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Abstract

In this paper, we study whether it is possible to measure Knightian uncertainty and disentangle

it from the conventional risk measure in the location-scale family of normal distributions. First, we

establish and prove the impossibility theorems that no quantitative uncertainty measure would be

mutually agreeable among investors with general risk-and-uncertainty-averse preferences. Then, we

show it is possible to partially rank the uncertainty of the location-scale family of normal distributions

by the first, second, fourth, and sixth moments. Lastly, we propose two ways to assess the stock

uncertainty, the ranges of location and scale of the family of normal distributions computed from the

1st, 2nd, 4th and 6th moments, and a composite uncertainty measure proposed by Izhakian (2020),

but with necessary and critical modification. We assess the uncertainty of stock market indices, S&P

500 in the U.S and CSI 300 in China, and show that the uncertainty and risk measures are indeed

distinct.

Keywords: Knightian Uncertainty, Risk, Location-Scale Family, Stochastic Dominance

1 Introduction

Investors and economic agents have to constantly face risk and uncertainty everywhere in the economy

and financial markets. Albeit Knight (1921) has emphasized that risk (unknown consequences with a

known probability distribution) and uncertainty (unknown consequences and unknown probability distri-

butions) are "radically distinct"1 more than one hundred years ago, the conventional analysis frameworks

in economics and finance assume that economic agents face only risk and no uncertainty. The paradox

proposed by Ellesberg (1951) show that the decisions made under uncertainty can not be rationalized un-

der the risk-only context, but are actually rational in the context that they know neither the consequences

nor the probability distribution. De Groot and Thurik (2018) find that many studies in psychology and

related fields claim to measure decision-making under risk actually measure decision making under uncer-

tainty instead of risk. Over the past century, researchers in finance and economics have made important

theoretical progress in the decision making and asset pricing under Knightian uncertainty. They show

that uncertainty and risk are indeed priced differently in the financial market (Hansen, 2007) and affect

the decisions of economic agents in fundamentally different ways2 . However, direct empirical evidence

on the different impacts of risk and uncertainty on investment decisions and asset prices remains rare.

∗Preliminary please do not circulate without permission. We thank our research assistant Ke Wang for his excellent
work.
†School of Management, Fudan University.
‡Corresponding author. Shanghai Advanced Institute of Finance, Shanghai Jiao Tong University, nanli@saif.sjtu.edu.cn
§Antai College of Economics and Management, Shanghai Jiao Tong University.
1“But Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never

been properly separated.”
2See Guidolin and Rinaldi (2013) for a comprehensive review of theoretical research asset pricing and portfolio choice

under uncertainty or ambiguity.

1



In practice, investors struggle with how to deal with "the unknown and unknowable" risk (Zeckhauser,

2010). The challenge is to measuring uncertainty when the probability distribution is unknown.

In this paper, we first establish and prove that it is impossible to find a quantitative measure of

uncertainty that is independent of preferences within the location-scale family of normal distribution.

This result is analogy to the findings of Ma and Wong (2010) that it is impossible to find a quantitative

measure of risk that is independent of preferences for risk in the risk-only context.

Albeit it is impossible to get unanimous rank of uncertainty or risk between two arbitrary events,

it still makes sense for empirical asset pricing studies where a set of statistics exist to characterize the

uncertainty in the Knightian-uncertainty context, such as using the standard deviation or variance in

the risk-only context to characterize the risk.

The core question of asset pricing is what risk is priced in the market and how. Hence the measure

of risk is the fundamental question in empirical asset pricing studies. In the risk-only context, where the

returns are assumed to follow a unique distribution, in particular normal distribution, the variance or

standard deviation (second order moment) measures the risk and the asset pricing studies focus on the

relationship between risk and expected return (first order moment). However, the distribution of realized

stock returns usually exhibit fatter tail than normal distribution. In the risk-only context, this problem is

usually addressed by assuming normal distribution, such as Levy distribution, or combination of normal

distribution and jump process. However, the standard deviation of Levy distribution is infinite, and it

is diffi cult to separate the latent jump process from the normal distribution when we only observation

the composition of the two distributions. Some empirical asset pricing studies use higher-moments,

such as skewness or kurtosis to measure tail risk and/or uncertainty, but lack of statistical or economic

foundation.

In this paper, we show that under the assumption stock returns fall into the class of location-scale

family of Gaussian distributions, and the investors’beliefs about the probabilities of Gaussian distribu-

tions are uniform, expected variance3 of a family of probability density functions proposed by Izhakian

(2020) helps to measure uncertainty. This measure is equivalent to the Shannon entropy4 of a family of

Gaussian distributions, as the relative entropy of a Gaussian distribution is just a function of its variance

( 1
2 log(2πσ2) + 1

2 ).

Furthermore, we show that suffi cient statistics of a family of Gaussian distributions are the mean of

the first, second, fourth, and sixth moments, as these four moments can fully recover the location and

scale of Gaussian distributions5 along with the characteristic function and all other higher order moments.

We also show that the measure proposed by Izhakian (2020) is inconsistent and null when the possible

means and standard deviations are randomly drawn from a range with infinite or continuum support6 .

Our new measure corrects the problem of Izhakian’s measure and converges to the expected variances

of probability distributions when the support goes to infinity. Brenner and Izhakian (2018) propose an

empirical implementation of Izhakian’s measure by discretizing the normal distributions and computing

the sample analogy of the expected variance of a family normal distribution. We show that Brenner

and Izhakian’s approach overweights average variances of the p.d.fs when range of standard deviations

is large, introducing a spurious positive correlation between stock uncertainty and conventional measure

of risk when the risk is high. We propose an algorithm to compute the uncertainty directly from means

and standard deviations of the daily stock returns estimated from high-frequency data.

Lastly, we compute the stock uncertainty of market indices, S&P 500 in the U.S. and CSI 300 in

3The expectation is taken with respect to the average of this family of probability distributions.
4Shannon(1948) proposes to use entropy to measure "how uncertain we are of the outcome", and the relative entropy

of a continuous random variable with a probability density function f(x) is defined as
∫
−f(x) log f(x)dx. Among all real

random variables with expectation µ and variance σ2 the the Gaussian distribution attains the maximum entropy.
5 If the means and variances of the family of Gaussian distributions fall into rectangle sets.
6This result is consistent with the findings of Fu et al. (2023)
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China, using high frequency trading data. We find that the relationship between the stock uncertainty

and risk measured by sample variance are nonlinear and negative, contrary to the common belief that

the higher the risk, the larger the uncertainty. More importantly, we show that dispersion in the means

is a more reasonable measure of risk, while the conventional measure of risk significantly negatively

correlates with the expected return (estimated by the sample mean). In addition, we show that the

nonlinear transformation of the 2nd moment (conventional measure of risk), 4th moment (conventional

measure of tail risk) and 6th moment combined with the stock uncertainty measure can potentially

explain the variation in the expected returns.

Our findings imply that the asset pricing model in the context of Knightian uncertainty should be

fundamentally different from the linear factor models in the risk-only context. As the properties of a

family of normal distributions are fully characterized by the 1st, 2nd, 4th and 6th moments, the analogy

of the one-factor CAPM in the risk-only context should be a three-factor model.

2 Impossibility Theorems

When encountering decision making in a context of risk and uncertainty, economists tend to take a

subjective view on risk and uncertainty assessment. This view can be traced back to Savage (1954),

Gilboa(1987), Gilboa and Schmeidler (1989), and most recently Kopylov (2010) among others for their

axiomatic foundation on subjective probability, non-additive and set-valued probabilities, along with

utility representation of preferences in presence of risk and uncertainty.

The risk and uncertainty assessment is a subjective matter that largely depend on how investors

rank the asset returns towards their investment decisions. Presumably, when asset returns r and r′ with

uncertainty respectively modeled through location-scale sets ∆ and ∆′, the rank between the two returns

should reflect decision makers’view on the degree of uncertainty involved in the two sets.

The analysis in this section is restricted to asset returns falling into the location-scale family formu-

lated in Wong and Ma (2008) among others. We mainly present and prove two versions of impossibility

theorems on the existence of uncertainty measurement, respectively, among investors falling into the

class of Savage’s subjective expected utilities (SEU) and the expected utility under uncertain probabili-

ties (EUUP) recently developed by Izhakian (2017). We also provide robustness checks to several other

popular classes of utility functions either with SEU as subclass.or are subclasses of SEU.

2.1 Model setup

Let εt be an i.i.d. random process follows standard normal distribution7 in an filtered probability space

(Ω,F ,P). Consider the following location-scale specifications on logarithm of asset returns (rt = lnRt):

rt = µ+ σεt (R&U)

where (µ, σ) is a pair of mean and standard deviation of return rt. At each point of time, the pair (µ, σ)

takes some value in a set ∆, and the actual selection within the set may or may not be governed by a

probability distribution. ε on (Ω,F ,P) is referred to as the random seed that captures the risk aspect of

asset returns. This is the typical framework of Knightian uncertainty on ∆ in the presence of risk ε.

The followings are three typical examples of ∆:

Example 1 ∆ =
{
R ≡

√
µ2 + σ2 ∈

[
R,R

]
; θ ≡ tan−1

(
µ
σ

)
∈
[
θ, θ
]}

7The Gaussian (normal) distribution assumption is not crucial for the main theory developed in this paper. It is assumed
mainly for the sake of empirical implementation.
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Example 2 ∆ =
{

(µ, σ) ∈
[
µ, µ

]
× [σ, σ]

}
Example 3 ∆ = {(µi, σi) , i = 1, 2, · · · , n}

as illustrated in Figure 1

Figure 1. Different Sets of Means and Standard Deviations

The mathematical formulation of the model uncertainty is not unique depending on the interpretation

of the uncertainty, which is reflected through the definition of the universal state space. Broadly speaking,

the literature contains the following two ways in defining the universal state space:

First, the return process rt is simply taken as an i.i.d. process on

E∆
= (Ω×∆,F × B (∆) ,P×Q)

under some set-valued beliefs Q ⊆M (∆), B (∆) is a Borel σ-algebra of ∆, andM (∆) is the set of all

B (∆)-measurable probability measures on ∆.

Second, the universal state space is taken to be

E ′∆= (Ω×M,F × B (M) ,P× ξ)

in which M =M (∆), B (M) is an σ-algebra of M under some well-defined topology on M, and ξ is

a second-layer belief on M that constitutes a B (M)-measurable probability measure ξ on M. More

precisely, ξ ∈ B (M) is a measure on the set of all probability measures on ∆. It can be interpreted as a

compound lottery on ∆ in the sense of Segal (1987).

The return process rt are i.i.d. in the sense that, for each Q ∈M or ξ ∈ B (M), the random process

rt under P×Q or P× ξ are identically distributed and independent over time.

In either approach, the uncertainty is on the set of possible (if any) probability measures Q ∈M(∆)

that govern the distribution of (µ, σ) in ∆. When ∆ is finite and contains n pairs of (µ, σ) as in Example

3, thenM (∆) is a simplex defined as following,

M (∆) =

{
q ∈ Rn :

n∑
i=1

qi = 1, qi ≥ 0

}

where qi is the probability of selecting the pair (µi, σi) in ∆. When n is 3, that is, ∆ contains three pairs

of (µ, σ),M (∆) is a 2-D simplex in a 3-D space, as illustrated in Figure 2.
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Figure 2. Space of Probability Distributions over a Set of Three Pairs of Means and Standard

Deviations of Asset Returns

Note that the conventional risk framework is a special case of model (R&U) where the selection of

the mean-standard-deviation pair (µ, σ) within the set ∆ is governed by a known or unique probability

distribution, that is, M (∆) is a singleton. In particular, if ∆ is a singleton (n = 1), M (∆) = {1} is
also a singleton, this is a special case where there is no uncertainty. If ∆ contains more than one pair of

(µ, σ), as long as the the selection of the pair (µ, σ) within the set ∆ is governed by a known or unique

probability distribution Q, that is, M (∆) = {Q} is a singleton, then there is no uncertainty and the
model is still within the conventional risk framework.

To carry out uncertainty assessment, we restrict preferences of investors to a broad class of expected

and non-expected utility functions defined over the location-scale family. Let U denotes utility functions
that satisfy the usual conditions, namely, monotonicity and risk/uncertainty aversion. We may wish

to further distinguish between the two classes of utility functions by the above mentioned state-space

formulation; namely, the class of expected and/or non-expected utility under Savage’s subjective beliefs

on E , denoted US ; and the class of expected and/or non-expected utility functions under second-layer
beliefs on E ′, denoted UNE .

Typical examples of utility functions belonging to US include

1. Savage (1954) subjective expected utility (SEU):

V (r) =

∫∫
∆

u (µ, σ) dQ (µ, σ)

for some Q ∈M (∆) andM (∆) is the set of all probability measures on ∆;

2. Gilboa and Schmeidler (1989) maximin expected utility:

V (r) = min
Q∈Q

∫∫
∆

u (µ, σ) dQ (µ, σ)

where Q ⊆M (∆) is a non-empty convex subset ofM (∆).
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3. Chew’s (1983) betweenness utility:8 V (r) is a solution to

∫∫
∆

EP [H (r, V (r))] dQ (µ, σ) = 0

for some Q ∈ M (∆), where EP is the expectation with respect to ε conditional on (µ, σ) and

H (x, y) is a betweenness function that increases in x, (strictly) decreases in y with H (x, x) ≡ 0.

For weighted utility H (x, y) = w (x) (v (x)− v (y)), it yields

V (r) = v−1


∫∫

∆

w ◦ v (µ, σ) dQ (µ, σ)

∫∫
∆

w (µ, σ) dQ (µ, σ)


in which w (µ, σ) = EP [w (r)] and w ◦ v (µ, σ) = EP [w (r) v (r)].

The well known utility functions belonging to UNE include

1. Smooth Utility of Klibanoff, Marinacci and Mukerjii (2005):

V (r) =

∫
M
ψ

∫∫
∆

u (µ, σ) dQ (µ, σ)

 dξ (Q)

for some ξ ∈ B (M), where ψ (x) is a monotonic increasing concave or convex function in x,

corresponding to uncertainty averse or uncertainty loving preference, respectively.

2. Expected Utility under Uncertain Probabilities (EUUP) of Izhakian (2017):9

V (r) =

∫
M

∫∫
∆

u (µ, σ) dQ (µ, σ) dξ (Q) (2.1)

where ξ is uniform onM(·), as a special B (M)-measurable probability measure.

In summary, utility functions in either class are formulated through the following two-step procedure:

Step one, it involves utility representation in a pure context of risk; that is, taking risk source ε as

given, for any fixed bundle of (µ, σ) in ∆, let u (r;µ, σ) represents the expected or non-expected utility

of rt = µ + σεt. These include, for instance, Markowitz’s (1954) mean-variance utility functions, Von

Neumann and Morgenstern (1947) expected utility, betweenness utility of Chew (1983,1989) and Dekel

(1986), anticipated utility of Quiggin (1982) and Yaari (1987), and the prospect theory of Kahneman and

Tversky(1979). Presumably, the location-scale utility function u (r;µ, σ) on ∆ summarizes an investor’s

risk attitudes.

Step two, it involves defining utility function in the presence of uncertainty to the location-scale

coeffi cients (µ, σ) on ∆. The utility V (r) defined over r = µ+ σε with set-valued coeffi cients (µ, σ) ∈ ∆

8Betweenness utility function under risk and uncertainty is formulated by Ma (2002), who discusses on its usefulness
in resolving both Allais’ (1951) paradox under risk and Ellsberg’s (1961) paradox under risk and uncertainty. It reduces
to SEU with the specification of H (x, y) = u (x) − u (y). See also Wong and Ma (2008) for betweenness utility functions
defined over the location-scale family.

9Precisely, this is a variation to the EUUP of Izhakian (2017), as we do not allow for distortion on subjective probability
Q ∈ Q. Instead, one may take the location-scale utility u (µ, σ) as expected utility under some distorted probability with
respect to the Gaussian normal distribution under which ε is defined. Without loss of generality, it is always possible to
introduce distortions on subjective beliefs Q as well as that on the objective probability P, and one may allow for different
distortions when utility payoffs are set below or above some reference point.
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is jointly determined by the subjective beliefs over the set ∆ and subjective expected or non-expected

utilities u (r;µ, σ).

All utility functions listed above accommodate Savage’s subjective expected utility as a subclass,

except for the EUUP which assumes the second-layer distribution is uniform over M(·). Hence, when
unanimous ranking between r and r′ are reached among all SEU investors with some Q ∈ M (∆), the

same ranking will carry forward to EUUP investors as well; however, the converse is, in general, not true.

As a final remark, it is natural to require the assessment of uncertainty not to be differentiated by

investors with long positions or short positions. In other words, an uncertainty measure, if exists, would

rank the uncertainty of r and −r in the same fashion. In other words, if r is more uncertain than r′,
then −r should be more uncertain than −r′ as well10 .

Definition 1 Given some risk sources ε and ε′, let r and r′ be asset returns with randomness driven by
ε and ε′ and uncertainty governed by ∆ and ∆′, respectively. ∆′ is said to be more uncertain than ∆ if

(a) r <i r′; and (b)− r <i −r′ (2.2)

for all i ∈ U , which hold with strict preference for some i. Moreover, a function ρ : ∆ → R is an

uncertainty measure (independent of preference) if

ρ (∆′) > ρ (∆) ⇔ ∆′ is more uncertain than ∆ (2.3)

in the sense of the unanimous agreements (a) and (b) between ∆ and ∆′ are reached among all i ∈ U .

Given the above definition of uncertainty that is distinct from risk, we can formally examine the

existence of quantifiable uncertainty. Two critical questions have to be answered: First, is it possible to

reach an unanimous ranking of uncertainty among all decision makers in the class? Second, does it exist

a quantifiable measure that is consistent with such a unanimous ranking among all decision makers?

Note that a sensible uncertainty measure, if exists, would at least apply to Examples 1-3 and yield a

finite positive measure for each case.

Both questions received wide attention and have been thoroughly studied in literature. However,

existing literature mainly focus in the risk-only context, thus only address the issue of risk measure. In

the world with risk only, the randomness of location and scale variables are governed by some objective

probabilities. Ma and Wong (2010) follow the footsteps of Rothschild and Stiglitz (1970) and show that

not all r and r′ can be ranked unanimously by decision makers within SEU class. Furthermore, when

unanimous ranking can be reached, the conventional measure of risk, that is, the standard deviation or

variance, in most circumstance, is found to generate assessment not contradicting to the ranking reached

by the decision makers.

In this paper, we focus on two questions in the context with both risk and uncertainty. First, whether

an unanimous ranking can be reached. Second, in case when an unanimous rank can be achieved,

whether a quantifiable measure of uncertainty consistent with the ranking can be constructed. For the

first question, we answer with two impossibility theorems which extend the findings of Ma and Wong

(2010) to the general context with both risk and uncertainty. For the second question, we find that it is

impossible to rank uncertainty based on one composite measure such as the one proposed by Izhakian

(2020), but a profile criteria of the first six moments. In particular, we show that if the set ∆ of possible

means and standard deviations is rectangular, we can rank the uncertainty based on the first, second,

10Here, we take −r as an approximation for the return obtained by the short sellers. When short seller’s margin deposit
ratio (m) and rebate rate rb are not ignorable, the precise rate of return for the short seller is ln

(
1 +m (1− ert ) e−rb

)
≈

−m (1− rb) rt.
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fourth and sixth moments. Furthermore, concerning the empirical implementation of the uncertainty

measure of Izhakian (2020), we suggest some necessary modifications keeping in mind of its pitfalls.

2.2 Impossibility Theorem for SEU as a Subclass

We start with Savage’s SEU functions that belong to US . We show that it is impossible to find a

quantifiable uncertainty measure that support unanimous ranking of uncertainty agreeable by SEU in-

vestors. Moreover, when no agreement can be reached among SEU investors, then no agreement can

be reached among utility functions in US which include SEU as a subclass. Hence, it is impossible to

find a quantifiable uncertainty measure that support unanimous ranking of uncertainty agreeable by US
investors.

The following impossibility theorem is obtained by restricting to SEU investors who prefer more to

less (U1
S), and to SEU investors who prefer more to less and are risk averse (U2

S), respectively.

Theorem 1 1. An unanimous rank of uncertainty between two arbitrary sets ∆ 6= ∆′ among SEU

investors cannot be always reached; particularly,

(a) unanimous rank of uncertainty between ∆ and ∆′ among all U1
S investors is reached if and

only if ∆ = ∆′;

(b) unanimous rank of uncertainty between ∆ and ∆′ among all U2
S investors is reached if and

only if ∆ and ∆′ share a singleton support on the location coeffi cient µ, and the intersection

of two volatility intervals contains no interior point, if not empty.

2. So long as US contains U1
S and U2

S as a subclass, a quantitative measure ρ : ∆ → R satisfying

condition (2.3) does not exist even when an unanimous rank of uncertainty between ∆ and ∆′ is

reached.

Proof. Statement 1 is a direct consequence of statements (a) and (b). We prove (a) and (b) by

contradiction. Suppose an unanimous rank between r and r′ can be reached under Savage subjective

expected utility class so that

EQ×P [u (r)] ≥ EQ′×P [u (r′)] (2.4)

EQ×P [u (−r)] ≥ EQ′×P [u (−r′)] (2.5)

∀u′ > 0 (and u′′ < 0 if risk aversion is imposed)

∀Q ∈ M (∆) ,∀Q′ ∈M (∆′)

Case 1: Utility functions are restricted to U1
S (i.e., u

′ > 0). Conditions (2.2) are equivalent to r FSD

r′ and (−r) FSD (−r′); that is, ∀x ∈ (−∞,∞) ,∀Q′ ∈M (∆′) ,∀Q ∈M (∆) ,

∫∫
∆′

Φ

(
x− µ
σ

)
dQ′ (µ, σ) ≥

∫∫
∆

Φ

(
x− µ
σ

)
dQ (µ, σ)

∫∫
∆′

Φ

(
x+ µ

σ

)
dQ′ (µ, σ) ≥

∫∫
∆

Φ

(
x+ µ

σ

)
dQ (µ, σ)
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These are equivalent to, for all x ∈ (−∞,∞) ,

sup
(µ,σ)∈∆

Φ

(
x− µ
σ

)
≤ inf

(µ,σ)∈∆′
Φ

(
x− µ
σ

)
(2.6)

sup
(µ,σ)∈∆

Φ

(
x+ µ

σ

)
≤ inf

(µ,σ)∈∆′
Φ

(
x+ µ

σ

)

that is, ∀x ∈ (−∞,∞) , ∀ (µ, σ) ∈ ∆,∀ (µ′, σ′) ∈ ∆′,

Φ

(
x± µ
σ

)
FSD Φ

(
x± µ′
σ′

)
.

This holds when and only when both of the following conditions are satisfied:

(i) ∆′ and ∆ share a common singleton support on location coeffi cients µ;11

(ii) ∆′ and ∆ share a common singleton support on scale coeffi cients σ.

Conditions (i) and (ii) combined imply that ∆ and ∆′ must be identical with a singleton support

(µ, σ). This violates the non-degeneracy condition ∆ 6= ∆′.

Case 2: Utility functions are restricted to U2
S (i.e., u

′ > 0 and u′′ < 0). Conditions 2.2 are equivalent

to r SSD r′ and −r SSD −r′; that is, ∀x ∈ (−∞,∞) ,∀Q′ ∈M (∆′) ,∀Q ∈M (∆),

∫ x

−∞

∫∫
∆′

Φ

(
x∓ µ
σ

)
dQ′ (µ, σ) dx ≥

∫ x

−∞

∫∫
∆

Φ

(
x∓ µ
σ

)
dQ (µ, σ) dx

or ∫∫
∆′

∫ x

−∞
Φ

(
x∓ µ
σ

)
dxdQ′ (µ, σ) ≥

∫∫
∆

∫ x

−∞
Φ

(
x∓ µ
σ

)
dxdQ (µ, σ)

This is equivalent to, ∀x ∈ (−∞,∞) ,∀ (µ, σ) ∈ ∆, (µ′, σ′) ∈ ∆′,

0 ≤
∫ x

−∞

(
Φ

(
x∓ µ′
σ′

)
− Φ

(
x∓ µ
σ

))
dx (2.7)

that is,

Φ

(
x∓ µ
σ

)
SSD Φ

(
x∓ µ′
σ′

)
This holds when and only when both of the following conditions are satisfied:

(i) ∆′ and ∆ share a common singleton support on location coeffi cients µ;

(ii)’the maximum volatility (scale coeffi cient) in ∆ does not exceed the minimum volatility in ∆′;

that is,

sup {σ : (µ, σ) ∈ ∆} ≤ inf {σ : (µ, σ) ∈ ∆′} .

Conditions (i) and (ii)’imply that ∆ and ∆′ share a singleton support on the location coeffi cient µ,

and the intersection of two volatility intervals contains no interior point, if not empty.

It remains to prove statement 2. We only need to consider Case 2 for U2
S investors: Suppose a

quantifiable uncertainty measure ρ exists so that, to all ∆ and ∆′ satisfying conditions (i) and (ii)’, it

holds ρ (∆) ≤ ρ (∆′). For arbitrary ∆1 ⊂ ∆ and ∆′1 ⊂ ∆′, conditions (i) and (ii)’are satisfied for ∆1

and ∆′1. Accordingly, we must have ρ (∆1) ≤ ρ (∆′1). We can thus rank the uncertainty between ∆1

11We have

inf {µ : (µ, σ) ∈ ∆} ≥ sup
{
µ : (µ, σ) ∈ ∆′

}
sup {µ : (µ, σ) ∈ ∆} ≤ inf

{
µ : (µ, σ) ∈ ∆′

}
These together imply condition (i) holds.
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and ∆, and between ∆′1 and ∆′ as well. These, however, contradict to statement 1-(b) as condition (ii)’

does not hold for ∆1 and ∆, nor for ∆′1 and ∆′. These enable us to conclude that there exists no single

quantitative uncertainty measure satisfying (2.3).

The ideas for the proofs of Theorem 1 follow the standard arguments on stochastic dominance. To

reach an unanimous agreement among all investors with preference in a class, it has to be the case that,

under arbitrary given subjective beliefs over the set, the investors must prefer one set to the other. That

is, r and −r must stochastically dominate r′ and −r′ respectively under all subjective beliefs over the
set ∆ and ∆′. We first show that these are not possible for first order stochastic dominance (FSD)

among SEU investors who prefer more to less. We then show that these are not possible for second order

stochastic dominance (SSD) among all risk averse investors who prefer more to less, and derive some

necessary and suffi cient conditions for unanimous ranking between ∆ and ∆′. We show that unanimous

ranking among risk averse investors can be reached if and only if conditions (i) and (ii)’hold, but the

quantitative measure of uncertainty must be set-valued criteria, and a single-value measure satisfying

(2.3) does not exist.

The following additional remarks are in order:

Remark 1 Theorem 1 holds for all utility functions in US that encompass SEU as a subclass. The

impossibility theorem also applies to smooth utility of Klibanoff, Marinacci and Mukerji (2005) because

it contains SEU as a subclass where the distribution ξ on B (M) is of singleton support (i.e., ξ assigns

probability one to a probability measure Q ∈M (∆)).

Remark 2 Theorem 1 holds for constant relative risk aversion (CRRA) utilities as a subclass of SEU;

that is,

V (r) =
1

α
EQ×P [Rαt ] =

1

α

∫∫
∆

eαµ+α2σ2

2 dQ (µ, σ)

for all 0 6= α ≤ 1. See Appendix 1 for proof.

Remark 3 The set-valued Sharpe-ratios
[
ρ (∆) , ρ (∆)

]
with

ρ (∆) = inf
{µ
σ

: (µ, σ) ∈ ∆
}

ρ (∆) = sup
{µ
σ

: (µ, σ) ∈ ∆
}

as uncertainty measures are equivalent to conditions (i) and (ii)’combined. ∆′ is more uncertain than

∆ implies that ρ (∆) > ρ (∆′). However, this does not constitute a quantitative measure as it involves

set-valued criteria summarized by
[
ρ (∆) , ρ (∆)

]
.

Remark 4 If the minimum of expected returns of all assets are negative and maximum of expected

returns are positive, then conditions (i) are not met, and we can not obtain an unanimous agreement

among all investors. Even if there is no uncertainty in location (i.e., condition (i) holds), when all

investors are risk averse, the average volatilities in the set ∆ as a quantifiable measure, which do not

contradict to condition (ii)’, is however not equivalent to (ii)’.

In summary, the impossibility theorem on uncertainty measure among Savage’s SEU investors follows

the standard arguments on FSD and SSD. Unlike Rothschild and Stiglitz (1970) who built up the

equivalence between SSD and mean-preserving-spread (for the case of constant location) in a pure risk

context, and established standard deviation as a quantitative measure of risk that never contradict to

SSD among risk averse investors, it is not applicable to use the average volatilities as a quantitative

measure of uncertainty in a context of risk and uncertainty. One must look into different criteria on the

magnitude and dispersions of both location and scale coeffi cients.
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2.3 Impossibility Theorem for EUUP Class

Next, we establish impossibility theorem for the EUUP class. When unanimous ranking is reached

among SEU investors, the same ranking will be reached among EUUP investors. However, the converse

does not always hold. An unanimous agreement among EUUP class does not necessarily imply unani-

mous agreement among SEU. Some weaker conditions for unanimous agreement among EUUP are thus

possible.

EUUP assume uniform second-layer subjective beliefs ξ over M (∆), that is, the belief of investors

with EUUP on ∆ are homogeneous. As investors’second layer belief under EUUP is homogeneous, one

may speculate that unanimous ranking of uncertainty among EUUP investors are relatively easier to be

reached. Indeed, the stochastic dominance argument as for Theorem 1 are less obvious to hold for EUUP

investors. Below we aim to establish the arguments for cases with finite and continuum supports of ∆.

2.3.1 Finite Supports

Izhakian (2020) proposes an uncertainty measure assuming each ∆ is with finite n number of supports.

We show that it is impossible to find an unanimous rank of uncertainty between two arbitrary finite sets

∆ = {(µi, σi)}
n
i=1 and ∆′ =

{(
µ′j , σ

′
j

)}m
j=1
.

Theorem 2 An unanimous rank of uncertainty between two arbitrary finite sets ∆ 6= ∆′ cannot be always

reached among EUUP investors. Even when such a rank is reached, a quantitative measure ρ : ∆ → R
satisfying condition (2.3) does not exist.

The proofs proceed in three steps. First, we establish an "if and only if" connection on an unanimous

ranking between ∆ and ∆′ among EUUP investors and stochastic dominance between the two mean-

average normal distributions Φr (x)
∆
= 1

n

∑n
i=1 Φ

(
x−µi
σi

)
and Φr′ (x)

∆
= 1

m

∑m
j=1 Φ

(
x−µ′j
σ′j

)
. Second,

following the standard argument for first order stochastic dominance (FSD), we show that no unanimous

ranking between ∆ and ∆′ are possible among EUUP investors who prefer more to less. In the third step,

we apply the argument for SSD to derive some necessary conditions for unanimous ranking between ∆

and∆′ among risk averse EUUP investors who prefer more to less. These are summarized by the following

three propositions respectively, and the proofs of these propositions are provided in the Appendix.

Proposition 1 For all ∆ and ∆′ with finite supports, V (r) ≥ V (r′) for u ∈ EUUP if and only if∫ ∞
−∞

u (x) dΦr (x) ≥
∫ ∞
−∞

u (x) dΦr′ (x) (2.8)

Particularly, unanimous ranking among monotone (monotone and risk averse) EUUP investors are

reached if and only if Φr first-order (second-order) stochastically dominate Φr′ .

Proposition 2 The following statements are equivalent:

1. ∆′ is more uncertain than ∆ for all EUUP investors who prefer more to less (i.e., u′ (x) ≥ 0);

2. Φr FSD Φr′ and Φ−r FSD Φ−r′ , that is,

Φr (x) ≤ Φr′ (x) ,Φ−r (x) ≤ Φ−r′ (x) (2.9)

for all x ∈ R.

3. ∆ = ∆′.

Proposition 3 The statements 1 and 2 below are equivalent, and both imply statement 3:

11



1. ∆′ is more uncertain than ∆ for all EUUP investors who prefer more to less and risk averse (i.e.,

u′ (x) ≥ 0, u′′ (x) ≤ 0) ;

2. Φr SSD Φr′ and Φ−r SSD Φ−r′ ; that is,∫ x

−∞

[
Φr (x)− Φr′ (x)

]
dx ≤ 0 and

∫ x

−∞

[
Φ−r (x)− Φ−r′ (x)

]
dx ≤ 0 (2.10)

for all x ∈ R.

3. Let Θr be the characteristic function for Φr.12For all x ∈ R it holds true that

Θr (x) ≤ Θr′ (x) ; (2.11)

particularly, the following conditions hold

(a) 1
n

∑n
i=1 µi = 1

m

∑m
j=1 µ

′
j;

(b) max
{
σ2 : (µ, σ) ∈ ∆

}
≤ max

{
σ2 : (µ, σ) ∈ ∆′

}
;

(c) 1
n

∑n
i=1

(
µ2
i + σ2

i

)
≤ 1

m

∑m
j=1

(
µ′2j + σ′2j

)
;

(d) for arbitrary positive integer N , if the equality

1

n

n∑
i=1

mk (µi, σi) =
1

m

m∑
j=1

mk
(
µ′j , σ

′
j

)
(2.12)

hold for k = 0, 1, · · · , 2N , then the equality (2.12) must hold for k = 2N + 1 as well, in

addition to the inequality

1

n

n∑
i=1

m2N+2 (µi, σi) ≤
1

m

m∑
j=1

m2N+2

(
µ′j , σ

′
j

)
(2.13)

for k = 2N + 2.

Condition (3) in Proposition 2 for FSD violates the non-degeneracy condition for uncertainty assess-

ment. So, no mutual agreeable ranking are possible between two arbitrary finite sets ∆ 6= ∆′ among

investors with monotone EUUP utility functions.

According to Proposition3, it is necessary to draw two average characteristic functions Θr (x) and

Θr′ (x) and check if one is always below the other, before reaching a consensus for an unanimous ranking

if ever applies. Condition 3 is necessary for SSD criterion (2.10).13 Moreover, conditions (a), (b) and (c)

listed in statement 3 of Proposition3 are necessary and readily verifiable for any arbitrary two location-

scale ∆ and ∆′ sets of finite supports. Violation to any of these conditions would make the assessment

of uncertainty between ∆ and ∆′ unattainable.

Condition (a) is on the average locations; condition (b) is on the maximum volatility in the support;

and (c) constitutes an restriction on the radius R2 of ∆, which governs the magnitude or depth of

uncertainty. Further to (a), (b) and (c), the necessary moment conditions extend to arbitrary higher

order moments as prescribed in (d).

Thus, no single criterion or uncertainty measure can be constructed to assess if one set ∆′ is more

uncertain than the other ∆. A set of criteria as illustrated by (a), (b), (c) and (d) must be verified.

12Θr (x) = 1
n

∑n
i=1 Θ (µi, σi;x) with Θ (µ, σ;x) =

∑∞
k=0

mk(µ,σ)
k!

(−x)k and mk (µ, σ) the k-th moment for N (µ, σ).
13Condition 3, as it turns out, is necessary and suffi cient for stochastic dominance among risk averse investors with

constant RRA utility functions, i.e. u (Rt) =
R
γ
t
γ
, γ ≤ 1, as a subclass of risk averse family.
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Violation to any of these conditions, would make the unanimous rank between the two finite sets ∆ and

∆′ non-attainable. Combining Propositions 2 and 3, we obtain Theorem 2.

The followings are a couple of examples to illustrate the viability of our Impossibility Theorem 2 to

the extreme cases of no uncertainty in either location or scale coeffi cient.

Example 4 We assume location coeffi cient µ be constant (i.e., there is no uncertainty on the location
coeffi cient). With Θ (x) = e−µx+σ2x2

2 the rank between the two mean-average characteristic functions

Θr and Θr′ (with common µ) reduces to that between 1
n

∑n
i=0 e

σ2i x
2

2 and 1
m

∑m
j=0 e

σ′2j x
2

2 for all x ∈ R.
Conditions (c) and (d) in Proposition 3 as necessary conditions for inequality (2.11) are simplified into

(c) 1
n

∑n
i=0 σ

2
i ≤ 1

m

∑m
j=0 σ

′2
j ;

(d) if 1
n

∑n
i=0 σ

2k
i = 1

m

∑m
j=0 σ

′2k
j for all k = 1, · · · , N , then14

1

n

n∑
i=0

σ2N+2
i ≤ 1

m

m∑
j=0

σ′2N+2
j .

Example 5 We assume σ2 be constant (i.e., there is no uncertainty on the scale coeffi cient). The rank

between the two mean-average characteristic functions Θr and Θr′ reduces to that between 1
n

∑n
i=0 e

−µix

and 1
m

∑m
j=0 e

−µ′jx for all x ∈ R. The necessary conditions (a)-(d) as in Proposition 3 respectively become

(a) 1
n

∑n
i=0 µi = 1

m

∑m
j=0 µ

′
j ;

(b) µmax ≤ µ′max if the maximum supports are positive; and µmin ≥ µ′min if the minimum supports are

negative;15

(c) 1
n

∑n
i=1 µ

2
i ≤ 1

m

∑m
j=1 µ

′2
j ;

(d) If 1
n

∑n
i=0 µ

k
i = 1

m

∑m
j=0 µ

′k
j for k = 1, · · · , 2N , then16

1

n

n∑
i=0

µ2N+1
i =

1

m

m∑
j=0

µ′2N+1
j

1

n

n∑
i=0

µ2N+2
i ≤ 1

m

m∑
j=0

µ′2N+2
j .

14When 1
n

∑n
i=0 σ

2k
i = 1

m

∑m
j=0 σ

′2k
j for all positive integers k = 0, 1, · · · ,∞, it has to be the case that the two

characteristic functions coincide with ∆ = ∆′. In fact, since it involves only finite number of volatility coeffi cients, we
speculate that one may only need to check finite number of moment conditions, say up to max {2n, 2m}.
15 It is noted that, with µmax ≥ 0 ≥ µmin and constant scale coeffi cient σ, the speeds of convergence for

1
n

∑n
i=0 e

−µix

at x→ ±∞ is totally governed by the maximum µmax and the minimun µmin of the location coeffi cients respectively.
16At the extreme case when 1

n

∑n
i=0 µ

k
i = 1

m

∑m
j=0 µ

′k
j for all positive integers, it has to be the case that the two

characteristic functions coincide with ∆ = ∆′. In fact, since it involves only finite number of parameters, one may only
need to check a finite number of moment conditions, say up to 2N + 1 and N = max

{[
n
2

]
,
[
m
2

]}
.
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2.3.2 Continuum support ∆

Assume ∆ is a compact set (i.e., bounded and closed) in the Euclidean space R× R+ so that |∆| =∫∫
∆

dµdσ takes a finite value.17 Define

Φr (x) =
1

|∆|

∫∫
∆

Φ

(
x− µ
σ

)
dµdσ (2.14)

Θr (x) =
1

|∆|

∫∫
∆

exp(−µx+
σ2x2

2
)dµdσ (2.15)

as the mean-average cumulative distribution function (c.d.f.) and the mean-average characteristic func-

tion for r with location-scale range ∆.18 Let

mk = (−1)
k

Θ
(k)

r (0) =
1

|∆|

∫∫
∆

mk (µ, σ) dµdσ

be the mean-average k-th order moment for the mean-average cdf Φr.

Following the same argument as for the finite support case we can readily establish the equivalence

between the unanimous ranking (in uncertainty) between∆ and∆′ and the stochastic dominance between

the two mean-average c.d.f.s Φr and Φr′ ; that is, investors in the EUUP class all prefer ∆ to ∆′ if and

only if Φr stochastically dominates Φr′ in the sense of Eq.(2.8). Accordingly, all statements made in

Propositions 2 and 3 and Theorem 2 remain valid except that we replace "average" with "mean-average"

for Φr (x) and Θr (x) respectively. So, in accordance with Theorem 2, we obtain the following theorem

that applies to arbitrary compact set ∆ and ∆′:

Theorem 3 An unanimous rank of uncertainty between two arbitrary compact sets ∆ 6= ∆′ cannot

be always reached among EUUP investors. Even when such a rank is reached, a quantitative measure

ρ : ∆→ R satisfying condition (2.3) does not exist. Nevertheless, when ∆′ is ranked to be more uncertain

than ∆ by all monotone and risk averse investors in EUUP, it has to be the case that

Θr (x) ≤ Θr′ (x) ,∀x ∈ R (2.16)

which implies the followings:19

1. m1 = m′1 and m2 ≤ m′2;
17Here, we define |∆| for Example 2 when the location-scale is defined on the (µ, σ) plane. It works with other axis

system adopted for the local-scale family as well. For instance, one may set |∆| =
∫∫

∆
dRdθ on (R, θ) plane as in Example

1, and set |∆| =
∫∫

∆
dµdν, ν = σ2, on the (µ, ν) plane. One system can be relatively less complex than the other depending

on the geometric structure and/or the shape of ∆.
18 In accordence with Riemman-Stejjiel integration, the mean-average c.d.f. is obtained by taking the limit

lim
n→∞

1

n

n∑
i=1

Φ

(
x− µi
σi

)
=

1

|∆|

∫∫
∆

Φ

(
x− µ
σ

)
dµdσ

for arbitrary division of ∆ into finite (n) disjoint subset ∪ni=1∆i of equal area, and (µi, σi) ∈ ∆i are arbitrary. The same
applies to mean-average characteristic functions.
19

m1 =
1

|∆|

∫∫
∆

µdµdσ,m2 =
1

|∆|

∫∫
∆

(
µ2 + σ2

)
dµdσ, · · ·
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2. for arbitrary positive integer N if mk = m′k for all k = 1, · · · , 2N , then it must hold true that

m2N+1 = m′2N+1 and m2N+2 ≤ m′2N+2. (2.17)

Moreover, for rectangles ∆ and ∆′, if mk = m′k for k = 1, 2, 4, 6, then the two mean-average charac-

teristic function must be identical (i.e., Θr = Θr′) with ∆ = ∆′.

Before prove Theorem 3, we first provide an intuitive explanation. Note that necessary conditions

for inequality 2.16, Conditions 1 and 2, are the counterpart to the case of finite support as in Theorem

2. It is straightforward to show that Θr (x) is positive and convex with initial conditions Θr (0) = 1,

Θ
′
r (0) = −m1 and Θ

′′
r (0) = m2. As illustrated in Figure 3a and 3b, the two smooth convex functions

Θr (x) and Θr′ (x) meet at x = 0. Inequality 2.16 implies the two curves must tangent at x = 0. This

yields m1 = m′1. The local convexity m2 ≤ m′2 determines if one curve is locally above the other. When
m2 = m′2, we must look into higher order moment conditions as illustrated in Condition 2.

Figure 3. Two mean-average characteristic functions with same first-order moment ( m1) but

different second-order moment (m2), with m2 of the red line larger than that of the black line.

Proof. We just need to prove the validity of the last statement of Theorem 3. Set ∆ =
[
µ, µ

]
× [ν, ν]

with ν = σ2, then the mean-average characteristic function can be explicitly expressed as a function of

location-scale coeffi cients
{
µ, µ, ν, ν

}
as follow:

Θr (x) =
1

|∆|

∫ µ

µ

∫ ν

ν

exp(−xµ+
x2ν

2
)dµdν (2.18)

=
2

x3

exp(−xµ+ x2

2 ν) + exp(−xµ+ x2

2 ν)− exp(−xµ+ x2

2 ν)− exp(−xµ+ x2

2 ν)(
µ− µ

)
(ν − ν)

.

The mean-average characteristic function also admits the following Taylor expansion

Θr (x) = 1−m1x+
m2

2!
x2 − m3

3!
x3 +

m4

4!
x4 + · · ·

with which we obtain its mean-average moments {mk}∞k=1 in terms of location-scale coeffi cients
{
µ, µ, ν, ν

}
.

Thus, if we can find four mean-average moments that uniquely determine
{
µ, µ, ν, ν

}
, then these four

moments also uniquely determine the mean-average characteristic function Θr (x).

The following Lemma on mean-average characteristic function for random return r under rectangle

uncertainty ∆ =
[
µ, µ

]
× [ν, ν] is suffi cient for our main conclusion.
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Lemma 1 The following conditions are equivalent:

1. r and r′ are identically distributed under E ′ = (Ω×M,F × B (M) ,P×ξ);

2. ∆ = ∆′;

3. Θr (x) = Θr′ (x) ,∀x ∈ R;

4. mn = m′n for all n = 0, 1, · · · ;

5. mn = m′n, n = 1, 2, 4, 6.20

Proof. We just need to prove Condition 5 as a suffi cient condition for conditions 1-4. It is suffi ce to
show that, the 1st, 2nd, 4th and 6th mean-average moments uniquely determine

{
µ, µ, ν, ν

}
.

For Gaussian normal seed variable with rectangle location-scale uncertainty set ∆, we can readily

verify that m1 = m′1,m2 = m′2 implies m3 = m′3, and if further that m4 = m′4, then m5 = m′5; that is, the

3rd and 5th moments are redundant given the 1st, 2nd and 4th moments.

From equation (2.18), we can compute the first six moments. Denoted by x = ν+ν
2 and y = νν. We

have:21

m1 =
µ+ µ

2

m2 =
4m2

1

3
−
µµ

3
+ x

m3 = 3m1m2 − 2m3
1

m4 = C4 +B4x−
1

5
x2 − y

m5 = 5m1m4 − 20m3
1m2 + 16m5

1

m6 = C6 +B6x+A6x
2 − 48

7
x3 − 15m2y

where

C4 =
1

5

(
3m2 + 2m2

1

)2 − 4m4
1

B4 =
12

5

(
m2 −m2

1

)
C6 =

1

7

(
3m2 + 4m2

1

)3 − 48m4
1m2

B6 =
36

7

(
m2 −m2

1

) (
3m2 + 4m2

1

)
A6 =

144

7

(
m2 −m2

1

)
− 3m2

Hence the third and fifth moments (m3 and m5) are redundant.

We can recover all model coeffi cients
{
µ, µ, ν, ν

}
from {m1,m2,m4,m6} by solving the above non-

linear equations system. We follow a three-step procedure:

1. Eliminate y from m4 and m6 to obtain a cubic equation for x:

(
x−m2 +m2

1

)3
=

7

48

(
15m2m4 −m6 − 30m3

2 + 16m6
1

)
(2.19)

20As it turns out, for Gaussian normal seed variable with rectangle location-scale uncertainty set ∆, m1 = m′1,m2 = m′2
implies m3 = m′3, and if further m4 = m′4, implies m5 = m′5; that is, the 3rd and 5th moments in the presence of the first
four moments are redundant.
21Mathematical derivations of these are available upon request.
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which has a unique solution given by

x =
ν + ν

2
= m2 −m2

1 − C (2.20)

in which C ∆
= 3

√
7
48

(
m6 − 15m2m4 + 30m3

2 − 16m6
1

)
.

2. Substitute x = m2 − m2
1 − C into the equations for m2 and m4 respectively to solve for µµ and

y = νν. These yield

µµ = m2
1 − 3C (2.21)

νν = 4m2
2 − 2m2m

2
1 −m4

1 −m4 − 2
(
m2 −m2

1

)
C − 1

5
C2 (2.22)

3. Combining these expressions for µµ and νν, together with µ+µ = 2m1 and ν+ν = 2
(
m2 −m2

1 − C
)
,

enable us to solve for
{
µ, µ, ν, ν

}
:

(
µ− µ

2
)2 =

1

4
[(µ+ µ)2 − 4µµ] = m2

1 − (m2
1 − 3C) = 3C

hence C ≥ 0,and

µ = m1 −
√

3C, µ = m1 +
√

3C (2.23)

ν = m2 −m2
1 − C −

√
6

5
C2 +m4 − 3m2

2 + 2m4
1 (2.24)

ν = m2 −m2
1 − C +

√
6

5
C2 +m4 − 3m2

2 + 2m4
1 (2.25)

The solution is well-posed, namely µ ≤ µ and 0 ≤ ν ≤ ν, so long as C ∈
[
0,m2 −m2

1

]
and

1

5
C2 + 2

(
m2 −m2

1

)
C ≤ 4m2

2 − 2m2m
2
1 −m4

1 −m4. (2.26)

It is important to observe that C captures the dispersion in location coeffi cients (µ − µ = 2
√

3C).

When

m6 = 15m2m4 − 30m3
2 + 16m6

1 (2.27)

C = 0, that is, there exists no uncertainty in location coeffi cient, and µ = µ = m1. In this case, the

revealed volatility boundaries

ν = m2 −m2
1 −

√
m4 − 3m2

2 + 2m4
1, ν = m2 −m2

1 +

√
m4 − 3m2

2 + 2m4
1 (2.28)

are non-negative as long as m2 −m2
1 ≥ 0 and m4 ∈

[
3m2

2 − 2m4
1, 4m

2
2 − 2m2m

2
1 −m4

1

]
. Particularly, when

m4 = 3m2
2 − 2m4

1, the volatility uncertainty disappears with ν = ν = m2 −m2
1.

In summary, with {m1,m2,m4,m6}, we can recover the range
[
µ, µ

]
× [ν, ν] along with the character-

istic function Θ (x) and all other order moments {mn}∞n=1.

Remark 5 Condition 2.16 constitutes the necessary and suffi cient condition for stochastic dominance
among all risk averse EUUP investors with constant RRA.

Remark 6 For the case of rectangle support ∆ =
[
µ, µ

]
× [σ, σ], as asserted in the last statement of

Theorem 3, some weaker conditions than Condition 2 are suffi cient for the validity of inequality 2.16.

Precisely, we show that, it is suffi cient to check the 1st, 2nd, 4th, and 6th mean-average moments
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before reaching a consensus on the validity of inequality 2.16. As illustrated in Lemma 1, with equalities

mk = m′k for k = 1, 2, 4, 6, we can fully recover the rectangle set ∆ =
[
µ, µ

]
× [σ, σ], and conclude that

the two characteristic functions must coincide to each other with ∆ = ∆′.22 This yields an violation of

non-degeneracy ∆ 6= ∆′. In other words, in order to rank two different rectangle sets, ∆ 6= ∆′, it is

necessary and suffi cient to check the validity of conditions 1 and 2 up to N = 3.

Remark 7 Interestingly, to be fully consistent with unanimous uncertainty assessment among EUUP
investors, conditions 1 and 2 in Theorem 3 constitute an partial order that displays mean-preserving-

spread risk aversion (MPS-RA) in the sense of Ma (2011) and Boyle and Ma (2013), a notion that is

weaker than that of Rothchild and Stiglitz (1970).

Remark 8 The impossibility theorems are proved under the assumption that there are no distortions on
the subjective probabilities on ∆ as in Izhakian (2017) and (2020). Accordingly, our impossibility theorem

applies for the general class of EUUP with distortions. Presumably, if investors in a smaller group can

not reach an agreement on the assessment of uncertainty, and cannot find a quantitative uncertainty

measure even when unanimous agreement were reached, then there is no hope to reach such agreement

with a quantitative measure among a bigger community with richer class of utility functions.

Although we show that it is impossible to identify a single-value quantitative uncertainty measure, we

find the mean-average characteristic function Θr (x) an useful measure never contradict to the order of

rank between two arbitrary sets whenever applies. More specifically, inequality 2.16 must hold whenever

∆′ is ranked more uncertain than ∆. When the location-scale family are restricted to rectangle ∆, the

assessment of uncertainty reduces to four different criteria among the first six (except for the third and

the fifth) mean-average moments of the distribution Φr (x) or characteristic function Θr (x). This is true

at least when the risk seed ε is Gaussian normal.

In summary, we conclude that Theorem 2 can be extended to set ∆ with a continuum range of

support.

2.4 Uncertainty Assessment by Mean-Variance Investors

Mean-variance (MV) utility functions of Markowitz (1954) do not belong to SEU nor fall into EUUP

class. In the context of risk and uncertainty, we consider MV utility functions by assuming Savage’s

subjective belief and the second-layer uniform belief as in EUUP, respectively. Intuitively, when utility

functions are mean-variance, one may expect "variance" or "standard deviation" as quantitative uncer-

tainty measure. However, under either model specification on subjective belief, it is questionable whether

unanimous agreement on uncertainty assessment can be achieved under MV utility. Furthermore, it is

questionable whether variance or standard deviation is sensible measure of uncertainty even for the

extreme circumstance when unanimous agreement on uncertainty assessment can be reached.

2.4.1 MV class under Savage beliefs

The subjective mean-variance (MV) utility functions under some subjective belief Q ∈M (∆) is defined

as

V (r) = EQ×P
[
r − γ (r − EQ×P [r])

2
]

(2.29)

where γ ≥ 0 is the risk aversion coeffi cient. Investors may have different risk aversion coeffi cient γ and

different subjective belief Q.

22We prove in Lemma 1 that, m3 is a redundant statistics as it can be fully determined by the first and second mean-
average moments; and that m5 is also redundant statistics as it can be fully determined by the first, the second and the
fourth mean-average moments.
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For r and r′ with location-scale coeffi cient set ∆ and ∆′, respectively, the condition for an unanimous

rank between r and r′ under MV utility functions is ∀Q ∈M (∆) , Q′ ∈M (∆′) and ∀γ ≥ 0;

EQ×P
[
r − γ (r − EQ×P [r])

2
]
≥ EQ′×P

[
r′ − γ (r′ − EQ′×P [r′])

2
]

or, equivalently,

EQ [µ]− EQ′ [µ] ≥ γ
(
varQ (µ) + EQ

[
σ2
]
− varQ′ (µ)− EQ′

[
σ2
])

(2.30)

When γ → 0+ we have EQ [µ] ≥ EQ′ [µ] for all Q and Q′, which implies,

inf {µ : (µ, σ) ∈ ∆} ≥ sup {µ : (µ, σ) ∈ ∆′} . (2.31)

Condition (2.31) is a partial order on location uncertainty.

The opposite inequality is obtained from −r � −r′; that is,

sup {µ : (µ, σ) ∈ ∆} ≤ inf {µ : (µ, σ) ∈ ∆′} (2.32)

Combining conditions (2.31) and (2.32) yields that ∆ and ∆′ must share a common singleton support

on µ.

Moreover, condition (2.30) for any γ ≥ 0 and EQ [µ] = EQ′ [µ] for all Q and Q′, implies

varQ (µ) + EQ
[
σ2
]
≤ varQ′ (µ) + EQ′

[
σ2
]

(2.33)

Suppose Q and Q′ assign unit mass at some (µ, σ) ∈ ∆ and (µ′, σ′) ∈ ∆, respectively, we obtain

sup
{
σ2 : (µ, σ) ∈ ∆

}
≤ inf

{
σ2 : (µ, σ) ∈ ∆′

}
. (2.34)

Condition (2.34) is a partial order on uncertainty regarding volatility or scale of ∆.

In analogy to discussion for SEU class in the previous subsection, unanimous rank between two

arbitrary sets ∆ and ∆′ among MV investors can not be always reached. Even when unanimous choices

between ∆ and ∆′ are reached among MV investors, as is the case when ∆ and ∆′ share a common

singleton support on location coeffi cient and when (2.34) is satisfied, there is no quantifiable measure that

would yield a single-value measure of uncertainty consistent with conditions (2.31), (2.32) and (2.34). In

other words, a quantitative measure ρ : ∆ → R on the degree of uncertainty does not exist among MV
investors with Savage’s beliefs.

2.4.2 MV class under uniform second-layer belief

We consider MV utility function under second-layer belief of the form

V (r) = Eξ×P
[
r − γ (r − Eξ×P [r])

2
]
, γ ≥ 0

in which ξ is uniform onM (∆). With

Eξ×P [r] =
1

|∆|

∫∫
∆

µdµdσ = m1

Eξ×P
[
r2
]

=
1

|∆|

∫∫
∆

(
µ2 + σ2

)
dµdσ = m2
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we obtain

V (r) = m1 + γm2
1 − γm2. (2.35)

For r and r′ with location-scale coeffi cient set ∆ and ∆′, the condition for an unanimous rank between

r and r′ becomes

m1 + γm2
1 − γm2 ≥ m′1 + γm′21 − γm′2 (2.36)

−m1 + γm2
1 − γm2 ≥ −m′1 + γm′21 − γm′2 (2.37)

for all γ ≥ 0.

When γ → 0+ we have m1 = m′1. Substitute this back into inequality Eq (2.36), we have m2 ≤ m′2.
So, in this case, unanimous agreement on uncertainty is reached if and only if

m1 = m′1 and m2 ≤ m′2

In this case, even though the mean-average second moment m2 as an quantitative uncertainty measure

does not contradict to unanimous rank made by MV investors, we must keep in mind that this works

only under the extreme circumstance that the two mean-average first moments coincide and

m2 =
1

|∆|

∫∫
∆

(
µ2 + σ2

)
dµdσ (2.38)

as uncertainty measure does not fully capture the magnitude and dispersion in volatility, taking the

mean-average first moment as given.

If we further restrict short selling, from inequality Eq (2.36) we obtain m1 ≥ m′1 and

m1 −m′1 ≥ γ(m2 −m2
1 −m′2 +m′21 ) (2.39)

for all γ ≥ 0, which implies m2−m2
1 ≤ m′2−m′21 . In summary, the assessment of the uncertainty between

∆ and ∆′ must jointly involve two criteria on the first and the second mean-average moments

1. 1
|∆|

∫∫
∆

µdµdσ = m1 ≥ m′1 = 1
|∆′|

∫∫
∆′

µdµdσ;

2. 1
|∆|

∫∫
∆

(µ−m1)
2
dµdσ + 1

|∆|

∫∫
∆

σ2dµdσ ≤ 1
|∆′|

∫∫
∆′

(
µ−m′1

)2
dµdσ + 1

|∆′|

∫∫
∆′

σ2dµdσ

Condition 1 and the first term in condition 2 are on the magnitude and dispersion in location coeffi -

cient (µ), respectively, while the second term in condition 2 measures the magnitude in scale coeffi cient

(σ2). Hence, a single-value uncertainty measure can not be obtained even when investors only express

preferences over mean and variance of asset returns in the context with risk and uncertainty.

2.5 Uncertainty assessment with short-sale constraints

We obtain the impossibility theorems without short-sale constraints through symmetric treatment on

short sales. More specifically, we set r′ = −r and treat −r as an instantaneous return for an different
investment vehicle. Such treatment is particularly convenient when margins on short sales and rebate

rates are taken into consideration, and investors face different short selling constraints. We define a

weaker notion of uncertainty measure by dropping Condition (b) in Definition 1 and by allowing the

perception of uncertainty on r from investors with long positions only:
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Definition 2 Taking as given risk sources ε and ε′, let r and r′ be asset returns that are respectively
driven by ε and ε′ with uncertainty respectively governed by ∆ and ∆′. ∆′ is said to be more uncertain

than ∆ if r <i r′ for all i ∈ U , which hold with strict preference for some i. Moreover, a function
ρ : ∆→ R is an uncertainty measure if

ρ (∆′) > ρ (∆) whenever ∆′ is more uncertain than ∆. (2.40)

It is straightforward to show that, without symmetric consideration of short sales constraints, the

impossibility theorems remain valid. However, for both FSD and SSD in Theorem 1, condition (i) in

obtaining unanimous ranking is weakened as condition (i)’:

inf {µ : (µ, σ) ∈ ∆} ≥ sup {µ : (µ, σ) ∈ ∆′} (2.41)

with condition (ii) and (ii)’remain unchanged.

Similarly, we can obtain impossibility theorem for EUUP class, Propositions 2 and 3 with short-

sale constraints remain by dropping the set of restrictions imposed on Φ−r and Θ−r. Even though the

nondegeneracy argument in Proposition 2 no longer imply a contradiction, we do obtain some concrete

conditions for uncertainty assessment. Accordingly, statements in Theorems 2 and 3 remain valid. The

details of the mathematical proofs are thus omitted.

3 Empirical Measure of Uncertainty

In this section, we first propose a way to assess uncertainty of location-scale family of normal distrib-

ution using the first, second, forth and sixth moments. Then we discuss problems with the composite

uncertainty measure proposed by Izhakian (2020) and empirically implemented by Brenner and Izhakian

(2018), and propose a modified composite uncertainty measure that is consistent and unbiased.

3.1 Assessment of Uncertainty using Moments

Theorem 3 provide a natural venue towards uncertainty assessment through moments, particularly when

the model uncertainty be characterized by an rectangle set ∆. The precise connections between uncer-

tainty assessment and moments are through the mean-average characteristic function Θ. In order to rank

two rectangle sets ∆ and ∆′, say whether one is more uncertain than the other, it is necessary to check

if the corresponding mean-average characteristic functions Θr (x) and Θr′ (x) cross somewhere along the

x-axis, which includes x = 0 at which the two curves always meet as shown in Figure 2. No ranking can

be made between ∆ and ∆′ concerning their degree of uncertainty when the two curves cross.

In addition, Lemma 1 shows that the rank between two arbitrary rectangle sets ∆ and ∆′ can be

simplified into the assessment of moments up to the sixth order, which follows a Lexicographic procedure

of ordering:

1. m1 = m′1? If no, accept H1 : no assessment can be made;23 if yes, goes to step 2:

2. m2 < m
′
2 (or m

′
2 < m2)? If yes, do not reject (i.e., accept) H0 : ∆′ (∆) is more uncertain than ∆

(∆′); if no, goes to step 3:

3. m3 = m′3? If no, accept H1 : no assessment can be made; if yes, goes to step 4:

4. m4 < m
′
4 (or m

′
4 < m4)? If yes, do not reject (i.e., accept) H0 : ∆′ (∆) is more uncertain than ∆

(∆′); if no, goes to step 5:

23More precisely, we shall rank r � r′ & −r′ � −r if m1 > m′1; and r
′ � r & −r � −r′.
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5. m5 = m′5? If no, accept H1 : no assessment can be made; if yes, goes to step 6:

6. m6 < m
′
6 (or m

′
6 < m6)? If yes, do not reject (i.e., accept) H0 : ∆′ (∆) is more uncertain than ∆

(∆′); or else, if m6 = m′6, accept H0 : ∆ and ∆′ are equally uncertain.

So, even though it is impossible to obtain a single composite measure of uncertainty, the assessments

summarized by {m1,m2,m4,m6} are suffi cient to rank the uncertainty of ∆ whenever it applies.

Lemma 1 also provides a useful channel to connect information summarized by {m1,m2,m4,m6} to
compare uncertainty on the location and scale coeffi cients. With

C =
3

√
7

48

(
m6 − 15m2m4 + 30m3

2 − 16m6
1

)
(3.1)

from equations (2.23) to (2.25) we obtain

µ+ µ

2
= m1 (3.2a)

µ− µ
2

=
√

3C (3.2b)

ν + ν

2
= m2 −m2

1 − C (3.2c)

ν − ν
2

=

√
6

5
C2 +m4 − 3m2

2 + 2m4
1 (3.2d)

Thus, the mean returns (m1) measures the average of location (
µ+µ

2 ). Taking the mean returns (m1) and

the variance of the returns (m2−m2
1) as given, C measures the deviation of the variance (m2−m2

1) from

the average scale (ν+ν
2 ).

√
3C gives the dispersion in location (

µ−µ
2 ), and the dispersion in the scale

(ν−ν2 ) is given by
√

6
5C

2 +m4 − 3m2
2 + 2m4

1. The term (m4 − 3m2
2 + 2m4

1) in the square root interpreted

as the dispersion in scale in the absence of location uncertainty (i.e., C = 0). With

m4 − 3m2
2 + 2m4

1 =
(
m4 −m2

2

)
− 2

(
m2 −m2

1

)2 − 4m2
1

(
m2 −m2

1

)
The dispersion in the scale coeffi cient in the absence of location uncertainty increases in

(
m4 −m2

2

)
,

and decreases (quadratically) in
(
m2 −m2

1

)
, the relationship between these moments and the dispersion

in location coeffi cient (
√

3C) are just the opposite, Hence, in general, there is no monotone relationship

between these moments (including the conventional measure of risk, the variance) and dispersions in the

location and the scale coeffi cients. Thus, it is not necessarily true that the higher the risk the more is

the uncertainty.

We use the daily returns of S&P 500 stock market index in the U.S. market, and CSI 300 stock market

index to estimate the first, second, forth and sixth moments using expanding window estimation, then

using equations (3.2a) to compute the ranges of location and scale coeffi cients of the family of normal

distribution.

Figure 4 shows the 1st, 2nd, 4th and 6th moments of daily returns of the U.S. stock market index

S&P 500. The 2nd moment (risk) increases over time, but the 4th and 6th moments increase one time

in 1987 due to the "Black Monday" crash. Figure 5 shows the 1987 "Black Monday" crash significantly

increased the ranges of the location and scale, the uncertainty, and the impact remains till 2023.

Figure 6 shows the 1st, 2nd, 4th and 6th moments of daily returns of China stock market index CSI

300. All of the four moments increase in 2008 when the four trillion stimulus plan was implemented,

then decrease steadily till 2014 when the stock market experienced another boom-and-bust cycle. Figure

7 shows the 2008 stimulus plan has a big impact on the ranges of both location and scale, but the
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2014-2015 boom-and-bust does not impact the range of location but mildly increases the range of scale,

or uncertainty. Once the uncertainty in the stock market increases, it remains high for long time.
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Figure 4. Moments of Daily Returns of the U.S. Stock Market Index S&P 500 from 1965/01/01 to

2023/12/29.
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Figure 5. Time Series of Daily Return and Ranges of Location and Scale of the U.S. Stock Market

Index S&P 500 from 1965/01/01 to 2023/12/29.
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Figure 6. Moments of Daily Returns of China Stock Market Index CSI 300
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Figure 7. Time Series of Daily Return and Ranges of Location and Scale of China Stock Market Index

CSI 300

3.2 A Composite Uncertainty Measure

Lemma 1 shows that the rank between two arbitrary rectangle sets ∆ and ∆′ can be simplified into the

assessment of four moments {m1,m2,m4,m6}. As the first moment corresponds to the expected return,
the second moments corresponds to the conventional measure of risk, the fourth moments corresponds

to the conventional measure of tail risk, we lack insight of the sixth moments. Izhakian (2020) proposes

to use "the expected volatility of probabilities" as a composite measure of uncertainty. Intuitively, this

measure gauges the average distance of probabilities or the "average dispersion" of (µσ) in ∆ measures

one aspect of uncertainty. In this subsection, we first define a consistent composite measure of uncertainty

on ∆ with continuum and finite support, and show that measure proposed by Izhakian (2020) is null
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when the number of supports of ∆ goes to infinity. Then, we propose a simple and consistent method

to estimate the composite uncertainty measure from data on asset returns, and show that the empirical

implementation proposed by Izhakian (2020) overestimate the uncertainty when the range of ∆ is large.

Suppose asset returns are governed by a family of normal distributions:

ϕr (µ, σ;x) =
1

σ
φ

(
x− µ
σ

)
for (µ, σ) ∈ ∆

where φ (x) = 1√
2π

exp(−x22 ) is the p.d.f. of standard Gaussian distribution.

Let P =M (∆) be the set of all probability measures on ∆. For each q ∈ P we denote

ϕr (q, x) =

∫
∆

1

σ
φ

(
x− µ
σ

)
dq (µ, σ)

as the "expected p.d.f." with respect to q for asset return r. Moreover, we define the mean and variance

of the "expected p.d.f" over the state-space of P with respect to the uniform probability measure ξ on

P.

E [ϕr (x)] =

∫
P
ϕr (q, x) dξ (q)

Var [ϕr (x)] =

∫
P

(ϕr (q, x)− E [ϕr (x)])
2
dξ (q)

Then the mean of the variance of "expected p.d.f" with respect to the mean of the "expected p.d.f"

measures the dispersion of the "expected p.d.f.", one of the important aspects of the uncertainty of return

r, that is,

Ψ2 [r] =

∫ ∞
−∞

E [ϕr (x)]Var [ϕr (x)] dx

3.2.1 Composite Uncertainty Measure for ∆ with Finite Support

When ∆ is with finite support, that is, ∆ =
{

(µi,σi)
}n
i=1

,denote

ϕir ≡ ϕr (µi, σi;x) =
1

σi
φ

(
x− µi
σi

)
, i = 1, · · · , n

we have all the probability distributions on ∆ form a (n-1)-dimension simplex in a n-dimension linear

space,

P =

{
q ∈ Rn+ :

n∑
i=1

qi = 1

}
and

ϕr (q, x) =
∑
i

qiϕ
i
r(x) = q ·ϕ (x)

Furthermore, we show that the mean and variance of "expected p.d.f" are

En [ϕr (x)] =

∫
...
∫

P
q ·ϕ (x) dq

V ol(P)
=

1

n

n∑
i=1

ϕi (x) ≡ ϕn (x)

Varn [ϕr (x)] =

ϕ (x)
T

(∫
...
∫

P
(q−q)(q−q)T dq

)
ϕ (x)

V ol(P)

=
1

n (n+ 1)

n∑
i=1

(ϕi (x)− ϕn (x))
2 ≡ 1

n+ 1
S2
n (x)
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where the second equations follow from the integration by parts. It is important to note that, the

mean of the "expected p.d.f" (En [ϕr (x)]) is same as ϕn (x) , the mean of n normal p.d.f.s drawn from

∆ with equal probability, but the variance of the "expected p.d.f." is S2
n (x) /(n + 1), where S2

n (x) is

defined as the variance of n normal p.d.f.s drawn from ∆ with equal probability.

In the following Proposition 4 we show that the uncertainty measure with finite support Ψ2
n [r] should

be defined as

Ψ2
n [r] =

∫ ∞
−∞

ϕn (x)S2
n (x) dx = (n+ 1)

∫ ∞
−∞

En [ϕr (x)]Varn [ϕr (x)] dx (UNC1)

which is n+ 1 times the mean of the variance of "expected p.d.f". However, Izhakian (2020) defines the

uncertainty measure with finite support as,

Ψ̃2
n [r] =

∫ ∞
−∞

En [ϕr (x)]Varn [ϕr (x)] dx =
Ψ2
n [r]

n+ 1
(UNC0)

Proposition 4 When ∆ is with finite support, the uncertainty measure Ψ2
n [r] defined in (UNC1) has

following properties:

1. When adding an extra support
(
µn+1, σn+1

)
to the set ∆, we have

ϕn+1 = ϕn +
1

n+ 1

(
ϕn+1 − ϕn

)
S2
n+1 =

n

n+ 1
S2
n +

n

(n+ 1)
2

(
ϕn+1 − ϕn

)2
Ψn+1(r) =

n

n+ 1
Ψn +

n

(n+ 1)
2

∫ ∞
−∞

ϕn+1 (x)S2
n (x) dx

+
n

(n+ 1)
2

∫ ∞
−∞

ϕn (x)
(
ϕn+1 (x)− ϕn (x)

)2
dx

+
n

(n+ 1)
3

∫ ∞
−∞

(
ϕn+1 (x)− ϕn (x)

)3
dx.

2. Ψ2
n [r] = 0 if and only if n = 1, which corresponds to case with no uncertainty and only risk (??),

that is, (µ, σ) takes unique value of (µ0, σ0) in ∆.

3. For ∆ with continuum range, we may divide ∆ into n region to get n discrete samples and get an

uncertainty measure of ∆ by taking the limit (if exists) as n→ +∞. If random sample of (µ, σ) on

∆ is governed by a specific probability distribution q, then by Law of Large Number, as n → +∞,
we get

Ψ2
q,n [r] =

∫ ∞
−∞

ϕq,n (x)S2
q,n (x) dx

P→
n→+∞

∫ ∞
−∞

Eq [ϕr (x)]Varq [ϕr (x)] dx

which is positive unless q is with a unit mass on some (µ, σ) ∈ ∆.

For Example 2, when q is uniform on ∆, the limit becomes

Eq [ϕr (x)] =

∫ σ
σ

Φ
(
x−µ
σ ,

x−µ
σ

)
dσ

(σ − σ)
(
µ− µ

) (3.3)

Varq [ϕr (x)] =

∫ σ√
2

σ√
2

Φ
(
x−µ
σ ,

x−µ
σ

)
dσ
σ

2
√
π (σ − σ)

(
µ− µ

) − (Eq [ϕr (x)])
2 (3.4)

where Φ (x, x′) =
∫ x′
x
φ(x)dx.
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4. When ξ on P governs the random sample of q, probability distribution of (µ, σ) on ∆, by Law of

Large Number, as n→ +∞.

Ψ2
n [r]

P→
n→+∞

∫ ∞
−∞

E [ϕr (x)]Var [ϕr (x)] dx = Ψ2 [r]

5. Izhakian’s (2020) measure defined in (UNC0) 24 converges to zero as n→ +∞, that is, limn→∞ Ψ̃2
n [r] =

0. Hence, Izhakian (2020) measure is not a consistent estimate of Ψ2 [r] and is null when ∆ is

with infinite/continuum support.

Proof. See Appendix.

3.2.2 Empirical Implementation of Uncertainty Measure for ∆ with Finite Support

Given the estimates of (µi, σi)
n
i=1 , we can directly compute the uncertainty measure Ψ2

n [r] defined in

(UNC1) as an explicit function of estimates of (µi, σi)
n
i=1.

Proposition 5 Assume asset returns r are governed by a family of normal distributions with {(µi, σi)}
n
i=1,

which is the finite support of ∆, then the uncertainty measure Ψ2
n [r] defined in (UNC1) can be computed

as

Ψ2
n(r) =

1

n3

n∑
i=1

n∑
j=1

n∑
k=1

φi(0)φj(0)φk(0)

φi,j,k(0)

[
φj(0)φi,j,k(0)

φk(0)φi,j,j(0)
− 1

]
(EUNC1)

where

φi(0) =
1

σi
√

2π
exp

{
−1

2

(
µi
σi

)2
}

φi,j,k(0) =
1

σi,j,k
√

2π
exp

{
−1

2

(
µijk
σijk

)2
}

with σ2
ijk as the harmonic average of σ

2
i , σ

2
j and σ

2
k, µijk as the weighted average of µi, µj , µk,

1

σ2
ijk

=
1

σ2
i

+
1

σ2
j

+
1

σ2
k

µijk =

µi
σ2i

+
µj
σ2j

+ µk
σ2k

1
σ2i

+ 1
σ2j

+ 1
σ2k

Proof. See Appendix A.
Izhakian (2020) proposes to empirically implement the uncertainty measure (UNC0) by estimating

ϕn (x) by the sample mean and S2
n(x) by the variance of discretized normal PDFs with µ and σ estimated

from the 5-min stock returns in a trading day, under the assumption that the stock return in each trading

day follows a normal probability distribution with different µ and σ; that is,

̂En [ϕr (xm)] =
1

n

n∑
i=1

1

σi
Φ

(
xm−1 − µi

σi
,
xm − µi
σi

)
(3.5)

̂Varn [ϕ (xm)] =
1

n

n∑
i=1

[
1

σi
Φ

(
xm−1 − µi

σi
,
xm − µi
σi

)
− ̂En [ϕr (xm)]

]2

(3.6)

24This is the special case of Equation (8) in Izhakian (2020) when the support of ∆ is finite, Equation (9) in Izhakian
(2020) should be an integral instead of finite sum, as the domain of x is still continuous when the support of ∆ is finite.
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for m = 0, ...M with x0 < x1 < .... < xM divide the range of daily stock returns within a month into M

intervals with equal width w. And, the empirical uncertainty measure is computed as25

̂̃Ψ2
n [r] =

1√
w(1− w)

M∑
m=1

̂En [ϕ (xm)] · ̂Varnϕ (xm) (EUNC0)

If we compare the (3.5) and (3.6) with its continuum counterpart (3.3) and (3.4), we find that

(EUNC0) of Brenner and Izhakian (2018) was not appropriately adjusted by the product of range of

µ and σ,that is, (σ − σ) (µ − µ), but by
√
w(1− w). Hence this measure overestimates the uncertainty

of stock returns with larger (σ − σ) (µ − µ), that is when the conventional measure of risk is higher, as

(σ − σ) (µ− µ) is positively related to the sample standard deviation, the conventional estimate of risk.

which appropriately adjust the range of µ and σ, and is a consistent estimate of Ψ2
n [r] that avoids

the bias in Brenner and Izhakian (2018) empirical measure (EUNC0),

4 Uncertainty of Stock Market Indices

In this section, we first compare our uncertainty measure (UNC1) with that of Izhakian (2020) (UNC0)

by simulation and estimate using data on the stock market indices in the U.S. and China. Then we

examine the property of the stock uncertainty measure and moments estimated using data on the stock

market indices.

We first estimate the means and standard deviations of 5-minute returns in each trading day of

the U.S. stock market index S&P 500 and China stock market index CSI 30026 . Figure 4 shows the

histograms and scatter plots of pairs (µi, σi), means and standard deviations of daily returns of the S&P

500 and CSI 300. It is obvious that (µi, σi) are not uniformly distributed, but fan-shaped distributed

within a circular sector defined by the maximum of σ and ranges of µ/σ. Comparing the top panels with

bottom panels of Figure 8, it is clear that the range of (µi, σi) of the U.S. stock market index is larger but

the dispersion is smaller than that of the China stock market index. The range of the fan-shaped area

and dispersion within the range govern the uncertainty of stock return. The range can be measured by

the maximum of standard deviations and the minimum and maximum of the ratio of means and standard

deviations (µ/σ),it is interesting to examine when the stock uncertainty measure helps to measure the

dispersion of (µi, σi) within the range.

25 Izhakian (2020) equation (12)
26The sample period is from Jan. 1, 2008 to December 31, 2022. We obtain 3777 pairs of (µi, σi) for S&P 500 and 3587

pairs of (µi, σi) for CSI 300, as there is not suffi cient 5-min returns on Janurary 8, 2016, and data in 2018 November and
December is missing.
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Figure 8. Histograms and Scatter Plots of Means and Standard Deviations of Daily Returns of Stock

Market Indices in the U.S. and China.

4.1 Comparison of Stock Uncertainty Measures

We compare our uncertainty measure (UNC1) with that of Izhakian (2020) (UNC0) using the U.S. stock

market index S&P 500.

4.1.1 Simulation Results

We use bootstrap to draw n pair of (µi, σi) from the estimated mean and standard deviation of daily

returns of S&P 500, and compute the uncertainty measure (unc1) and Izhakian (2020) measure (unc0)

for n = 2, 5, 10, 20, 40, 60, 80, 200.Figure 9 shows the scattered plot of {(µi, σi)}
n
i=1 from one simulation

with (UNC0) and (UNC1) reported in the title. It clearly shows that our uncertainty measure (unc1)

converges to around 20, but Izhakian’s measure (unc0) goes to zero as n gets large.
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Figure 9. Simulated Mean and Standard Deviation of Daily Stock Returns and Uncertainty Measures

for S&P 500.

4.1.2 Estimation results

First, we compute the monthly, quarterly, half-year and annual risk measure, our uncertainty measure

(EUNC1) and Izhakian’s measure (UNC0) using our algorithm. Under the assumption that the daily

stocks in each measuring period (a month, a quarter, half year or a year) follows different normal

distributions with different means and standard deviations, the longer is the measuring period, the more

is the number of finite support (n) of∆. More specifically, we calculate the monthly uncertainty measures

and risk measure based on the sample means and sample standard deviations of daily returns within a

month. There are about 20 trading days in each month, so the number of finite support of ∆ is 20 for

monthly measures. Similarly, n equals about 60, 120, and 240, for the quarterly, half-year and annual

measures, respectively. Figure 6 plots the time-series of these three measures in different measuring

periods for S&P 500 index. We find that our uncertainty measure (EUNC1) and the conventional risk

measure are stable across different measuring periods, but Izhakian (2020) measure (UNC0) decreases

with n and goes to zero as n gets suffi ciently large. Thus, Izhakian’s measure is null when ∆ is with

infinite or continuum support (i.e. n→ +∞), which is consistent with Proposition 4.
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Figure 10. Time-Series of Monthly, Quarterly, Semi-Annual and Annual Uncertainty Measures and

Risk of S&P 500.

Next, we compare our empirical uncertainty measure (EUNC1) with Brenner and Izhakian (2018)

empirical measure (EUNC0). In the top left panel of Figure 7, we provide the scatter plots of the two

uncertainty measures against risk for S&P 500. Both uncertainty measures have a noticeably decreasing

and convex relationship with risk. But our measure (EUNC1) monotonically decreases with risk, while

Brenner and Izhakian (2018) measure (EUNC0) has a U-shaped relationship with risk. When risk is

small, the two uncertainty measures are about the same; however, when risk is large, (EUNC0) becomes

spuriously large as it overestimates the uncertainty without appropriately adjust for the range of ∆.

Our analysis in the subsection 3.2 implies that the overestimate problem of Brenner and Izhakian (2018)

uncertainty measure is more severe when the conventional measure of risk (sample standard deviation)

is higher. The time-series plot in the top right panel of Figure 10 show the same pattern over time.

31



The bottom panels of Figure 11 plot the scattered plot and time-series plot of risk and uncertainty

measures of Chinese stock market index CSI 300. The overall sample deviation of Chinese stock market

index CSI 300 is higher than that of the US stock market index S&P 500, so the Brenner and Izhakian

(2018) uncertainty measure is more likely to overestimate in the Chinese stock market, which is clear

when we compare bottom panels with the top panels of Figure 11. Brenner and Izhakian (2018) empirical

uncertainty measure is very large in crisis periods such as the 2008 global financial crisis and 2015 China

stock market crash. This is counter intuitive, as during the market crisis, the risk is high, but the

uncertainty is low when everyone in the market knows the situation is bad.
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Figure 11. Our Stock Uncertainty Measure vs Brenner and Izhakian’s Measure

4.2 Stock Uncertainty and Moments

In Section 3, we show that the rank between two arbitrary rectangle sets of means and standard devia-

tions can be simplified into the assessment of the first, second, fourth and sixth moments (m1,m2,m4,m6).

We also show that under the assumption of location-scale family of normal distributions, the composite

uncertainty measure (EUNC1) is a consistent measure of the expected variance of the family of normal

distributions. Hence, the first, second, fourth and sixth moments should be important factors to deter-

mined the composite uncertainty measure, while the third and fifth moments do not contains information

in uncertainty.

In Table 4.1 and 4.2, we report the regression results of the stock uncertainty of S&P 500 on the

estimates of 1st-6th moments, and their squares, the results are consistent with model implication.
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Table 4.1: Regression of Uncertainty on the Moments
(1) (2) (3) (4) (5) (6) (7) (8)

m1 9.463*** 0.307 -4.656
(2.647) (0.125) (-1.292)

m2 -5.565*** -24.042*** -23.831***
(-14.592) (-4.981) (-4.962)

m3 0.462 1.137
(1.121) (1.352)

m4 -3.183*** 31.681*** 30.231***
(-12.569) (3.434) (3.286)

m5 0.121 -0.207
(0.607) (-0.600)

m6 -2.193*** -14.849*** -13.942***
(-11.585) (-3.179) (-2.989)

Constant 18.342*** 27.778*** 18.452*** 27.302*** 18.429*** 26.873*** 27.677*** 27.976***
(30.81) (36.53) (30.52) (32.78) (30.43) (31.21) (36.09) (36.04)

Adj. R2 0.032 0.542 0.001 0.467 -0.004 0.427 0.576 0.581
F-test 61.767 42.377

Table 4.2: Regression of Uncertainty on the Moments and Squares of Moments
(1) (2) (3) (4) (5) (6) (7) (8)

m1 8.130** -5.823*** -5.664**
(2.461) (-3.364) (-2.106)

m2
1 -64.318*** -3.204 0.308

(-5.710) (-0.513) (0.045)
m2 -13.136*** -40.577*** -44.301***

(-16.261) (-6.748) (-7.076)
m2

2 1.203*** 2.423** 2.645**
(10.118) (2.240) (2.382)

m3 0.24 0.49
(0.700) (0.816)

m2
3 -1.405*** -0.359

(-9.045) (-1.053)
m4 -7.039*** 33.000*** 39.230***

(-10.935) (2.779) (3.225)
m2

4 0.406*** -0.49 -0.677
(6.408) (-0.370) (-0.502)

m5 0.174 -0.284
(1.039) (-1.142)

m2
5 -0.320*** 0.211*

(-8.747) (1.954)
m6 -4.792*** -12.203* -15.255**

(-9.319) (-1.963) (-2.407)
m2

6 0.205*** 0.035 0.046
(5.379) (0.070) (0.091)

Constant 20.136*** 35.722*** 21.465*** 33.668*** 21.376*** 32.652*** 36.687*** 36.986***
(31.849) (35.995) (35.658) (27.016) (35.094) (24.370) (39.164) (39.166)

Adj. R2 0.178 0.708 0.313 0.565 0.295 0.504 0.803 0.806
F-test 91.943 62.682
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Table 4.3: Correlation Coeffi cients
R risk unc1 m1 m2 m4 m6

µ−µ
2

ν+ν
2

risk -0.35
unc1 0.21 -0.74
m1 0.99 -0.32 0.19
m2 -0.28 0.91 -0.74 -0.25
m4 -0.25 0.82 -0.69 -0.22 0.97
m6 -0.24 0.77 -0.66 -0.21 0.94 0.99
µ−µ

2 -0.20 0.68 -0.58 -0.17 0.87 0.96 0.98
ν+ν

2 0.10 -0.31 0.30 0.09 -0.54 -0.71 -0.77 -0.84
ν−ν

2 -0.16 0.66 -0.49 -0.12 0.88 0.94 0.95 0.94 -0.82

We note that the second, fourth and sixth moments are highly correlated with correlation coeffi cients

of more than 0.95 as shown in Table 4.3, and regression models in columns (7) and (8) in Table 4.1 and

4.2 are subject to the multicollinearity problem, so m2,m4,and m6 are not suitable candidates for the

factors in the linear factor models in the context of Knightian uncertainty. Table 4.3 also shows that

m1 and average daily return (R) are highly correlated (0.99), and m2 and conventional risk are highly

correlated (0.91). It worth noting that uncertainty measure is negatively correlated with risk and m2.

We also note that the risk and m2 are negatively correlated with estimates of expected return R and m1.

In Section 3, equations (3.2) connect the mean and average of location and scale coeffi cients,
µ+µ

2 ,
µ−µ

2 , ν+ν
2 and ν−ν

2 , with moments, m1,m2,m4,and m6.In particular, the mean of location coeffi cients
µ+µ

2 is m1, while the mean of scale coeffi cients
ν+ν

2 is variance corrected for the dispersion of location

coeffi cients. Table 4.3 shows that 1
2 (ν + ν) is positively correlated with the mean return, negatively

correlated with risk and m2, which implies that it may be a better risk measure than the variance or m2.

5 Conclusions

In this paper, we first establish and prove that it is impossible to find a quantitative measure of uncer-

tainty that is independent of preferences for risk and uncertainty in the context of Knightian uncertainty.

Then we show that the mean of the first, second, fourth, and sixth moments of asset returns fully charac-

terize the statistical property of a family of normal distributions, in the Knightian-uncertainty context,

where asset returns fall into the class of location-scale family of normal distributions. Next, we propose

a composite uncertainty measure that is a consistent and reliable measure of the expected variance of a

family of probability distributions, and an empirical implementation of the uncertainty measure as an

explicit function of means and standard deviations of asset returns. Then, We show that Izhakian (2020)

measure is null when the possible means and standard deviations are randomly drawn from a range

with infinite or continuum support, and Brenner and Izhakian (2018)’s approach introduces a spurious

positive correlation between stock uncertainty and risk when the risk is high.

Lastly, we assess uncertainty of stock market indices, S&P 500 in the U.S. and CSI 300 in China

using both the moments and composite uncertainty measure. We find that the time-series and cross-

section relationship between the composite stock uncertainty and risk measured by sample standard

deviation are nonlinear and negative, contrary to the common belief that the higher the risk, the larger

the uncertainty. On the other hand, large swings in the stock market such as the 1987 Black Monday

in the U.S. or the 2008 stimulus plan in China cause the ranges of the location of scale to increase

dramatically and the impact remains high for long time.

Our findings imply that the asset pricing model in the context of Knightian uncertainty should be

fundamentally different from the linear factor models derived in the risk-only context. As the properties
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of a family of normal distributions are fully characterized by the 1st, 2nd, 4th and 6th moments, the

analogy of the one-factor CAPM in the risk-only context may be a nonlinear three-factor model with

possible factors as risk, kurtosis, and uncertainty.
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A Proof of Proposition 5

Proof. The uncertainty measure Ψn(r)

Ψn(r) =

∫ ∞
−∞

ϕn (x)S2
n (x) dx =

1

n

n∑
k=1

∫ ∞
−∞

ϕn (x) (ϕk (x)− ϕn (x))
2
dx

=
1

n

n∑
k=1

∫ ∞
−∞

ϕn (x)ϕ2
k (x) dx−

∫ ∞
−∞

ϕ3
n (x) dx

=
1

n2

n∑
i=1

n∑
k=1

∫ ∞
−∞

ϕi (x)ϕ2
k (x) dx

− 1

n3

n∑
i=1

n∑
j=1

n∑
k=1

∫ ∞
−∞

ϕi (x)ϕj (x)ϕk (x) dx

It is straightforward to show that∫ ∞
−∞

ϕi (x)ϕj (x)ϕk (x) dx =
ϕi (0)ϕj (0)ϕk (0)

ϕi,j,k (0)

where

ϕi,j,k (0) ≡

√
1
σ2i

+ 1
σ2j

+ 1
σ2k

2π
exp

−1

2

 µi
σ2i

+
µj
σ2j

+ µk
σ2k√

1
σ2i

+ 1
σ2j

+ 1
σ2k

2
 ,

Hence

Ψn(r) =
1

n2

∑
i

∑
k

ϕi (0)ϕ2
k (0)

ϕi,k,k (0)
− 1

n

∑
i

∑
j

∑
k

ϕi (0)ϕj (0)ϕk (0)

ϕi,j,k (0)


=

1

n3

∑
i

∑
j

∑
k

ϕi (0)ϕj (0)ϕk (0)

ϕi,j,k (0)

(
ϕk (0)

ϕj (0)

ϕi,j,k (0)

ϕi,k,k (0)
− 1

)
︸ ︷︷ ︸

Ψ(i,j,k)

(A.1)

with Ψ (i, j, k) interpreted as contribution towards ambiguity measure by the ordered triplet {i, j, k}.
It can be easier to make use of scale and Sharpe-ratio bundles {(σi, ρi)} with

ρijk =

ρi
σi

+
ρj
σj

+ ρk
σk√

1
σ2i

+ 1
σ2j

+ 1
σ2k

.

By Cauchy-Schwarz inequality, we obtain

ρ2
ijk ≤ ρ2

i + ρ2
j + ρ2

k (A.2)

with equality only when the vectors
(
ρi, ρj , ρk

)
and

(
1
σi
, 1
σj
, 1
σk

)
are proportional to each other – This

is equivalent to µi = µj = µk.
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Also, for the sake of economic interpretation, we introduce several useful notations:

Υijk = exp

{
ρ2
i + ρ2

j + ρ2
k − ρ2

ijk

2

}

Ξijk =
σ2
i + σ2

j + σ2
k

3

Vijk =

(
σ2
i −Ξijk

)2
+
(
σ2
j −Ξijk

)2
+
(
σ2
k −Ξijk

)2
3

in which Ξijk and Vijk measure respectively the average scale of volatility σ2 and dispersion in the

volatility (or, variance of variance) within the triplet. If we treat ρ2
i +ρ2

j +ρ2
k−ρ2

ijk, as a "distorted" dis-

persion in the Sharpe ratios, then Υijk as exponential function of the Sharpe ratio dispersion summarizes

its impact on uncertainty measure. We have Υijk ≥ 1 with equality when µi = µj = µk.

We may write27

φi(0)φj(0)φk(0)

φi,j,k(0)
=

1

2π

σijk
σiσjσk

Υ−1
ijk (A.3)

=
1

2
√

3π

Υ−1
ijk√

Ξ2
ijk − 1

2Vijk

φk(0)φi,j,k(0)

φj(0)φi,k,k(0)
=

σj
σk

σikk
σijk

Υijk

Υikk
(A.4)

=

√
Ξ2
ijk − 1

2Vijk

Ξ2
ikk − 1

2Vikk

Υijk

Υikk

This yields an expression for Ψ(i, j, k) that is explicitly expressed in terms of dispersion in Sharpe ratios,

the average scale and dispersion in volatility:

Ψ(i, j, k) =
1

2
√

3π

 Υ−1
ikk√

Ξ2
ikk − 1

2Vikk

−
Υ−1
ijk√

Ξ2
ijk − 1

2Vijk

 (A.5)

The following observations on the ambiguity measure can be readily obtained:

Proposition 6 1. Each distinct triplet {i, j, k} contributes positively towards Ψ2
n(r); that is, Ψ(i, j, k)+

Ψ(i, k, j) ≥ 0 with strict inequality unless j = k.

2. The impact of dispersion in Sharpe ratio on Ψ2
n(r) is not monotone; it is null when there is no

dispersion in the location coeffi cients, i.e. µi = µj = µk.

3. When there is no dispersion on σ2, it yields
ρijk√

3
=

ρi+ρj+ρk
3 = ρijk, Υijk = e

3
2Vijk[ρ] with

Vijk [ρ] =

(
ρi − ρijk

)2
+
(
ρj − ρijk

)2
+
(
ρj − ρijk

)2
3

.

Moreover, taking ρi, ρj , ρk as given, we have

Ψ(i, j, k) =
e−

3
2Vijk[ρ]

2
√

3πσ2

(
e

(ρi−ρk)(ρj−ρk)
3 − 1

)
(A.6)

that is inversely proportional to σ2.

27We have
σ2iσ

2
jσ

2
k

σ2
ijk

= σ2
i σ

2
j + σ2

jσ
2
k + σ2

kσ
2
i = 3

(
Ξ2
ijk −

1
2
Vijk

)
.
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4. Ψ2
n(r) has its upper and lower bound to be respectively given by

Ψ
2

n =
1

2πn3

∑
i

∑
j

∑
k

(
σijj
σiσ2

j

Υijk −
σijk

σiσjσk

)

Ψ2
n =

1

2πn3

∑
i

∑
j

∑
k

(√
σijjσikk

σiσjσk
Υ−2
ijk −

σijk
σiσjσk

Υ−1
ijk

)

Proof. Statement 1: We show that each distinct triplet of supports in ∆ must contribute positively

towards the ambiguity measure. To see this, by symmetry, we have28

1

2

(
σijj
σiσ2

j

Υ−1
ijj +

σikk
σiσ2

k

Υ−1
ikk

)

≥
√
σijjσikk

σiσjσk

√
Υ−1
ijjΥ

−1
ikk ≥

σijk
σiσjσk

Υ−1
ijk (A.7)

and that it holds with equality only when j = k.

Statement 2: By definition, the dispersion in Sharpe ratios is inversely related to that of the volatility.

From expressions (A.3)&(A.4) we obtain an negative impact on
φi(0)φj(0)φk(0)

φi,j,k(0) from the dispersion on

Sharpe-ratios, and impact on
φj(0)φi,j,k(0)

φk(0)φi,j,j(0) in either directions. The total impact is thus ambiguous.

Particularly, when there is no dispersion in location coeffi cients, we have ρ2
ijk = ρ2

i + ρ2
j + ρ2

k and

ρ2
ijj = ρ2

i + 2ρ2
j . This yields

Ψ2
n =

1

2πn3

∑
i

∑
j

∑
k

(
σijj
σiσ2

j

− σijk
σiσjσk

)

that is invariant in Sharpe-ratios.

Statement 3. If there is no dispersion in σ, we have σ2
ijk = σ2

3 , ρ
2
ijk =

(ρi+ρj+ρk)
2

3 and ρ2
ijj =

(ρi+2ρj)
2

3 . Substitute these into expressions (A.3)&(A.4) to obtain the desired expression for Ψ2
n (r).

Statement 4. We look into each element towards the ambiguity measure. With ρ2
ijk ≤ ρ2

i + ρ2
j + ρ2

k

and ρ2
ijj ≤ ρ2

i + 2ρ2
j we obtain

σijk
σiσjσk

Υ−1
ijk

( σj
σk

σikk
σijk

Υ−1
ikk + σk

σj

σijj
σijk

Υ−1
ijj

2
Υijk − 1

)

≤ σijk
σiσjσk

( σj
σk

σikk
σijk

+ σk
σj

σijj
σijk

2
Υijk − 1

)

=
1

2

(
σikk
σiσ2

k

+
σijj
σiσ2

j

)
Υijk −

σijk
σiσjσk

(A.8)

The inequality holds with equality when µi = µj = µk at which we have ρ
2
ijk = ρ2

i + ρ2
j + ρ2

k and the r.h.s.

equals to
1

2

(
σikk
σiσ2

k

+
σijj
σiσ2

j

)
− σijk
σiσjσk

≥ 0. (A.9)

28
√
σijjσikk

σijk
exp

{
ρ2
ijj + ρ2

ikk − 2ρ2
ijk

4

}
≥ 1.
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To obtain the lower bound, for each term, we have:

σijk
σiσjσk

Υ−1
ijk

( σj
σk

σikk
σijk

Υ−1
ikk + σk

σj

σijj
σijk

Υ−1
ijj

2
Υijk − 1

)

≥ σijk
σiσjσk

Υ−1
ijk

( σj
σk

σikk
σijk

Υ−1
ikk + σk

σj

σijj
σijk

Υ−1
ijj

2
− 1

)

≥ σijk
σiσjσk

Υ−1
ijk

(√
σijjσikk

σijk

√
Υ−1
ijjΥ

−1
ikk − 1

)
≥ σijk

σiσjσk
Υ−1
ijk

(√
σijjσikk

σijk
Υ−1
ijk − 1

)
=

√
σijjσikk

σiσjσk
Υ−2
ijk −

σijk
σiσjσk

Υ−1
ijk

with equality for the first inequality when µi = µj = µk. The second inequality holds with equality for all

j = k. When µi = µj = µk, the ultimate lower bound is
√
σijjσikk−σijk
σiσjσk

.

B Proof of Impossibility Theorem for SEU Class with Constant

RRA

For r and r′ with location-scale coeffi cient set ∆ and ∆′, the condition for an unanimous rank between

r and r′ is ∀α ≤ 1;∀Q ∈M (∆) , Q′ ∈M (∆′)

1

α

∫∫
∆

exp

(
αµ+

α2σ2

2

)
dQ (µ, σ) ≥ 1

α

∫∫
∆′

exp

(
αµ+

α2σ2

2

)
dQ′ (µ, σ)

which is equivalent to ∀α ≤ 1,∀ (µ, σ) ∈ ∆, (µ′, σ′) ∈ ∆′

1

α
exp(αµ+

α2σ2

2
) ≥ 1

α
exp

(
αµ′ +

α2σ′2

2

)
, (B.1)

For 0 < α ≤ 1, the condition (B.1) becomes ∀ (µ, σ) ∈ ∆, (µ′, σ′) ∈ ∆′

αµ+
α2σ2

2
≥ αµ′ + α2σ′2

2

or equivalently

µ− µ′ ≥ α

2

(
σ′2 − σ2

)
When α→ 0+ we obtain

inf {µ : (µ, σ) ∈ ∆} ≥ sup {µ : (µ, σ) ∈ ∆′} ; (B.2)

For α < 0,the condition (B.1) becomes ∀ (µ, σ) ∈ ∆, (µ′, σ′) ∈ ∆′

αµ+
α2σ2

2
≤ αµ′ + α2σ′2

2

or equivalently

µ− µ′ ≥ α

2

(
σ′2 − σ2

)
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This, together with (B.2), implies29

sup
{
σ2 : (µ, σ) ∈ ∆

}
≤ inf

{
σ2 : (µ, σ) ∈ ∆′

}
(B.3)

Inequality (B.2) in the opposite direction is obtained when it applies to −r and −r′. These together
imply that ∆ and ∆′ must share a common singleton location coeffi cient µ. In this case, unanimous

ranking among SEU with constant RRAs can be reached only when (B.3) are satisfied. These are

identical to the set of conditions identified above for the general class of risk averse SEU investors. Thus

there exists no quantifiable uncertainty measure that would generate assessments that are consistent

with unanimous ranking by those SEU with constant RRAs.

C Proof of Propositions 1,2 and 3

C.1 Proof of Proposition 1

The location-scale function u (µ, σ) that corresponds to an expected utility u is

u (µ, σ) ,
∫ ∞
−∞

u (x) dΦ

(
x− µ
σ

)
for (µ, σ) ∈ R × R+. For ∆ = {(µi, σi)}

n
i=1, the expected utilities on ∆ are thus summarized by vector

of real-value utility functions [u1, · · · , un] ∈ Rn with

ui , u (µi, σi) =

∫ ∞
−∞

u (x) dΦ

(
x− µi
σi

)
We have following the lemma:

Lemma 2 EUUP defined on ∆ with finite supports is

V (r) =

∫ ∞
−∞

u (x) dΦr (x)

where Φr (x) is the mean-average cdf.

Proof. The probability distributions on ∆ with finite supports {(µi, σi) : i = 1, · · · , n} is a simplex

P = {(q1, ....qn) ∈ Rn :
n∑
i=1

qi = 1, qi ≥ 0}.

The EUUP defined as (2.1) on ∆ with n finite supports is thus given by

V (r) =

∫
P

(
n∑
i=1

qiui

)
dξ (q) =

1

n

n∑
i=1

ui

=
1

n

n∑
i=1

∫ ∞
−∞

u (x) dΦi(x) =

∫ ∞
−∞

u (x) dΦr (x) .

where the second-layer belief ξ is uniformly distributed on P, and Φr (x)
∆
= 1

n

∑n
i=1 Φ

(
x−µi
σi

)
is the

mean-average c.d.f. The second equation follows from the integration by parts.

The statements in Proposition 1 follow by Lemma 2 and by the notions of stochastic dominance.

29Suppose σ′2 < σ2, then when α→ −∞, to obtain an violation of the inequality.
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C.2 Proof of Proposition 2

We start with a well known fundamental representation theorem of characteristic function in probability

theory.

Lemma 3 Two random variables are identically distributed if and only if the corresponding characteristic
functions are the same.

Let Θ (µ, σ;x) = exp(−µx + 1
2σ

2x2), x ∈ R be the characteristic function of normal distribution

Φ
(
x−µ
σ

)
, then it is straightforward to show that the characteristic function for the mean-average cdf Φr

is given by the mean-average characteristic function

Θr (x) =
1

n

n∑
i=1

Θ (µi, σi;x) , x ∈ R.

The equivalence between statements 1 and 2 in Proposition 2 follows by the definition of FSD and

Proposition 1. For the equivalence between statement 2 and 3 of the Proposition, we just need to prove

the suffi cient condition. Suppose condition 2.9 holds. FSD implies condition (2.8) holds for all increasing

utility functions. Let u (x) in (2.8) be exp(γx) and − exp(−γx), γ ≥ 0, for r and −r, respectively. We
have

∫ ∞
−∞

u (x) dΦr (x) =

∫ ∞
−∞

exp(γx)dΦr (x) ∝ Θr (−γ)∫ ∞
−∞

u (x) dΦ−r (x) =

∫ ∞
−∞
− exp(−γx)dΦ−r (x) ∝ −Θ−r (γ)

The condition 2.9

Φr (x) ≤ Φr′ (x) ,∀x ∈ R

implies that

Θr (−γ) ≥ Θr′ (−γ) and Θr (γ) ≤ Θr′ (γ) ,∀γ ≥ 0. (C.1)

Similarly, for −r and −r′, the condition 2.9

Φ−r (x) ≤ Φ−r′ (x) ,∀x ∈ R

implies that

Θ−r (−γ) ≥ Θ−r′ (−γ) and Θ−r (γ) ≤ Θ−r′ (γ) ,∀γ ≥ 0. (C.2)

Note that Θ−r (−γ) = Θr (γ), conditions (C.2) reduce to

Θr (γ) ≥ Θr′ (γ) and Θr (−γ) ≤ Θr′ (−γ) ,∀γ ≥ 0 (C.3)

Combine conditions (C.1) and (C.3) we have:

Θr (−γ) = Θr′ (−γ) and Θr (γ) = Θr′ (γ) ,∀γ ≥ 0.

Thus, the characteristic functions Θr and Θr′ (Θ−r and Θ−r′) are identical on R. By Lemma 3, the
distributions Φr and Φr′ (Φ−r and Φ−r′) must be identical with the same supports; that is, ∆ = ∆′.

Condition (3) in Proposition 2 violates the non-degeneracy condition for uncertainty assessment. So,

it is impossible to obtain mutual agreeable rank of two arbitrary finite sets ∆ 6= ∆′ among investors with

monotone EUUP utility functions.
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C.3 Proof of Proposition 3:

Applying Taylor expansion to normal characteristic function Θ (µ, σ;x) to have

Θ (µ, σ;x) =

∞∑
k=0

(−1)
k mk (µ, σ)

k!
xk

=

K∑
k=0

(−1)
k mk (µ, σ)

k!
xk + o

(
xK
)
, (C.4)

where mk (µ, σ) =
∑k
s=0

(
k
s

)
ms (0, 1)µk−sσs with

ms (0, 1) =


0, if s is odd

2
−s/2

s!

(s/2)!
, if s is even

being the sth order moment of standard Gaussian normal distribution. We are particularly interested in

the 4th and 6th moments m4 (0, 1) = 3,m6 (0, 1) = 15.

The equivalence between SSD and unanimous ranking by risk averse expected utility investors are

well-documented (Ma and Wong, 2010). Hence, we just need to prove that statement 2 is a suffi cient

condition for Statement 3.

Similar to proof of Proposition 2, let u (x) in (2.8) be − exp(−γx), γ ≥ 0, for r and −r, then Condition
2 implies Θr (γ) ≤ Θr′ (γ) and Θr (−γ) ≤ Θr′ (−γ) for all γ ≥ 0, which implies

Θr (x) ≤ Θr′ (x) ,∀x ∈ R. (C.5)

This proves the first part of Statement 3.

For the second part of Statement 3, note that exp( 1
2σ

2x2) governs the higher order of growth rates

for exp(−µx + 1
2σ

2x2) as x → ∞, so condition (C.5) implies that the maximum volatility coeffi cient σ

in ∆ must not exceed that in ∆′; otherwise, we may always obtain an violation of inequality (C.5) by

choosing x suffi ciently large. Hence, condition (b) must hold.

The inequality condition (C.5) for the characteristic function can be explicitly expressed with the

location and scale coeffi cients, i.e. for all x > 0,

{ 1

n

∑n
i=1

1

x
[exp(−µix+

σ2
ix

2

2
)− 1] ≤ 1

m

∑m
j=1

1

x
[exp(−µ′jx+

σ′2j x
2

2
)− 1)]

1

n

∑n
i=1

1

x
[exp(µix+

σ2
ix

2

2
)− 1] ≤ 1

m

∑m
j=1

1

x
[exp(µ′jx+

σ′2j x
2

2
)− 1)]

(C.6)

Setting x→ 0+ to obtain

1

n

n∑
i=1

µi ≤
1

m

m∑
j=1

µ′j

1

n

n∑
i=1

µi ≥
1

m

m∑
j=1

µ′j

which imply
1

n

n∑
i=1

µi =
1

m

m∑
j=1

µ′j . (C.7)

Thus, condition (a) is satisfied.
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Given equality (C.7), the inequalities (C.6) can be rewritten as
1

n

∑n
i=1

exp(−µix+ σ2
ix

2/2)− 1 + µix

x2
≤ 1

m

∑m
j=1

exp(−µ′jx+ σ′2j x
2/2)− 1 + µ′jx

x2

1

n

∑n
i=1

exp(−µix+ σ2
ix

2/2)− 1− µix
x2

≤ 1

m

∑m
j=1

exp(−µ′jx+ σ′2j x
2/2)− 1− µ′jx

x2

(C.8)

For x small, we may plug exp(µx + σ2x2

2 ) − 1 − µx = µ2+σ2

2 x2 + o
(
x2
)
into the above two inequalities

to obtain
1

n

n∑
i=1

(
µ2
i + σ2

i

)
≤ 1

m

m∑
i=1

(
µ′2j + σ′2j

)
. (C.9)

Thus, condition (c) is proved.

To prove condition (d), we take Taylor expansion for the mean-average characteristic function

Θr (x) =

2N∑
k=0

(−1)
k

(
1

n

n∑
i=1

mk (µi, σi)

)
xk

k!

+ (−1)
2N+1

(
1

n

n∑
i=1

m2N+1 (µi, σi)

)
x2N+1

(2N + 1)!
+ o

(
x2N+1

)
which implies

Θr (x)−
∑2N
k=0 (−1)

k ( 1
n

∑n
i=1mk (µi, σi)

)
xk

k!

x2N+1
=

1
n

∑n
i=1m2N+1 (µi, σi)

(2N + 1)!
+ o (1)

The same applies for Θr′ (x). Suppose condition (2.12) holds for all K ≤ 2N , then inequalities (2.11)

reduce to

Θr (x)−
∑2N
k=0 (−1)

k ( 1
n

∑n
i=1mk (µi, σi)

)
xk

k!

x2N+1

≤
Θr′ (x)−

∑2N
k=0 (−1)

k
(

1
m

∑m
j=1mk

(
µ′j , σ

′
j

))
xk

k!

x2N+1
,∀x > 0; (C.10)

Θr (x)−
∑2N
k=0 (−1)

k ( 1
n

∑n
i=1mk (µi, σi)

)
xk

k!

x2N+1

≥
Θr′ (x)−

∑2N+1
k=0 (−1)

k
(

1
m

∑m
j=1mk

(
µ′j , σ

′
j

))
xk

k!

x2N+1
,∀x < 0. (C.11)

Setting x→ 0+ to inequality (C.10) to obtain

− 1

n

n∑
i=1

m2N+1 (µi, σi) ≤ −
1

m

m∑
j=1

m2N+1

(
µ′j , σ

′
j

)
; (C.12)

and setting x→ 0− to inequality (C.11) to obtain

− 1

n

n∑
i=1

m2N+1 (µi, σi) ≥ −
1

m

m∑
j=1

m2N+1

(
µ′j , σ

′
j

)
. (C.13)

Combining the two inequalities (C.12) and (C.13) results in the desired equality

1

n

n∑
i=1

m2N+1 (µi, σi) =
1

m

m∑
j=1

m2N+1

(
µ′j , σ

′
j

)
.
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This proves the validity of condition (2.12) for k = 2N + 1.

Similarly, for k = 2N + 2, with conditions (2.12) hold for all k = 0, 1, · · · , 2N + 1, the inequalities

(2.11) can be expressed into

Θr (x)−
∑2N+1
k=0 (−1)

k ( 1
n

∑n
i=1mk (µi, σi)

)
xk

k!

x2N+2

≤
Θr′ (x)−

∑2N+1
k=0 (−1)

k
(

1
m

∑m
j=1mk

(
µ′j , σ

′
j

))
xk

k!

x2N+2
(C.14)

for all x ∈ R. Particularly, with

Θr (x)−
∑2N+1
k=0 (−1)

k ( 1
n

∑n
i=1mk (µi, σi)

)
xk

k!

x2N+2
=

1
n

∑n
i=1m2N+2 (µi, σi)

(2N + 2)!
+ o (1)

Θr′ (x)−
∑2N+1
k=0 (−1)

k
(

1
m

∑m
j=1mk

(
µ′j , σ

′
j

))
xk

k!

x2N+2
=

1
m

∑m
j=1m2N+2

(
µ′j , σ

′
j

)
(2N + 2)!

+ o (1)

for x suffi ciently small, we obtain

1

n

n∑
i=1

m2N+2 (µi, σi) ≤
1

m

m∑
j=1

m2N+2

(
µ′j , σ

′
j

)
by setting x→ 0 to Eq. (C.14). This proves the validity of inequality (2.13) for k = 2N + 2.
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