

loan and a co-insurance syndicate, there are crucial differences.

First, the industry applications are different. Syndicated loans are used in banking and

finance, while reinsurance syndicates serve the broader insurance and reinsurance industry.

Second, the underlying risk types involved in these two structures differ. A syndicated loan

is subject to the credit risk of the borrower, while the default risk has been historically rare

in insurance; one example we know is American International Group (AIG)’s near-failure in

2008 due to its exposure to credit default swaps (CDS) and the housing market collapse.20 In

contrast, the main risk related to pricing in reinsurance is the underwriting risk covered by

the contracts, such as potential damages caused by a hurricane in Florida or an earthquake in

Japan.

Third, the pricing practices induced by covering different risks in these two industries differ.

The pricing in syndicated loans is typically standardized, often based on benchmark interest

rates such as London Inter-bank Offered Rate (LIBOR) or Secured Overnight Financing Rate

20AIG, a global company with about 1 trillion US Dollars in assets before the crisis, lost 99.2 billion in 2008. On
September 16 of that year, the Federal Reserve Bank of New York stepped in with an 85 billion loan to keep the
failing company from going under. See https://insight.kellogg.northwestern.edu/article/what-went-wrong-at-aig
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(SOFR), plus an applicable margin.21 Conversely, there is no such benchmark in reinsurance

treaties. The price of a reinsurance policy varies case by case, depending on the specific business

and the individual underwriter’s assessment of the underwriting risk.

Lastly, the regulatory focuses differ between the insurance and banking sectors. In insur-

ance, regulations aim to prevent unfair pricing and exclusionary practices, driven by the sector’s

reliance on competitive risk assessment and pricing. In contrast, banking regulations prioritize

financial stability, risk management, and the prevention of systemic failures, viewing syndicated

loans as a means to spread risk and increase lending capacity for large projects. While compe-

tition concerns are monitored, the overarching goal in banking is to ensure that collaborative

lending practices do not compromise the resilience of the financial system.

B.2 Reinsurance Business and Follow-the-lead Practice

This section offers background information on the reinsurance business and the follow-the-lead

practice.

B.2.1 Reinsurance Business and Syndicates

The reinsurance can be classified into external reinsurance and internal reinsurance. The follow-

the-lead practice discussed in this paper is used in external reinsurance, wherein cedants rely on

professional reinsurers for risk cession. Internal reinsurance, or captive reinsurance, is when a

parent company forms its own reinsurance entity to manage risks from its insurance operations

internally, acting as a form of self-insurance instead of outsourcing to external reinsurance

firms. External reinsurance typically constitutes the primary business line. As Hsiao and Shiu

(2019) shows, in the UK life insurance industry, 80.24% of the insurers used at least one type

of reinsurance. The participation rate for external reinsurance usage is 76.33%. This means

non-affiliated professional external reinsurers play an important role in diversifying the risks.

In addition to reinsurance, there are various Alternative Risk Transfer (ART) mechanisms

like Insurance-Linked Securities (ILS), which offer additional options for managing risk. These

financial instruments allow insurers to transfer risk to investors in the financial markets, similar

to how banks distribute loan risks through securitization. For example, by issuing $1 million in

catastrophe bonds, an insurer can raise the same amount from investors. If a catastrophe occurs,

the principal is used to cover losses, and investors receive only coupon payments. Otherwise,

the insurer repays the principal plus coupons. Despite their presence in diversifying risks, these

instruments fall outside the scope of this paper.

21Source: https://www.srsacquiom.com/our-insights/syndicated-loan-market/
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Client insurers depend on professional reinsurers for both risk management and pricing, as

reinsurers typically have a deeper understanding of underlying risks than their clients, drawing

on historical data, experience, and new technology. For instance, newly emerging risks such as

cybercrime require specialized knowledge and tools. Lloyd’s syndicates use the Axio360 platform

to develop solutions for cyber-physical damage coverage, leveraging it as a decision-making

engine for comprehensive cyber risk management. This includes cybersecurity assessments,

cyber risk quantification (CRQ), risk transfer, and cyber insurance analysis.22 Individual clients

may lack access to such advanced technology when evaluating the potential risks.

In external reinsurance, reinsurers often collaborate to spread risk more effectively. Notable

examples include insurance and reinsurance syndicates like Hiscox ESG 3033, which, brokered

by Aon, provided coverage for a new wind farm in Spain and a solar farm risk in the USA in

2023.23 Furthermore, Beazley launched Syndicate 4321 in 2022, offering exclusive capacity for

clients with high ESG ratings.24

B.2.2 Follow-the-lead Practice

Follow-the-lead practice locks the aftermarket on a single set of terms and conditions determined

in the tender phase. Regarding the details, the Commission outlines some market elements

contained in the subscription procedure:

(a) Alignment on the contractual terms offered by the lead (re)insurer.

(b) Revealing the price offered by the lead (re)insurer to the follow market.

(c) Potentially, guaranteeing to the lead that the price and conditions, and the share of the

risk, that were agreed with it at the end of the first round, will not be changed to its

detriment if participants in the follow market were to offer a lower price;

(d) Alignment on the premium.

Up to today, follow-the-lead remains a prevalent market practice, evidenced by recent arti-

cles. One notes,“Follower reinsurers accept to participate in a reinsurance treaty in which the

final terms and conditions have already been agreed, but they don’t necessarily influence the

terms and conditions involved.”25 Another states,“Despite not being in the lead, they (followers)

enjoy the same level of compensation as the lead reinsurer.”26

22See https://www.reinsurancene.ws/lloyds-of-london-investment-in-axio-to-support-company-growth-and-benefit-the-market/
23See https://www.hiscoxgroup.com/news/press-releases/2023/02-08-23
24See https://www.beazley.com/en-us/news-and-events/esg-syndicate-4321/
25See an article written by CCR Re in 2021 https://blog.ccr-re.com/en/what-is-a-follower
26See an article by insurance professionals in 2022: https://www.investopedia.com/terms/l/lead-reinsurer.asp
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C Appendix C

Below, we discuss the implementation of the optimal selling mechanism, sufficient conditions

for full surplus extraction, and its distinction from a second-price auction, based on McAfee

et al. (1989).

C.1 Implementation

1. The insurer (seller) randomly selects two syndicates labeled i and j among n competing

syndicates.

2. The insurer then asks leader j to report his signal, the realization is denoted as xj , but

offers the business to syndicate i at a price z(xj), where z(·) is a price function that

depends only on j’s report.

C.2 Incentive Compatibility and Participation Constraint

The first observation is that the mechasim above is weakly incentive-compatible (IC). This is

because a reinsurer’s payoff does not depend on its own actions: syndicate i’s payoff depends

on syndicate j’s report, while the payoffs for all other participants are zero.

Second, we need to show the existence of a price function z(·) such that the participation

constraints are satisfied, i.e., the buyer i’s expected payoff is nonnegative. Specifically, if his

payoff is zero, the mechanism is optimal from the seller’s perspective.

Denote the conditional distribution of each lead reinsurer i’s signal xi as F (xi|v), with

density f(xi|v) continuous and strictly positive on [0, 1] × [0, 1].27 Let the distribution of v be

G(v). The payoff of leader i is given by:

πi =

∫ 1

0

[
v −

∫ 1

0
z(x)f(x | v)dx

]
f (xi | v)∫ 1

0 f (xi | u) dG(u)
dG(v).

Thus, characterizing the optimal mechanism reduces to finding z(·) such that πi = 0.

C.3 Surplus Extraction as a Minimum Norm Problem

The full surplus extraction problem can be transformed into a minimum norm problem. Con-

sider a Hilbert space of square-integrable functions L2([0, 1], G) and define the norm as ∥x∥ =

27We consider [0, 1] w.l.o.g. since it is isomorphic to interval [v, v].

32



(x, x)
1
2 , where (x, y) =

∫ 1
0 x(v)y(v)dG(v). Define a set Y as:

Y =

{
y ∈ L2([0, 1], G) | ∃z ∈ L2([0, 1], G), y(v) =

∫ 1

0
z(x)f(x | v)dx

}
.

Then we have the following results.

Lemma 6 (McAfee et al., 1989, Lemma). ∃z(·) ∈ L2([0, 1], G) satisfying πi = 0 if and only if

miny∈Y ∥y − v∥ has a solution.

Theorem 1 (McAfee et al., 1989, Main Theorem). ∀ε > 0,∃z ∈ L2([0, 1], G) s. t. πi ∈ [0, ε].

The intuition behind leaving small rents ε is that the mechanism is only weakly IC, meaning

the buyer is not worse off if they lie. To ensure strict incentives, a cost shall be imposed on the

seller to leave strict rents for the buyer to report truthfully.

C.4 Sufficient Conditions for Full Surplus Extraction

Balakrishnan (2012) states that every closed convex set in a Hilbert space has a unique element

of minimum norm. Two examples provided by McAfee et al. (1989) satisfy the condition that

the set Y defined above is closed.

1. The conditional density satisfies a separability condition, i.e., f(s | v) =
∑n

i=1 ai(s)bi(v).

2. The value v has a finite support, i.e., G = {v1, v2, . . . , vm}.

C.5 Distinction from Second-Price Auction

The mechanism discussed here resembles but is essentially different from a second-price auction

(SPA) in key aspects:

1. A SPA is not optimal as it is dominated by a English auction in a common value setting.

2. In this mechanism, the two buyers are selected arbitrarily. In contrast, in a SPA, the

highest and second-highest bidders are chosen by the buyers themselves based on their

signals or bids. The buyers’ knowledge of this prevents full surplus extraction.
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