Health and Economic Inequality during Pandemics: A Heterogeneous Agent Perspective

Aditya Goenka¹ Lin Liu² Haokun Pang ³

July 22, 2024

¹Department of Economics, University of Birmingham, Email: a.goenka@bham.ac.uk ²Management School, University of Liverpool, Email: lin.liu@liverpool.ac.uk ³Department of Economics, University of Birmingham_a Email: h.pang1@bham.ac.uk

Outline

- Motivation: Empirical Facts
- General Equilibrium Model

< 口 > < 同

- The Covid-19 pandemic highlighted inequality of health outcomes:
 - by age, income (deprivation indices in UK), ethnicity, spatial, gender, household structure, etc.
- This was clearly recognized during the pandemic and was tracked by Covid policymakers.
- ONS (UK) data: infection rate for the deprived area is higher

3 + + 3 + 3 = 4 - 9 Q A

Empirical Facts — Health Inequality Increased

Figure 1: Health Inequality in UK

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

- Concern that the pandemic could perpetuate Economic inequality.
- Income Gini has increased during the pandemic (Chen and Krieger, 2021; Stantcheva, 2022). Inequality Empirical
- Evidence on wealth Gini index by Global Wealth Report (Credit Suisse, 2012-2022)

Empirical Facts

Wealth Equality Worsened without Income Support

Income Support (later)

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ④�?

Aditya Goenka, Lin Liu, Haokun Pang

Worsened health and wealth equality could be correlated.

- Possible bridge between wealth and health: Individual Health Policy
 - Rich people act more preventive to the disease
 - \Rightarrow s.t. lower infection risk
- UK Data: lower tier local authorities
 - Community (Google) mobility is negatively correlated with income.

ヨト イヨト ヨヨ わえつ

Empirical Facts — Health Policy

Focus on Oct 2022, when all social restrictions were removed

Figure 2: Mobility Change and Income (Oct 2022)

This paper

We model the dynamics of **health and wealth inequality** during the pandemic.

- Heterogeneous Agent model (*à la* Achdou et.al, 2022) + Disease transmission (SIRS model)
- understand the co-determination and co-evolution of health and economic inequality.
 - ► **Health inequality**: infection rates disparities⁴.
 - Economic inequality: income / wealth inequality More
- Opt. individual health policy
 - ▶ Preventive (Precautionary) policy
 - ▶ Treatment or recuperative (ex-post) policy
- Gov. Income Support Scheme

 4 we do not model mortality in this paper consistent with later period of the pandemic where this has declined. We shut down all avenues of heterogeneity: WFH, gender, age, household structure, spatial issues, occupations: wnemployment setc are $22 \approx 22$.

This paper

We model the dynamics of **health and wealth inequality** during the pandemic.

- Heterogeneous Agent model (*à la* Achdou et.al, 2022) + Disease transmission (SIRS model)
- understand the co-determination and co-evolution of health and economic inequality.
 - Health inequality: infection rates disparities⁴.
 - Economic inequality: income / wealth inequality More
- Opt. individual health policy
 - Preventive (Precautionary) policy
 - Treatment or recuperative (ex-post) policy
- Gov. Income Support Scheme

⁴we do not model mortality in this paper consistent with later period of the pandemic where this has declined. We shut down all avenues of heterogeneity: WFH, gender, age, household structure, spatial issues, occupations, unemployment, $etc. = 0 \circ 0$

This paper

We model the dynamics of **health and wealth inequality** during the pandemic.

- Heterogeneous Agent model (*à la* Achdou et.al, 2022) + Disease transmission (SIRS model)
- understand the co-determination and co-evolution of health and economic inequality.
 - Health inequality: infection rates disparities⁴.
 - Economic inequality: income / wealth inequality More
- Opt. individual health policy
 - Preventive (Precautionary) policy
 - ► Treatment or recuperative (ex-post) policy
- Gov. Income Support Scheme

⁴we do not model mortality in this paper consistent with later period of the pandemic where this has declined. We shut down all avenues of heterogeneity: WFH, gender, age, household structure, spatial issues, occupations, unemployment, $etc. = 0 \circ 0$

Takeaways

- Model matches epidemiological dynamics and health policy
- Temporary increase in income inequality
- Persistent increase in wealth inequality
- Income support

(Aggregate trade-off between health and wealth)

- Rising inequality can be turned-around by income support
- might discourage peoples' spend on health and induce higher infection

ヨト イヨト ヨヨ わえつ

Model Setup — State Variables

model overview Individual State variables:

- *a*: wealth for individuals
 - Continuously distributed in the interval $[\underline{a}, \overline{a}]$
- h: health status for individual (Epidemiological Compartments)
 - ► **susceptible** S: individuals without immunity; will be infected if contacting with virus
 - ▶ infective *I*: individuals carry and be able to transmit virus
 - recovered \mathcal{R} : individuals recovered from infection with immunity
- Motion of individual health status: SIRS dynamics

▲ ∃ ▶ ∃ ∃ ₽

Model Setup — State Variables

model overview Individual State variables:

- *a*: wealth for individuals
 - Continuously distributed in the interval $[\underline{a}, \overline{a}]$
- h: health status for individual (Epidemiological Compartments)
 - ► susceptible S: individuals without immunity; will be infected if contacting with virus
 - infective \mathcal{I} : individuals carry and be able to transmit virus
 - recovered \mathcal{R} : individuals recovered from infection with immunity
- Motion of individual health status: SIRS dynamics

▶ ▲ ∃ ▶ ∃ ∃ ■ 𝒫 𝔅

Model Setup — Individual Income

• Function z maps individuals' health status to productivity

$$z: h \to [0,1]; \quad z(\mathcal{S}) = z(\mathcal{R}) > z(\mathcal{I}) \tag{1}$$

- $\bullet\,$ The productivity z(h) changed stochastically according to the epidemiological motion
 - Idiosyncratic term with Poisson process generates heterogeneity
 - Let g(a, h) to be the joint distribution

ヨト イヨト ヨヨ わえつ

Model Setup — Health Expenditure

- Idiosyncratic shock in Aiyagari (1994) is exogenous and uninsured.
- $\bullet\,$ Idiosyncratic term z(h) here is partially insured by two types of health expenditure for individuals
 - Prevention expenditure $m_{\mathcal{P}}$:
 - consumption-reduction action for reducing the probability of future infection
 - ★ e.g. self-isolation, facial mask, PCR test etc.
 - Treatment expenditure m_T :
 - ex-post consumption-reduction action for better and faster health/productivity recovery
 - * e.g. supplement, medicine, nourishment, living condition etc.

More

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Model Setup — Health Expenditure

- Idiosyncratic shock in Aiyagari (1994) is exogenous and uninsured.
- Idiosyncratic term z(h) here is partially insured by two types of health expenditure for individuals
 - Prevention expenditure $m_{\mathcal{P}}$:
 - \star consumption-reduction action for reducing the probability of future infection
 - ★ e.g. self-isolation, facial mask, PCR test etc.
 - Treatment expenditure m_T :
 - ex-post consumption-reduction action for better and faster health/productivity recovery
 - * e.g. supplement, medicine, nourishment, living condition etc.

More

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Model Setup — Infection

Disease Transmission:

• The disease is transmitted by infectious contact: Susceptible individual becomes infected when contact with infective individual

Contact Rate:

- $\bullet\,$ Individuals contact with others with a rate α
 - Higher expenditure on prevention $m_{\mathcal{P}}$, lower contact rate.
 - $\alpha(m_{\mathcal{P}})$ is a decreasing function

$$\begin{split} &\alpha(m_{\mathcal{P}}):\mathbb{R}_+\to\mathbb{R}_+\\ \text{with} \quad &\alpha'<0; \alpha''>0, \alpha(0)=\bar{\alpha}; \alpha(\infty)=\underline{\alpha} \end{split}$$

ヨト イヨト ヨヨ のくや

Model Setup — Infection

Infection Process:

- Given individuals are continuously distributed
- $\bullet\,$ The infection probability for susceptible individuals with preventive expenditure $m_{\mathcal{P}}$ is

$$\lambda = \alpha(m_{\mathcal{P}})\zeta\tag{2}$$

- ζ is the social average infectious contact rate⁵
- \blacktriangleright ζ perceived and taken as given in the individual maximization problem.
- In equilibrium, the perception about the average infective contact rate is in fact the true value.

$$\zeta = \int \alpha(m_{\mathcal{P}}) \mathbb{1}(h = \mathcal{I}) g(a, h) d\mu$$
(3)

 Model Setup — Recovery

Recovery Process:

- Recovery rate γ for the infective group is increasing with treatment expenditure $m_{\mathcal{T}}$
- $\gamma(m_{\mathcal{T}})$ is an increasing function

$$\begin{split} \gamma(m_{\mathcal{T}}): \mathbb{R}_+ \to \mathbb{R}_+ \\ \text{with} \quad \gamma' > 0; \gamma'' < 0; \gamma(0) = \underline{\gamma}; \gamma(\infty) = \bar{\gamma} \end{split}$$

⇒ ↓ ≡ ↓ ≡ | = √Q ()

Model Setup — Individual Problem

$$\max_{c,m_{\mathcal{P}},m_{\mathcal{T}}} \quad \mathbb{E}_0 \int_0^\infty e^{-\rho t} \left[\frac{c^{1-\sigma}}{1-\sigma} - \chi \mathbb{1}(h=\mathcal{I}) \right] dt$$

s.t. $\dot{a} = ra + wz(h) - c - m_{\mathcal{P}} - m_{\mathcal{T}}$
 $h \in \{\mathcal{S}, \mathcal{I}, \mathcal{R}\}$ Poisson with intensities $\alpha(m_{\mathcal{P}})\zeta, \gamma(m_{\mathcal{T}}), \psi$
 $a \ge 0$
(4)

- a and \dot{a} : asset and its differentiation w.r.t. time t
- r and w: interest rate and wage rate
- $\chi \ge 0$ is the level of disutility of being infected.
 - $\chi = 0$: infection is a pure income shock for individuals

▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Model Setup — Aggregate Variables

Competitive production landscape

 $\bullet \ r, \ w$ are given by the profit optimization problem of the representative firm

$$\max_{K,L} \Pi = AF(K,L) - rK - \delta K - wL$$
F.O.C. yields $r = MPK$, $w = MPL$
(5)

- $\bullet \ K$ and L are the aggregate capital and labour demand in the economy
- In equilibrium, aggregate demand = aggregate supply

$$K = \int ag(a, h)d\mu$$

$$L = \int z(h)g(a, h)d\mu$$
(6)

model overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

HACT

The model is a Mean Field Game⁶

- Solve the model by Heterogeneous-Agent-Continuous-Time (HACT) dynamic programming (PDE View Point) (HACT)
 - Hamiltonian-Jacobian-Bellman Equation (HJB)
 - Kolmogorov Forward Equation (KF)
 - Market clearing conditions (MCC)

Parameterization Parameterization

- Calibrate to latter evidence of Omicron
- The model match the data of basic reproduction number R_0 ; UK infection rate after 2023.

⁶Mean-field game theory is the study of strategic decision making by small interacting agents in very large populations. Lasry and Lions (2007); Huang, Malhamé and Caines (2006). . The Nash Equilibrium is to find (1) Best Response BR: $q^* \mapsto (c^*, m_{\mathcal{P}}^*, m_{\mathcal{T}}^*)$; (2) Probability Behaviour PB: $(c^*, m_{\mathcal{P}}^*, m_{\mathcal{T}}^*) \mapsto q^* \mapsto \exists r = 0 \land \mathbb{C}$ Aditya Goenka, Lin Liu, Haokun Pang

Stationary Equilibrium — Baseline Model

• Definition (Stationary Equilibrium)

- Choice variables $\{c, m_{\mathcal{P}}, m_{\mathcal{T}}\}$ solves the HJB equation
- ▶ Value function v(a, h) does not change over time $\partial_t \mathbf{V} = 0$
- Distribution does not change over time $\partial_t \mathbf{g} = 0$
- Market cleared $\mathcal{F}(\mathbf{g}) = 0$
- Transitional dynamics (later)

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ • • • • • •

Stationary Equilibrium — Baseline Model

• Health Policy:

- Wealthier individuals spend more on both Preventive and Recuperation
- The stationary wealth distribution is skewed

Consumption and savings Policy

► < ∃ ► ∃ = < < <</p>

Stationary Equilibrium — Baseline Model

How health policy affects wealth distribution?

• When (partially) shutdown health expenditure, equality improved

Model	R_0	agg.Capital	agg.Income	Wealth Gini
Baseline	9.236	14.447	1.838	0.412
Exog. Disease	216.0	13.869	1.763	0.365
$m_{\mathcal{P}}$ only	10.427	13.966	1.775	0.37
$m_{\mathcal{T}}$ only	104.282	14.393	1.831	0.407
Aiyagari	- <u>-</u>	9.962	1.152	0.296

• reason: wealthier cannot mitigate the future risk of infection

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回三 のへの

Comparative Study — Health Policy

 $\bullet\,$ Change the health punishment χ in

$$U = u(c) - \chi \mathbb{1}(h = \mathcal{I})$$
(7)

- $\chi \downarrow$, value loss of being infected \downarrow
- $\chi = 0$: infection is a pure income shock
- Comparative Study:

Poorest 25% (below Q_1) v.s. Richest 25% (over Q_3) Big Table

(a) Prev. Exp.				(b) Infection Rate (%)		
χ	$a < Q_1$	$a > Q_3$	diff	$a < \mathbf{Q}_1$	$a > Q_3$	diff
0	0.03	0.031	0.001	4.44	4.3	-0.13
0.1	0.036	0.039	0.003	4.36	4.2	-0.17
0.3	0.048	0.057	0.009	4.23	4.02	-0.21

- Transitional dynamics to the stationary distribution
 - ► Evolution of distribution and aggregate variables given an initial distribution g₀(a, h)
- Vaccination
- Government Income Support

ヨト イヨト ヨヨ わえの

• Construct initial distributions with compartmental composition of

- \blacktriangleright Same initial infection population: 0.5%
- ► Different recovery population: {0, 34%, 68%}

• Recovered group:

- Individuals with immunity.
- Recovered group in the initial distribution (pre-existing immunity)
- ► could be used to interpret vaccination⁷: higher vaccination rate ⇒ larger pre-existing immunit
- 68%: Fully Vaccinated Population at before Omicron B.A.1 wave.
 - ► Infection dynamics fits UK data of Omicron B.A.1 wave. Dynamic Fit

25 / 33

• Construct initial distributions with compartmental composition of

- \blacktriangleright Same initial infection population: 0.5%
- ▶ Different recovery population: {0, 34%, 68%}
- Recovered group:
 - Individuals with immunity.
 - Recovered group in the initial distribution (pre-existing immunity)
 - ► could be used to interpret vaccination⁷: higher vaccination rate ⇒ larger pre-existing immunity

• 68%: Fully Vaccinated Population at before Omicron B.A.1 wave.

► Infection dynamics fits UK data of Omicron B.A.1 wave. Dynamic Fit

⁷Federico, Ferrari and Torrente (2022)

• Construct initial distributions with compartmental composition of

- \blacktriangleright Same initial infection population: 0.5%
- ► Different recovery population: {0, 34%, 68%}
- Recovered group:
 - Individuals with immunity.
 - Recovered group in the initial distribution (pre-existing immunity)
 - ► could be used to interpret vaccination⁷: higher vaccination rate ⇒ larger pre-existing immunity
- 68%: Fully Vaccinated Population at before Omicron B.A.1 wave.
 - Infection dynamics fits UK data of Omicron B.A.1 wave. Dynamic Fit

⁷Federico, Ferrari and Torrente (2022)

► < = ► = = < <</p>

Figure 4: Transitional Path — Aggregate Variables (selected)

- Wealth and income equality is worsened in the pandemic
- Persistency is different

Other State Variables Disease Mutation

3 = 1 - 1 Q (P

→ < ∃ →</p>

How wealth equality worsened? Figures

• We track the dynamics of the distribution

$$\partial_t g(a,h)$$
 (8)

by Kolmogorov Forward Equation

• There are more poor people compared to the pre-pandemic stage.

Why more poor people? Mechanism

 Poor spend less on health ⇒ Higher infection rate ⇒ less income/savings contribution in the distribution

Transitional Dynamics — Income Support

- Government cover part of the income lost by infection
- Lump-sum transfer au per infected individual

$$ra + wz(h) + \tau \mathbb{1}(h = \mathcal{I}) \tag{9}$$

Government budget constraint

$$\int \tau \mathbb{1}(h = \mathcal{I})g(a, h)d\mu \le \mathcal{B}$$
(10)

- B exogenous
- Abstracted from budget financing

▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Transitional Dynamics — Income Support

Figure 5: Income Support

• black dash: no income support

-

Transitional Dynamics — Income Support

Figure 6: Income Support (cont.)

• Unconstrained support discourage preventive expenditure \Rightarrow infection $\uparrow \Rightarrow$ output \downarrow

Aditya Goenka, Lin Liu, Haokun Pang
Transitional Dynamics — Other Simulations

Other Income Support Plans

- Transfer to lower 25% of the wealth distribution
- General (non-targeted) Support Plan Other Support

Temporary Shock

• MIT shock⁸: unanticipated temporary shock to infectivity MIT Shock

Weaker Disease

- The latter variants of Omicron is weaker that it induces smaller drop of productivity
- \bullet Simulate the dynamics but with $z(\mathcal{I})=0.6$ (Weaker

Long Covid

- Assume productivity does not fully recover after infection
- $z(\mathcal{R})=0.8$ Long Covid

 $^{^8}$ Krugman and Blanchard pioneered these shocks when graduate students at MH \circ .

Concluding Remarks

We extend the representative-agent epidemiological economic model to a heterogeneous-agent framework.

Key Conclusions

- The policy functions for prevention and treatment expenditure are increasing & more elastic with higher wealth
- In the stationary equilibrium, infection rate for the poor individuals is higher
- Income and wealth equality is worsened during the pandemic
- Income support for infection improves equality
- But unconstrained support discourages production

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ • • • • • •

Discussion

- Generate increase in income inequality based on optimal policy functions on response to infectious diseases.
- The mechanism is different from Hall and Jones (2007) that focuses on mortality.
- We abstract from other mechanisms that can also increase inequality:
 - unemployment; sectorial heterogeneity (Chetty et.al 2022); remote working and digital devices (Stantcheva, 2022); drop in capital/wealth return (Gupta et.al, 2022; Kartashova and Zhou, 2021), etc.
- The dynamics in our paper is driven by the disease and optimal policies

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Income inequality

Empirical evidence on inequality after Covid-19

• Observation: Income Gini index increased during the pandemic.

Citation Countries	Method	od Without policy V response		
Almeida et al. (2020) EU (27)	Simulating effect of policies	+3.6% -0.7%		
Aspachs et al. (2020)	Evolution	$^{+24.4\%}_{(0.560)}$	-23.21%	
Spain	over time		(0.430)	
Brunori et al. (2020)	Simulating effect	$^{+0.67\%}_{(0.3396)}$	-0.67%	
Italy	of policies		(0.3396)	
Clark et al. (2020)	Evolution	$^{+2.17\%}_{(0.322)}$	-2.48%	
DE, ES, FR, IT, SE	over time		(0.322)	
Li et al. (2020)	Comparison market and	$^{+3.33\%}_{(0.539)}$	-7.57%	
Australia	post-tax and transfers income		(0.330)	
O'Donoghue et al. (2020)	Comparison market and	$^{+20.64\%}_{(0.499)}$	-6.62%	
Ireland	post-tax and transfers income		(0.317)	
Palomino et al. (2020) EU (29)	Simulating effect of policies	+3.5% to +7.3%	NA	

back

⁹Table summarized by Stantcheva (2022)

9

Epi-Econ Model

Introducing Heterogeneity

- Age heterogeneity (standard in epidemiology literature):
 - ▶ 2 groups: Acemoglu, et al. (2021).
 - ► Fabbri, Gozzi, and Zanco (2021) more general approach.
- Heterogeneity in contact in industries
 - ▶ Andersen, et al. (2020), Pichler, et al. (2020), Haw, et al. (2021).
- Wealth heterogeneity
 - Greg Kaplan and Moll (2020): Lock down policy experiment exogenous disease and policies.
 - ► Angelopoulos et.al (2021): Non-compartmental model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ���

Income Support

Diminishing fiscal support in EMDEs in response to

Sources: IME Fiscal Monitor database of Country Fiscal Responses to COVID-19 and IME staff calculations. Note: Includes revenue and spending measures.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Income and Mobility

$$Mob_{i,t} = \theta_i + \eta_t + \sum_{\tau \neq \mathsf{Feb2020}} \beta^{(\tau)} \log(I_i) \times T_t^{(\tau)} + \varepsilon_{i,t}$$
(11)

Figure 7: Income and Mobility

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More on Health Expenditure

- Health expenditure: opportunity cost
- General cost/price for health
 - Preventive: any consumption reduction action for reducing future infection risk
 - * Precautionary expenditure for health/productivity risk
 - ★ e.g. self-isolation, facial mask, PCR test etc.
 - Treatment: expenditure increases recuperation rate and which reduces consumption
 - * Ex-post expenditure for better and faster health/productivity recovery
 - ★ e.g. supplement, medicine, better source of nourishment, better living condition etc.

back

More on Health Expenditure

Other ways to endogenize contact rate

- (Eichenbaum et.al, 2021 RFS) consumption-based contact rate
- (Glover et.al, 2023 JMonE) mitigation policy of luxury worker: those instructed not to work
 - \blacktriangleright More luxury worker \rightarrow lower contact and production
- Lockdown (Acemoglu et.al, 2021 AER: Insights, Goenka et.al, 2023 ET)
 - Lower contact rate with lower labour participation
- Key: trade-off between health and consumption
 - $\alpha(C_t)$
 - $\alpha(L_t)$: $C_t = w_t L_t$
- \bullet Our model: health outcome \leftrightarrow^m consumption

back

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回三 のへの

Model Overview

Wealth Accumulation (Savings)

Aditya Goenka, Lin Liu, Haokun Pang

HACT — HJB

• Let v(a,h) to be the value function. The HJB for the individual problem reads

$$\rho v(a,h) = \max_{c,m_{\mathcal{P}},m_{\mathcal{T}}} \quad u(c) - \chi \mathbb{1}_{(h=\mathcal{I})} + \partial_a v(a,h) [wz(h) + ra - c - m_{\mathcal{P}} - m_{\mathcal{T}}] + \Lambda^{h'}(m_{\mathcal{P}},m_{\mathcal{T}},h) [v(a,h') - v(a,h)] + \partial_t v(a,h)$$
(12)

- Λ^{h'}(m_P, m_T, h) is the probability of transiting to other health status
 Poisson intensity defined before.
 - ▶ i.e. Infection probability; recovery probability; reinfection probability
- First Order Conditions F.O.C.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回三 のへの

HACT — KF

• The associated Kolmogorov Forward Equation reads

$$\frac{\partial g(a,h)}{\partial t} = -\frac{\partial}{\partial a} [s(a,h)g(a,h)] - \Lambda^{h'}(m_{\mathcal{P}},m_{\mathcal{T}},h)g(a,h) + \Lambda^{h}(m_{\mathcal{P}},m_{\mathcal{T}},h'')g(a,h'')$$
(13)

•
$$s(a,h)$$
 is the saving $s(a,h) = wz(h) + ra - m_{\mathcal{P}} - m_{\mathcal{T}}$

population change =population change due to wealth change

- population flows out to the next health status + population flows in from the previous health status \$(14)\$

○ ▲ = ▲ = ▲ = ▲ < <</p>

HACT - MCC

Market Clearing conditions: Aggregate Demand = Aggregate Supply

• (Assets Market)

$$K = \int ag(a,h)d\mu \tag{15}$$

• (Labour Market)

$$L = \int z(h)g(a,h)d\mu$$
 (16)

• (Infectious Contact Rate Perception)

$$\zeta = \int \alpha(m_{\mathcal{P}}^*) \mathbb{1}(h = \mathcal{I}) g(a, h) d\mu$$
(17)

back

⇒ ↓ ≡ ↓ ≡ | = √Q ()

HACT — FDM

• The model could be represented in matrix form

• (HJB)
$$\rho \mathbf{V} = u(\mathbf{V}) + \mathcal{A}\mathbf{V} + \partial_t \mathbf{V}$$

- $\blacktriangleright (\mathsf{KF}) \partial_t \mathbf{g} = \mathcal{A}^* \mathbf{g}$
- (MCC) $\mathcal{F}(\mathbf{g}) = 0$
- Stochastic partial differentiation functions
- Finite Differencing Method (Achdou et.al, 2020) to solve the model $_{10}^{10}$
 - FDM presents a unique viscosity solution to PDEs if there is no convex kink

¹⁰Deep learning neural network could also be applied to solve MFGs (Fernandez-Villaverde and Nuno, 2023) (Fernandez-Villaverde and Nuno, 2023)

Aditya Goenka, Lin Liu, Haokun Pang

The F.O.C. reads

$$c: \quad u'(c) - \partial_a v = 0$$

$$m_{\mathcal{P}}: \quad -\partial_a v + \frac{\partial \Lambda^{h'}(m_{\mathcal{P}}, m_{\mathcal{T}}, h)}{\partial m_{\mathcal{P}}} [v(a, h') - v(a, h)] = 0 \quad (18)$$

$$m_{\mathcal{T}}: \quad -\partial_a v + \frac{\partial \Lambda^{h'}(m_{\mathcal{P}}, m_{\mathcal{T}}, h)}{\partial m_{\mathcal{T}}} [v(a, h') - v(a, h)] = 0$$

The first F.O.C. yields $c^* = u'^{-1}(\partial_a v)$.

◆□▶ ◆□▶ ▲目▶ ▲目▶ ●□□ のQ@

For the second F.O.C., notice that the transition probability Λ is a function of health expenditure m only for the susceptible group S. For the rest of health group, health expenditure will not have impact on their transition probability. Therefore, we have

$$\frac{\partial \Lambda^{h'}(m_{\mathcal{P}}, m_{\mathcal{T}}, h)}{\partial m_{\mathcal{P}}} = 0 \quad \text{for} \quad h \neq \mathcal{S}$$
(19)

Hence, for the group $h \neq \mathcal{S}$, we have the optimal health policy

$$m_{\mathcal{P}}^*(a,\mathcal{I}) = m_{\mathcal{P}}^*(a,\mathcal{R}) = 0$$
⁽²⁰⁾

For the susceptible group, we have

$$-\partial_a v(a,\mathcal{S}) + \frac{\partial \Lambda^{\mathcal{I}}(m_{\mathcal{P}}, m_{\mathcal{T}}, \mathcal{S})}{\partial m_{\mathcal{P}}} [v(a,\mathcal{I}) - v(a,\mathcal{S})] = 0$$
(21)

Recall that the infection probability is assumed as $\Lambda^{\mathcal{I}}=\alpha(m_{\mathcal{T}})\zeta.$ So, we have

$$-\partial_a v(a,\mathcal{S}) + \alpha'(m_{\mathcal{P}})\zeta[v(a,\mathcal{I}) - v(a,\mathcal{S})] = 0$$
(22)

which implies the optimal health policy

$$m_{\mathcal{P}}^{*}(a,\mathcal{S}) = \alpha^{\prime-1} \left(\frac{\partial_{a} v(a,\mathcal{S})}{\zeta [v(a,\mathcal{I}) - v(a,\mathcal{S})]} \right)$$
(23)

Similarly, for the choice variable $m_{\mathcal{T}}$, we have

$$m_{\mathcal{T}}^*(a,\mathcal{I}) = \gamma'^{-1} \left(\frac{\partial_a v(a,\mathcal{I})}{v(a,\mathcal{R}) - v(a,\mathcal{I})} \right)$$
(24)

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ • • • • • •

Hence, we have the optimal HJB written as

$$\rho v(a,h) = u(c^*) + \partial_a v(a,h) [wz^h(h) + ra - c^* - m_{\mathcal{P}}^* - m_{\mathcal{T}}^*] + \Lambda^{h'}(m_{\mathcal{P}}^*, m_{\mathcal{T}}^*, h) [v(a,h') - v(a,h)] + \partial_t v(a,h)$$
(25)

where

$$c^* = u'^{-1}(\partial_a v(a, h, g)) \tag{26}$$

< □ > < 同 > <

$$m_{\mathcal{P}}^{*} = \begin{cases} 0; \quad h = \{\mathcal{I}, \mathcal{R}\} \\ \alpha'^{-1} \left(\frac{\partial_a v(a, \mathcal{S})}{\zeta[v(a, \mathcal{I}) - v(a, \mathcal{S})]} \right); \quad h = \mathcal{S} \end{cases}$$
(27)
$$m_{\mathcal{T}}^{*} = \begin{cases} 0; \quad h = \{\mathcal{S}, \mathcal{R}\} \\ \gamma'^{-1} \left(\frac{\partial_a v(a, \mathcal{I})}{v(a, \mathcal{R}) - v(a, \mathcal{I})} \right); \quad h = \mathcal{I} \end{cases}$$
(28)

Stationary Equilibrium — Consumption

back

Stationary Equilibrium — Dsitribution

Wealth distribution v.s. Income distribution

- Wealth *a*: state variable
- Income y = ra + wz(h): depends on both wealth and health status
- Income group against state variables.
- Grouped by percentiles: (Low) 25% (Mid) 75% (High)

	I	S	\mathcal{R}
Low a	0.042	0.089	0.748
Mid a	0.081	0.0	0.0
High a	0.04	0.0	0.0

(a) Low Income Group

(b) Middl

(b) Middle Income Group

	I	S	\mathcal{R}
Low a	0.0	0.007	0.056
Mid a	0.0	0.104	0.833
High a	b	0.0	0.0

(c) High Income Group

	I	S	\mathcal{R}
Low a	0.0	0.0	0.0
Mid a	0.0	0.005	0.039
High a	b	0.117	0.839

Notes: 0<b<1e-5

300 E E 4 E + 4 E

Comparative Study — Health Policy

- Income elasticity of health expenditure
 - \blacktriangleright Wealth and health status (a,h) for individual is stochastic
 - Take future health expenditure into consideration when calculating elasticity
- Expected health expenditure over a certain period from 0 to τ .

$$M_k(a_0, h_0) = \mathbb{E}\left[\int_0^\tau m_k(a_t, h_t) dt \middle| a_0, h_0\right] \quad k \in \{\mathcal{P}, \mathcal{T}\}$$
(29)

• Income Elasticity of Health Expenditure is defined as

$$\varepsilon_{M_k,y} = \frac{\partial M_k(a_0, h_0)}{\partial y} \frac{y}{M_k}$$

= $\frac{M_k(a_0 + \Delta, h_0) - M_k(a_0, h_0)}{\Delta} \frac{a_0}{M_k(a_0, h_0)}$ (30)
 $k = \{\mathcal{P}, \mathcal{T}\}$

I □ ► < I □ ►</p>

• Obtained by the Feynman-Kac Formula

⇒ + ≡ + ≡ = √QC

Comparative Study — Health Policy

Figure 8: Health Policy: Varying Disutility χ

• Income Elasticity of Health Expenditure is also increasing with wealth Elasticity

ELE SQC

1

Comparative Study

Table 2: Comparative Study

(a) Aggregate Variables

(b) Contol Variables

x	0	0.3	0.5	χ	0	0.3	0.5
Infection Rate				Consumption			
Aggregate	4.344	4.107	3.97	Aggregate	1.83	1.829	1.827
Bottom 25%	4.444	4.235	4.115	Bottom 25%	1.682	1.681	1.678
Top 25%	4.307	4.023	3.862	Top 25%	2.052	2.053	2.059
diff.	-0.137	-0.212	-0.253	diff.	0.37	0.372	0.38
Capital	14.418	14.447	14.463	Preventive Exp.			
Prices				Aggregate	0.03	0.052	0.066
Wage Rate	1.694	1.694	1.694	Bottom 25%	0.03	0.048	0.06
Interest Rate	0.014	0.014	0.014	Top 25%	0.03	0.057	0.074
Inequality				diff.	-0.0	0.009	0.015
Wealth Gini	0.41	0.412	0.423	Treatment Exp.			
Income Gini	0.072	0.071	0.07	Aggregate	0.056	0.075	0.085
Wealth Share				Bottom 25%	0.056	0.072	0.081
Bottom 25%	6.72	6.67	6.49	Top 25%	0.056	0.079	0.092
Top 25%	52.89	53.03	54.08	diff.	0.0	0.007	0.01
diff	46.18	46.36	47.59				

ヨト イヨト ヨヨ のくや

Comparative Study

Table 4: Comparative Study (cont.)

x	0	0.3	0.5
Expected Income in 3-yr duration			
Bottom 25%	20.5	20.532	20.534
Top 25%	25.0	25.07	25.204
diff.	4.5	4.539	4.669
Labour Income diff.	0.0	0.013	0.02
Capital Income diff.	4.461	4.488	4.612
Expected Savings in 3-yr duration			
Bottom 25%	2.793	2.701	2.755
Top 25%	-1.029	-0.991	-0.916
diff.	-3.822	-3.692	-3.672

back

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stationary Equilibrium — Health Policy

Figure 9: Elasticity of Health Expenditure

- χ : direct health punishment of being sick
- For baseline $\chi = 0.3$, elasticity for both types of expenditure are positive and higher at higher wealth percentiles.
- Under pure income shock ($\chi = 0$), health expenditure is less elastic at higher wealth percentiles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Transitional Dynamics — Fitting the Data

Figure 10: Simulation and Empirical Data

back

-

Figure 11: Transitional Path — Aggregate Variables

→ Ξ → → Ξ →

< □ > < 同 >

Figure 12: Disease Mutation

back

ъ

There are more poor people after pandemic

Figure 13: Change in Wealth Distribution

< 口 > < 同

ヨト イヨト ヨヨ のくや

Transitional Dynamics — Health Policy

Figure 14: Change in Health Policy

- 25%, 50% and 90% of wealth distribution
- Preventive expenditure \uparrow during pandemic
- Health expenditure biased towards the wealthier

Poor lose more income and save less

< 口 > < 同

ヨト イヨト ヨヨ わえゆ

Transitional Dynamics — Income Support (other Plans)

• Targeted support for the poor

$$ra + wz(h) + \tau \mathbb{1}(a \le a_{25\%})$$
 (31)

• General (Non-targeted) support for everyone

$$ra + wz(h) + \tau \tag{32}$$

• Compare support plans, holding the binding fiscal constraint

back

Transitional Dynamics — Income Support (other Plans)

Figure 16: Other Income Support

Transition Dynamics — Other Simulation

Figure 17: MIT Shock — Infectivity

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Transition Dynamics — Other Simulation

Figure 18: Transitional Dynamics — Lower Productivity Loss

= - 900

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

Transition Dynamics — Other Simulation

Figure 19: Transitional Dynamics — Long Covid

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���
- It is difficult to calibrate the model as the model abstracts too many channels.
- So we can't use the aggregate variables (e.g. aggregate infection rate) to calibrate the epidemiological part of the model.
- Economic side of the model is standard; the epidemiological side of the model needs to be parameterized using clinical evidence (e.g. average duration to recover or get infected)

> ▲ Ξ ▶ Ξ Ξ ■ のQC

Economic Part

- Parameters
 - CRRA utility function: σ ; disutility level χ
 - Individual subjective discount rate: ρ
 - Competitive market: TFP A; capital share β ; capital depretiation rate δ
- These parameters are standard

•
$$\sigma = 2; \rho = 0.0138$$

•
$$A = 1; \ \beta = 0.36; \ \delta = 0.05$$

• Parameter $\chi=0.3$ in the baseline. It would be varied in the comparative study.

ヨト イヨト ヨヨ わえの

Epidemiology Part

Parameters

$$\alpha(m_{\mathcal{P}}) = \epsilon_0 (m_{\mathcal{P}} + \epsilon_2)^{\epsilon_1}$$

$$\gamma(m_{\mathcal{T}}) = \gamma_U - \eta_0 (m_{\mathcal{T}} + \eta_2)^{\eta_1}$$

$$\epsilon_1, \eta_1 < 0$$

Rinfection: ψ
(33)

- Notice $\alpha(0) = \epsilon_0 \epsilon_2^{\epsilon_1}$; $\gamma(0) = \gamma_U \eta_0 \eta_2^{\eta_1}$; $\gamma(\infty) = \gamma_U$
- We can also find that $\lim_{m_{\mathcal{P}}\to\infty}\frac{\partial\alpha(m_{\mathcal{P}})}{\partial m_{\mathcal{P}}}\times\frac{m_{\mathcal{P}}}{\alpha(m_{\mathcal{P}})}=\epsilon_1$, which is the maximum elasticity
- In the baseline, we let
 - unit elasticity $\epsilon_1 = \eta_1 = -1$
 - $\epsilon_2 = \eta_2 = 0.005$
 - $\epsilon_0 = 0.18$ so that $\alpha(0) = 36$ (2.5 days of generated duration)
 - $\eta_0 = 0.034$ such that the recovery duration is bounded between 7 and 15 days.
- $\psi = 5/3$ (150 days of generated duration)

Epidemiology Part

- We can roughly calculate the basic reproduction number R_0 at the stationary equilibrium
 - ▶ Next few slides introduce how R₀ and R_e is obtained at our heterogeneous agent framework.
 - $R_0^{(SS)} = 9.714$
- Liu and Rocklöv (2022) summarize estimated R_0 of Omicron variants in the recent studies. The Omicron variant has an average basic reproduction number of 9.5 and a range from 5.5 to 24

	Model		Data
	Mean	Median	
Basic Rep. Num. R_0	9.236		9.5 ave., range 5.5-24
Days to Infection	19.183	18.833	-
Days to Recover	7.241	7.244	around 7 to 15
Days to Lose Immunity	150		around 90 to 240
Fraction S	10.8%		
Fraction \mathcal{I}	4.1%		2%-5% after 2023 (UK)
Fraction \mathcal{R}	85.1%		77%-80% Feb 2023 (UK)

Notes: (a) Data source: R_0 Liu and Rocklöv (2022) etc.; Days to recover UK Health Security Agency (2023); Days to lose immunity Cagigi et al. (2021); Gilboa et al. (2022) etc.; UK data ONS (2023a). (b) The data of recovery population is proxied by fraction of population with antibody more than 800 ng/ml

back

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

Reproduction Number

- Basic reproduction number R_0 is defined as the average number of secondary infections that occur when one infective is introduced into a completely susceptible host population
- The replacement number R (Effective reproduction number) is defined to be the average number of secondary infections produced by a typical infective during the entire period of infectiousness

In a simple epidemiological model with SIRS dynamics, the motion of infection rate can be written as

$$\dot{i} = \alpha i s - \gamma i \tag{34}$$

where α and γ is the contact and recovery rate.

- This expression is governed by $\alpha s \gamma = \frac{\alpha s}{\gamma} 1$. This ratio $\frac{\alpha s_0}{\gamma} = \frac{\alpha}{\gamma}$ is defined as R_0
- Time varying ratio $\frac{\alpha s_t}{\gamma}$ is the effective reproduction number R
- Here we have $R_t = R_0 s_t$

・ロト・4日・4日・4日・4日・

Reproduction Number

- Using a similar way, we can define the effective reproduction number
- By Kolmogorov Forward Equation, the net flow of infectious group is

$$\dot{i} = \int \alpha(m_{\mathcal{P}})\zeta g(a, \mathcal{S})da - \int \gamma(m_{\mathcal{T}})g(a, \mathcal{I})da$$

$$= \frac{\int \alpha(m_{\mathcal{P}})\zeta g(a, \mathcal{S})da}{\int \gamma(m_{\mathcal{T}})g(a, \mathcal{I})da} - 1$$
(35)

• We can similarly define the effective reproduction number as the first term $R_t = \frac{\int \alpha(m_{\mathcal{P}})\zeta g(a,\mathcal{S})da}{\int \gamma(m_{\mathcal{T}})g(a,\mathcal{I})da}$. $R_t > 1$ implies the aggregate infection rate would increase

• We can obtain
$$R_0 = \frac{R_t}{s_t} = \frac{\int \alpha(m_{\mathcal{P}})\zeta g(a,\mathcal{S})da}{\int \gamma(m_{\mathcal{T}})g(a,\mathcal{I})da \int \mathbb{1}(h=\mathcal{S})g(a,h)d\mu}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回三 のなの