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Abstract

Certain repeated cross-sectional data sets, such as the Current Population Survey (CPS), use special

sampling designs by which samples from di�erent times periods are partially matched. This paper pro-

poses a correction to the optimal weighting matrix in minimum distance (MD) estimation of pseudo panel

models to account for such partially matched samples. This partially-matched-sample correction may be

needed if the sample matching rate is nontrivial and, at the same time, there is a �xed e�ect, a serially

correlated idiosyncratic error, or both in the underlying linear panel data model data generating process,

all of which lead to a block diagonal structure of the optimal weighting matrix. Using the correction can

result in considerable e�ciency gains both in �nite sample and asymptotically. As an illustration, the

correction is applied to the classical question of estimating the monetary return to education using the

yearly Merged Outgoing Rotation Group (MORG) �les from CPS.

1 Introduction

Since the seminal work of Deaton (1985), the pseudo panel approach has become a widely used alternative

to standard panel data methods for estimating an underlying linear panel data model with unobserved

individual �xed e�ects when only repeated cross sections are available. The key idea of the approach is to

group individuals into cohorts according to certain �xed characteristics,1 such as year of birth, to construct

a synthetic panel at the cohort level. Subsequently, these cohorts are tracked overtime as research units.

The constructed panel is �pseudo� because measures regarding the cohorts are constructed from variable

sample cohort means rather than directly observed. While often regarded as an alternative type of data

sets, repeated cross sections o�er several advantages over traditional panel data sets. These advantages

*Department of Economics, Richard A. Chaifetz School of Business, Saint Louis University. Email: fei.jia@slu.edu
1Groups and cohorts are used interchangeably in this paper.
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include more abundant and accessible data, generally larger sample sizes, and natural immunity to attrition.

Such strengths render pseudo panel models versatile and applicable to various research domains spanning

economics, political science, epidemiology, etc.. In economics, for instance, they are particularly useful when

studying labor supply (Browning et al. 1985, Blundell et al. 1993 and Campbell & Lusher 2019), economic

mobility (Antman & McKenzie 2007, Dang et al. 2014 and Dang & Lanjouw 2023), commodity demand

(Browning et al. 1985, Gardes et al. 2005 and Meng et al. 2014), health (Saksena & Maldonado 2017),

returns to education (Moretti 2004 and Jones et al. 2023), and other topics where observing the same entities

over time is challenging.

On the theoretical front, a variety of developments have also been made in the literature to broaden the

scope of application scenarios for pseudo panel models. Notable extensions include dynamic models (Mo�tt

1993, Collado 1997 and Verbeek & Vella 2005), alternative asymptotic dimensions other than large cohort size

(Verbeek & Nijman 1993 and Collado 1997), unequally spaced pseudo panels (McKenzie 2001), heterogeneity

of �xed e�ects within cohorts (McKenzie 2004), estimation framework and asymptotic e�ciency (Imbens &

Wooldridge 2007 and Inoue 2008), and cohort interactive e�ects (Juodis 2018). Some systematic discussions

on the theoretical development of pseudo panel models can be found in Imbens & Wooldridge (2007), Inoue

(2008) and Verbeek (2008), among others.

Despite the rich literature on pseudo panel models, existing papers tend to rely on a common sampling

design assumption that the samples from di�erent time periods are independent of each other, termed as

serially independent sampling henceforth. When combined with random sampling within each cross section,

this assumption implies that (the inverse of) the optimal weighting matrix in either minimum distance (MD)

or generalized method of moments (GMM) estimation is diagonal. While serial independent sampling is

appropriate for many cross-sectional data sets used in the literature, there are important exceptions where

samples from di�erent periods are partially matched due to speci�c survey designs.2 For instance, the Current

Population Survey (CPS) employs a special rotation group design (see CPS Technical Documentation 2014),

resulting in partially matched samples over consecutive months or years. The derivative Merged Outgoing

Rotation Group (MORG) �les, which includes only the CPS data obtained at the 4th and 8th interviews

for each rotation group, also contain partially matched samples over time. Likewise, the Australia Labour

Force Survey (LFS) that rotates out 1/8 of the sample each month also consists of partially matched samples.

In such repeated cross-sectional data sets with partially matched samples, the dependence among samples

introduces potential serial correlation in the cohort-level composite errors of the pseudo panel model. Con-

sequently, the standard diagonal weighting matrix under serially independent samples is no longer optimal,

2It is worth noting that partially matched samples may also arise from a �nite population combined with a nontrivial sampling
rate, even if samples are serially independent. Intuitively, this type of sample overlaps by chance does not require any additional
treatment.
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although estimators based on such standard weighting remain consistent.

This paper explores this feature of partially matched samples in repeated cross sections and proposes

a correction to the standard weighting matrix in pseudo panel MD estimation to restore its optimality.

The inverse of the proposed optimal weighting matrix is found to be block diagonal, sharing the same

diagonal elements as the inverse of the standard weighting matrix but potentially featuring nonzero o�-

diagonal elements. An asymptotic theory tailored to such partially matched samples under large number

of cohort observations, �xed number of cohorts and �xed number of time periods is developed. Regarding

(asymptotic) e�ciency, the gain from using this correction is substantial when partially matched samples lead

to a signi�cant deviation between the optimal and standard weightings. A series of meticulously designed

simulation cases reveal potential features in the underlying data generating process (DGP) that may induce

such di�erences. These features include the relative magnitude of the group-time cell variance of the �xed

e�ect with respect to (w.r.t.) that of the idiosyncratic error, cohort-wise heteroskedasticity in the �xed e�ect,

cell-wise heteroskedasticity, and/or serial correlation in the idiosyncratic error. To illustrate the proposed

correction, the paper revisits the classical inquiry of estimating the monetary return to education using the

MORG �les from 2010 to 2019. The analysis demonstrates that the proposed optimal weighting that accounts

for the partial sample matching yields approximately 10% smaller standard errors (s.e.'s hereafter) compared

to the standard optimal weighting that ignore the matching.

The rest of the paper is organized as follows. Section 2 presents the MD framework for estimating pseudo

panels and reviews the standard optimal MD weighting in the literature. In Section 3, the partially-matched-

sample correction to the optimal weighing matrix is derived. Section 4 shows the simulation study. Section

5 illustrates the proposed correction by applying it to the classical empirical question of estimating the

monetary return to education using the MORG �les. Section 6 concludes.

2 Minimum Distance Estimation of Pseudo Panel Models

The MD framework utilized in this paper draws heavily from Imbens & Wooldridge (2007), albeit with certain

modi�cations. Although it may seem distinct, the MD framework shares fundamental similarities with the

GMM framework employed by Inoue (2008), as both rely on precisely the same set of conditional moment

conditions and yield identical estimators and statistical inference. The decision to adopt the MD framework

in this paper stems from its inherent compatibility with pseudo panel models.3

3As Imbens & Wooldridge (2007) points out, the core MD idea of extracting structural parameters from easily estimable
reduced-form parameters aligns naturally with pseudo panel models. Additionally, the MD framework boasts several strengths,
including its ability to separate the population model from sampling assumptions, elucidate why exogeneity of the group
membership, rather than exogeneity of the regressors, is required for consistency, and, perhaps most importantly, reveal the key
identi�cation condition that there must be enough group-time variation in the group-time cell means of the covariates.
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2.1 The population pseudo panel model

This subsection exclusively presents the population model. Throughout paper, the underlying individual-level

data generating process (DGP) for individual i over T time periods is assumed to be the linear �xed-e�ects

(FE) panel data model

yit = xitβ + dtη
′ + fi + uit, t = 1, . . . , T (2.1)

where yit is a scalar dependent variable, xit is a 1×K vector of regressors that contains unity on its �rst entry,

dt ≡ (d2t, ..., dTt) with dst = 1{s=t} is a 1× (T − 1) vector of time dummies,4 fi is a scalar individual-speci�c

�xed e�ect that is allowed to be correlated with xit, and uit is a scalar idiosyncratic error; β ≡ (β1, . . . , βK)′

is the K × 1 parameter vector for xit, and η ≡ (η2, . . . , ηT )
′ is the (T − 1) × 1 parameter vector of time

e�ects.5 The dimensions of dt and η are T − 1 because xit contains unity and, as a result, the �rst time

dummy is dropped without of generality to avoid perfect collinearity. (2.1) is the individual-level population

model.

A distinctive feature of the model is the incorporation of G predetermined time-invariant groups. Denote

the group membership of individual i by gi, a scalar random variable that takes on values in {1, . . . , G}.

These G groups form the entities to be tracked in the subsequently constructed pseudo panel. Additionally,

these G groups give rise to a more compact representation of (2.1). To see that, project fi onto the cohort

level and de�ne the cohort-speci�c �xed e�ects as

αg = E(fi|g), g = 1, ..., G (2.2)

where E(·|g) is short for E(·|gi = g). If gi is not evaluated at g but left as gi in the conditioning set, αg

becomes the random cohort e�ect αgi , allowing us to de�ne the individual-speci�c �xed e�ect net of the

cohort e�ect as

ei = fi − αgi . (2.3)

Note that the exogeneity of gi with respect to ei,

E(ei|g) = 0, (2.4)

holds by construction.6 Let ci ≡ (ci2, ..., ciG) with cig = 1{gi=g} be the 1× (G− 1) cohort dummy vector and

41{·} is the indicator function that equals 1 if the condition in {·} is true and 0 otherwise.
5A parameter notation, such as β, η, α and θ, denotes the true parameter value if not explicitly stated otherwise.
6(2.4) is not a an additional assumption; once (2.1) is given, it follows as a result of including a full set of non-redundant

cohort dummies in the equivalent representation (2.5). See Imbens & Wooldridge (2007) for more.
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α ≡ (α2, . . . , αG)
′ be the (G− 1)× 1 vector of cohort e�ects.7 Then (2.1) can be rewritten compactly as

yit = xitθ + ei + uit, t = 1, . . . , T (2.5)

where, for K = K+G+T−2, xit ≡ (xit,dt, ci) is the 1×K extended vector of regressors and θ ≡ (β′,η′,α′)′

is the K × 1 vector of all structure parameters of interest. . For ease of use later, it is useful to de�ne the

individual-level composite error as

εit = ei + uit = (fi − αgi) + uit = yit − xitθ. (2.6)

εit will be the vehicle in deriving the asymptotic theory later.

A key identi�cation assumption imposed in pseudo panel models is the exogeneity of gi w.r.t. uit, i.e.,

E(uit|g) = 0, g = 1, 2, . . . , G. (2.7)

The signi�cance of (2.7) is that it gives rise to the cohort-level population model. Speci�cally, taking the

conditional expectation of (2.5) given g leads to

µygt = µ
x
gtθ, g = 1, . . . , G, t = 1, . . . , T, (2.8)

where µygt ≡ E(yit|g) and µ
x
gt ≡ E(xit|g) represent the cohort means of yit and xit in group g, respectively.

Since the G groups and T time periods e�ectively divide the population over time into GT group-time

cells, µygt and µ
x
gt can also be termed as the population cell means of yit and xit in group-time cell (g, t).

In the GMM framework in Inoue (2008), the conditions in (2.8) are known as the moment conditions. In

the MD framework, they are often called the restrictions or constraints on the structural and reduced-form

parameters. µygt's and µ
x
gt's are the reduced-form parameters since they are intermediate parameters not of

direct interest. Clearly, (2.8) has a panel structure if we treat each cohort as a research unit to follow over

time, and hence leading to the term pseudo panel models.

It is worth noting that (2.4) and (2.7) together essentially indicates that gi is a valid instrumental variable

(IV) w.r.t. the composite error εit. In addition, to identify θ from (2.8), it is necessary for gi to be correlated

with the non-constant variables in xit, and each entry of µ
x
gt must exhibit su�cient variation across the

GT group-time cells. Therefore, gi is also a relevant IV, albeit with a stronger relevance assumption. It is

noteworthy that gi is not used as an IV in the conventional way in pseudo panel estimation. Instead, it is

7The dimensions of ci and α are G− 1 for the same perfect collinearity consideration as the dimensions of dt and η. Note
that ci is an equivalent reparameterization of the group membership variable gi. Observing ci would imply gi and vice versa.
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used to project the individual-level model onto the cohort level to eliminate the composite error εit. But

since gi is discrete, this projection preserves the same set of information as the conventional way of using IV.

As a �nal remark of this subsection, notice that the cohort-level composite residual in group-time cell

(g, t), de�ned as

µεgt ≡ E(εit|g) = µygt − µ
x
gtθ, (2.9)

satis�es µεgt = 0 by the exogeneity of gi w.r.t. εit, or as a rephrasing of (2.8) for g = 1, ..., G and t = 1, ..., T .

The feasible version of (2.9) will serve as the tool to derive the optimal weighting matrix later on.

2.2 Minimum distance estimation of pseudo panel models

(2.8) suggests a straightforward way to estimate θ: Since µygt and µ
x
gt can be readily estimated by µ̂ygt and

µ̂
x
gt, the sample cohort means of yit and xit, respectively, θ can be estimated through a regression of µ̂ygt on

µ̂
x
gt, g = 1, . . . , G, t = 1, . . . , T , which leads to the following FE estimator applied to the constructed pseudo

panel:

θ̌ =

(∑
g,t

µ̂
x ′
gt µ̂

x
gt

)−1∑
g,t

µ̂
x ′
gt µ̂

y
gt. (2.10)

It is well known, however, that while θ̌ is consistent for θ, the corresponding FE s.e. ignores the estimation

errors in µ̂ygt and µ̂
x
gt and thus would result in invalid statistical inference. This holds true even when

the inference is made robust to heteroskedasticity and/or serial correlation. In contrast, the MD approach

addresses of the estimation errors in µ̂ygt and µ̂
x
gt. Moreover, it can incorporate optimal weighting to utilize

the GT restrictions in (2.8) in the most asymptotically e�cient manner. As demonstrated in Imbens &

Wooldridge (2007) and subsequent sections, θ̌ is actually a particular MD estimator where the identity

weighting matrix is used. Consequently, θ̌ is ine�cient if the optimal weighting matrix deviates from the

identity matrix.

To de�ne the class of MD estimators, it is necessary to have an explicit account of the data set as it

provides a tool to model the sampling design. The data set available in pseudo panel estimation typically

comprises a series of cross-sectional samples from consecutive time periods. If we de�ne wit = (yit,xit) and

let It be the index set for sample t, t = 1, ..., T , we can represent the T cross sections in the data set as

{(wit, gi) : i ∈ It, t = 1, . . . , T}. (2.11)

Note that using a time-dependent index set It allows the same i to consistently refer to the same individual in

the population across di�erent time periods. This treatment di�ers from that in Imbens & Wooldridge (2007),

where i is employed to index random draws, resulting in the same index i typically representing di�erent
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individuals at di�erent time periods. While that treatment su�ces for serially independent sampling, it lacks

the sophistication required for the partially matched sampling considered here.

Explicitly modeling the data set also enables us to explicitly de�ne µ̂w
gt, the sample cell mean of wit in

the group-time cell (g, t). To see that, �rst de�ne the random dummy indicator for the group membership of

individual i at time t as

ritg = 1{gi=g,i∈It} (2.12)

The randomness of ritg comes from the sampling procedure. Note that ritg depends on t because i ∈ It.

Then µ̂w
gt can be written as

µ̂w
gt = n−1

gt

∑
i∈It

ritgwit. (2.13)

where ngt =
∑
i∈It

ritg is the sample size of cell (g, t), properly treated as a random variable. Other sample

cohort means, such as µ̂ygt,µ̂
x
gt and µ̂

ε
gt, can be de�ned similarly. These sample cohort means are consistent

for their corresponding population cohort means under weak regularity conditions.

The MD approach recovers the asymptotics of the structural parameters from those of the reduced-form

parameters. Therefore, it is also useful to have a representation of the joint asymptotic distribution of µ̂w
gt

for all g and t. For this purpose, de�ne

π ≡ (µw
11,µ

w
12, . . . ,µ

w
GT )

′ (2.14)

as the (K + 1)GT × 1 reduced-form parameter vector that collects all the population cohort means in one

column. The natural estimator of π, denoted by π̂, can be obtained by substituting µw
gt with µ̂w

gt in (2.14).

Let n =
∑T
t=1 nt be the total sample size of all cross sections. Then under fairly weak regularity conditions,

√
n (π̂ − π)

d→ N(0,Ω) (2.15)

where Ω is the GT (K+1)×GT (K+1) asymptotic variance. The structure of Ω depends on assumptions on

the population (�nite v.s. in�nite population) and the sampling design (serially independent sampling v.s.

partially matched sampling), and the latter is the focus of this paper. Without going into details, Ω under

serially independent sampling can be written as

Ω = diag
{
(ρgκt)

−1Ωw
gt

}
(2.16)

where Ωw
gt ≡ V ar(wit|g) is the variance of wit in cell (g, t), ρg = P (ritg = 1) is the fraction of the population
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in group g at time t8, and κt is the fraction of all observations accounted for by cross section t. ρg can be

consistently estimated byρ̂gt ≡ ngt/nt
p→ ρg,whereas κt can be consistently estimated by κ̂t ≡ nt/n

p→ κt.
9

The set of equations in (2.8) are the restrictions that the MD approach explores in pseudo panel models

to identify the structural parameters. In a general MD framework, we can write the restrictions that links the

structural parameter vector θ to the reduced-form parameter vector π for a generic pair (π,θ) as h(π,θ) = 0

where h(π,θ) is a J × 1 vector-valued function. For the restrictions in (2.8), J = GT and the particular h

function is

h(π,θ) = −µy + µxθ (2.17)

where µy ≡ (µy11, µ
y
12, . . . , µ

y
GT )

′ is a GT ×1 vector and µx ≡ (µ
x ′
11 ,µ

x ′
12 , . . .µ

x ′
GT ) is a GT ×K matrix. (2.17)

can be viewed as a residual function because it generates the negative of the cohort-level composite residuals

µεgt's if h(π,θ) is evaluated at the true parameter value. In fact, if we de�ne µε = (µε11, µ
ε
12, . . . , µ

ε
GT )

′, it

follows from µεgt = 0 that, when evaluated at the true parameter value,

h(π,θ) = −µε = 0, (2.18)

Note that often GT > K in pseudo panel models, so the system is usually over-identi�ed for θ, which merits

the use of some positive semi-de�nite weighting matrix. Depending on the choice of the weighting matrix,

we can have the FE estimator, the optimal MD pseudo panel estimator and so on.

To construct the optimal MD estimator, a representation of the optimal weighting matrix is also needed.

The optimal weighting matrix in pseudo panel MD estimation is closely related to h(π,θ). In fact, given

(2.18), it can be shown that, under standard regularity conditions (see Newey & McFadden 1994), the

asymptotic distribution of
√
n [h(π̂,θ)− h(π,θ)] can be written as

√
nh(π̂,θ)

d→ N (0,M(θ)) . (2.19)

where M(θ) is the GT ×GT asymptotic variance of
√
nh(π̂,θ) and θ is the true parameter value. Intuitively,

M(θ)−1 should be the optimal weighting matrix in MD estimation because it standardizes the asymptotic

variance to an identity matrix if
√
nh(π̂,θ) is multiplied by the square root of M(θ)−1 (see Kodde et al.

1990, Newey & McFadden 1994 for formal proofs). Some algebra shows that

M(θ) = diag
{
(ρgκt)

−1V ar (εit|g)
}

(2.20)

8In general, we can use ρgt = P (ritg = 1) which varies over cohort and time. To simplify the discussion, however, ρgt is
assumed to be constant across t, i.e., ρgt = ρg hereafter, which is the case if a stable population is assumed.

9Details on deriving the Ω in (2.16) and its consistent estimator Ω̂ will be given in the online appendix. The structure of Ω
under partially matched sampling will be provided in Section 3.
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which is the GT × GT diagonal matrix with the within-cell variances of εit weighted by the inverse of the

relative cell sizes ρgtκt on the diagonal. Hence, a more convenient estimator for M(θ) is

M̂ = diag
{
(ngt/n)

−1σ̂2
ε,gt

}
where σ̂2

ε,gt is the sample variance of εit within cell (g, t) and ngt/n is a consistent estimator for ρgκt. An

explicit expression of σ̂2
ε,gt is given in (3.13) later.

With all the groundwork laid out, the feasible optimal MD pseudo panel estimator for θ can now be

formulated as

θ̂
opt

= argmin
θ

h(π̂,θ)′M̂−1h(π̂,θ). (2.21)

That is, θ̂
opt

is the minimizer of h(π̂,θ)′M̂−1h(π̂,θ), a quadratic Euclidean distance function. The �rst-order

condition to the optimization problem (2.21) is µ̂x ′M̂−1(−µy + µxθ) = 0; solving yields

θ̂
opt

=
[
µ̂x ′M̂−1µ̂x

]−1

µ̂x ′M̂−1µ̂y. (2.22)

(2.22) is a GLS estimator performed on the cohort means with the weighting matrix M̂−1. It is also clear

from (2.22) that if the identity weighting matrix is used in replacement of M̂−1, the FE estimator θ̌ de�ned

in (2.10) follows.

Without going into details, it can be shown that the asymptotic variance of θ̂
opt

is given by (see Kodde

et al. 1990, Imbens & Wooldridge 2007, Inoue 2008 and Jia 2019)

Avar
(
θ̂
opt
)
= n−1

[
µx ′M−1µx

]−1
(2.23)

for which an estimator follows by replacing µx and M with their respective estimators µ̂x and M̂, i.e.,

̂
Avar

(
θ̂
opt
)
= n−1

[
µ̂x ′M̂−1µ̂x

]−1

(2.24)

θ̌ is not the focus of the present paper so its asymptotic variance is skipped .

3 The partially matched sample correction

Compared to the standard pseudo panel model under the serially independent sampling in the last section,

a major extension in this paper is to allow for nonzero asymptotic covariance between
√
n(µ̂w

gt − µw
gt) and

√
n(µ̂w

gs − µw
gs) for t ̸= s, which in turn means that it allows for nonzero asymptotic covariance between

9



√
nµ̂εgt and

√
nµ̂εgs (i.e., the [(g − 1)t+ T ]-th and [(g − 1)s+ T ]-th rows of

√
nh(π̂,θ)). Note that, because of

random sampling within each cross section,
√
n(µ̂w

gt−µw
gt) and

√
n(µ̂w

lt −µw
lt ) for g ̸= l are still asymptotically

uncorrelated.

3.1 The partially matched sampling design

To derive the joint distribution of
√
n(µ̂w

gt − µw
gt) and

√
n(µ̂w

gs − µw
gs), it helps to sort through the sampling

procedure �rst. This section uses the MORG �les extracted from CPS as the motivating example. The

simpli�ed sampling procedure distilled of the MORG example, however, applies more generally to any data

set that �ts the simpli�ed sampling procedure.

In CPS, new households enter each month, and every household is interviewed for 4 consecutive months,

ignored for the next 8 months, and then interviewed again for another 4 month before permanently exists

the survey (CPS Technical Documentation 2014). The MORG �les are a series of yearly data sets that

includes only the data obtained at the 4th and 8th interviews for each household because extra questions

regarding hours/earning are asked only at those extracts. Although the special rotation group design is the

underlying sampling procedure truly used in generating the MORG �les, modeling details up to the rotation

group design is unnecessary if we plan to use the MORG �les as annual cross-sectional samples. Because of

the particular rotation group design, approximately half of the observations in the MORG sample at a given

year are matched with half of those in the subsequent year. Therefore, the MORG sampling design can be

equivalently simpli�ed as follows. For simplicity, assume a super population with in�nite size exists.

De�nition 1. Simpli�ed Partially Matched Sampling Design

Suppose there are T time periods and t = 1, ..., T , nt is the sample size of cross section t, and nt,stay is

the number of observations to keep to the next period. Then the T partially matched cross sectional sampled

are obtained through the following steps:

1. At time t = 1: randomly sample n1 observations from the population to form sample 1. Randomly

select a subsample of n1,stay observations from sample 1 to keep to period 2.

2. At time t for t > 1: Randomly sample (nt−nt−1,stay) observations from the population. Combine with

the subsample left from t−1 to get sample t. Stop here if t = T . If t < T , randomly select a subsample

of nt,stay observations in the newly drawn subsample of (ns − nt,stay) observations to keep to period

t+ 1. Repeat step 2 until stop.

A few remarks regarding the sampling procedure follow. First, although the sampling procedure is

motivated by MORG, it applies to other sampling designs that lead to the same simpli�ed procedure. The

monthly Australia Labour Force Survey (LFS) is such an example.
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Second, although nt,stay in general depends on t, in relevant examples it usually is a �xed number. In

MORG, nt,stay = nt/2, which implies mt,t+1 = nt/2 and mts = 0 for any s > t+ 1. In the simulation study

later, we use a constant number for nt and a �xed matching rate between adjacent samples. As a result,

nt,stay and mt,t+1 are constants as well in the simulation study.

Third, it is worth noting how to randomly select a given �xed number of observations out of a given

sample. Suppose the sample size is 4 and we want to randomly sample half of them. In this scenario, there

are C2
4 = 4!/[2!(4− 2)!] = 6 di�erent ways to achieve the gold. To ensure randomness, we can throw an even

six-sided dice to randomly select exactly half of the sample. This idea can be easily generalized to situations

where we want to randomly select a subsample of a �xed size out of a sample of size n. A relevant question

is whether the matched subsample generated in this way is independent of the unmatched subsample. The

answer is a�rmative, provided that the strategy described here is used. It's important to distinguish this

approach from another where we repeatedly toss a fair coin for each individual in the sample to decide if

they should be included in the selected subsample. In the latter scenario, if the sample size is 4, there are

22 possibilities, and the resulting subsample size could be any number in {0, 1, 2, 3, 4}. While both strategies

aim to select half of the given sample conceptually, the realized subsample size itself is random in the latter

strategy. Either strategy could be useful depending on the application. In the MORG example, the former

seems more plausible, considering that �in any given month, one-eighth of the housing units are interviewed

for the �rst month� according to CPS. Admittedly, this is not determinant evidence that the former strategy

is adopted in CPS. However, it seems reasonable to assume that, in a steady state, the same number of new

households are drawn each month in CPS. Moreover, the former strategy makes the asymptotic analysis a

bit easier.

3.2 Asymptotics in the presence of matched subsamples among samples from

di�erent periods

With the sampling design well de�ned, we can now derive the asymptotics under partially matched sampling.

For t < s, Let Its be the index set for the matched subsample between sample t and sample s. Note that

Its = It ∩ Is. Denote the size of Its by mts, i.e., mts = |Its|. In MORG, for instance, only adjacent samples

share matched subsamples with nt,stay = nt/2, which implies mt,t+1 = nt/2 and mts = 0 for any s > t + 1.

With Its, the sample cohort mean µ̂w
gt for a given pair (t, s) where t < s can be decomposed into the sum of

the sample cohort mean of the unmatched subsample and that of the the matched, i.e.,

µ̂w
gt = n−1

gt

∑
i∈It

ritgwit = n−1
gt

∑
i∈Its

ritgwit + n−1
gt

∑
i∈It\Its

ritgwit (3.1)
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where It\Its is the di�erence set. A similar decomposition exists for µ̂w
gs for the same pair (t, s), which

can be obtained by replacing t with s and s with t in (3.1) and noticing that Its = Ist. Because of the

sampling design, the matched and unmatched subsamples in a given period are independent; the unmatched

subsample in period t is also independent of that in period s. Hence, we can separately derive the asymptotic

distribution of n−1
gt

∑
i∈It\Its

ritgwit, the asymptotic distribution of n−1
gs

∑
i∈Is\Its

risgwit, and the asymp-

totic joint distribution of n−1
gt

∑
i∈Its

ritgwit and n
−1
gs

∑
i∈Its

risgwis and then put them together to get the

joint asymptotic distribution of
√
n(µ̂w

gt−µw
gt) and

√
n(µ̂w

gs−µw
gs). This result is summarized in the following

lemma.

Lemma 1. Suppose the population DGP is given by (2.1) and the sampling design is de�ned as in De�nition

1. In addition, assume ρgt = ρg is a constant for ease of illustration. Let ψts,t be the fraction of sample t

that is in the matched subsample between sample t and sample s and ψts,s be de�ned similarly. Let Ωw
gts =

Cov(wit,wis|g, i ∈ Its), and de�ne Ψw
gts = (ψts,tψts,s)

1
2 Its(ρgκtρgκs)

− 1
2Ωw

gts. Then,

√
n


µ̂w

gt

µ̂w
gs

−

µw
gt

µw
gs


 d→ N


0

0

 ,

Ψw
gtt Ψw

gst

Ψw
gts Ψw

gss


 (3.2)

Proof. Let zitg = ritg(wit − µw
gt), z̄0tsg = (nt −mts)

−1
∑
i∈It\Its

zitg and z̄1tsg = m−1
ts

∑
i∈Its

zitg. It can be

shown that E(zitg) = 0 and V ar(zitg) = ρgΩ
w
gt where Ωw

gt = V ar(wit|g) is as de�ned in previous sections.

Let κ̂t = nt/n, ρ̂gt = ngt/nt, ψ̂ts,t = mts/nt and ψ̂ts,s = mts/ns. Using (3.1) to write

√
n(µ̂w

gt − µw
gt) = κ̂

−1/2
t ρ̂−1

gt ψ̂
1/2
ts,t ·

√
mtsz̄1tsg + κ̂

−1/2
t ρ̂−1

gt (1− ψ̂ts,t)
1/2 ·

√
nt −mtsz̄0tsg (3.3)

Notice that
√
mtsz̄1tsg

d→ N
(
0, ρgΩ

w
gt

)
and

√
nt −mtsz̄0tsg

d→ N
(
0, ρgΩ

w
gt

)
by the usual Central Limit

Theorem (CLT). Notice also that κ̂t → κt, ρ̂gt → ρg and ψ̂ts,t → ψts,t. Then, by the asymptotic equivalence

lemma in Wooldridge (2010) and the fact that the zitg's in It\Its are independent of those in Its, the

asymptotic distributions of the two terms in (3.3) can simply be added up to get

√
n(µ̂w

gt − µw
gt)

d→ N
[
0, (κtρg)

−1Ωw
gt

]
A similar result holds for µ̂w

gs.

To derive the asymptotic joint distribution of
√
n(µ̂w

gt − µw
gt) and

√
n(µ̂w

gs − µw
gs), notice that mts = mst

so that z̄0stg = (ns −mts)
−1
∑
i∈Is\Its

zisg and z̄1stg = m−1
ts

∑
i∈Its

zisg. Note that z̄1stg and z̄1tsg di�erent

12



because ritg and rits are. Write

√
n(µ̂w

gs − µw
gs) = κ̂−1/2

s ρ̂−1
gs ψ̂

1/2
ts,s ·

√
mtsz̄1stg + κ̂−1/2

s ρ̂−1
gs (1− ψ̂ts,s)

1/2 ·
√
nt −mtsz̄0stg

Since the matched subsample is a subset randomly selected from sample t by the sampling design, it can be

shown that E (zitg|i ∈ Its) = E (zisg|i ∈ Its) = 0 and Cov (zitg, zisg|i ∈ Its) = ρgΩ
w
gts. Then, by the usual

CLT,  √
mtsz̄1tsg

√
mtsz̄1stg

 d→ N


0

0

 , ρg

Ωw
gt Ωw

gts

Ωw
gts Ωw

gs




By the sampling design, the zisg's in Is\Its is independent of the zitg's in It\Its. Hence, by CLT,

 √
nt −mtsz̄0tsg

√
ns −mtsz̄0stg

 d→ N


0

0

 , ρg

Ωw
gt 0

0 Ωw
gs




Combining all above and applying the asymptotic equivalence lemma again lead to (3.2).

It is worth emphasizing why the decomposition in (3.1) is necessary to derive the asymptotics in the

presence of a matched subsample between sample t and sample s. With serially independent sampling, µ̂w
gt

and µ̂w
gs are independent of each other, and we can derive their asymptotics separately and then join them

together as in Imbens & Wooldridge (2007). With partially matched sampling, this trick no longer works

as µ̂w
gt and µ̂w

gs are dependent. The piece-wise asymptotic analysis in the proof of Lemma 1 based on the

decomposition in (3.1) solves the complication cause by the dependence between µ̂w
gt and µ̂

w
gs.

Lemma 1 implies that we can write the asymptotic distribution of
√
n(µ̂w

gt−µw
gt) for t = 1, ..., T jointly as

√
n(µ̂w

g − µw
g )

d→ N
(
0,Ψw

g

)
, g = 1, ..., G, (3.4)

where µ̂w
g = (µ̂w

g1, ..., µ̂
w
gT ), µ

w
g is similarly de�ned, and Ψw

g is the square matrix with (κtρg)
−1Ωw

gt on the

t-th principal diagonal block and (ψts,tψts,s)
1/2(κtκs)

−1/2ρ−1
g Ωw

gts on the (t, s)-th block for t ̸= s. That is,

Ψw
g =

{
(ψts,tψts,s)

1
2 Its(ρgκtρgκs)

− 1
2Ωw

gts

}
TT

where Its = 1{t̸=s} is the indicator that equals 1 if t ̸= s and 0 otherwise. In turn, by noticing that π =

(µw
1 , ...,µ

w
G)

′, stacking all the G pieces together implies that we can write the joint asymptotic distribution
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of
√
n(µ̂w

gt − µw
gt) for g = 1, ..., G and t = 1, ..., T as

√
n (π̂ − π)

d→ N (0,Ψw) (3.5)

where Ψw ≡ diag
{
Ψw
g

}
G
is the block diagonal matrix with Ψw

g on the g-th block and 0 elsewhere. The

asymptotics in (3.2), (3.4) and (3.5) are generalizations of the standard results under serially independent

sampling to the case of partially matched sampling. When there is no matching, ψts,t = ψts,s = 0 and Ψw

degenerates to Ω in (2.16).

The same asymptotic analysis can be performed on µ̂εgt where εit is composite error term as de�ned in

(2.6) . Notice that a similar decomposition to (3.1) exists for µ̂εgt:

µ̂εgt = n−1
gt

∑
i∈Its

rit,gεit + n−1
gt

∑
i∈Its

rit,gεit. (3.6)

Notice also that µεgt is, for j = (g − 1)T + t, the j-th row of h(π,θ) as in (2.17) with a negative sign

added, and that
√
nµ̂εgt is the j-th row of

√
nh(π̂,θ) as in (2.19) with a negative sign added. Hence, the

asymptotic variance of the joint distribution of
√
nµ̂εgt and

√
nµ̂εgs essential determines (the inverse of) the

optimal weighting matrix. The asymptotics regarding
√
nµ̂εgt is summarized in the following theorem.

Theorem 1. De�ne Ψεgts = (ψts,tψts,s)
1
2 Its (ρgκtρgκs)

− 1
2 σε,gts where Its ≡ 1{t ̸=s}, σ

2
ε,g ≡ V ar(εit|g) and

σε,gts ≡ Cov(εit, εis|g) which degenerates to σ2
ε,g if t = s. Then, under the same DGP and sampling design

in Lemma 1, the joint asymptotic distribution of
√
nµ̂εgt and

√
nµ̂εgs is

√
n

µ̂εgt
µ̂εgs

 d→ N


0

0

 ,

Ψεgtt Ψεgst

Ψεgts Ψεgss


 (3.7)

In addition, the joint asymptotic distribution of
√
nµ̂εgt for g = 1, ..., G and t = 1, ..., T can be written as

√
nµ̂ε

d→ N (0,Ψε) (3.8)

where Ψε = diag
(
Ψε
g

)
G
is the block diagonal matrix with Ψε

g on its g-th diagonal block for g = 1, ..., G and

Ψε
g is the square matrix with (κtρg)

−1σ2
ε,g on the t-th diagonal block and (ψts,tψts,s)

1/2(κtκs)
−1/2ρ−1

g σε,gts

on the (t, s)-th block for t ̸= s, i.e.,

Ψε
g =

{
Ψεgts

}
TT

. (3.9)

Proof. Notice that for wit = (yit,xit), εit = yit − xitβ − αgit = (yit,xit)(1,−β′)′ − αgit . Hence, µ̂εgt =
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µ̂w
gt(1,−β′)′ − αg and µ

ε
gt = µw

gt(1,−β′)′ − αg. Then the results in (3.7) and (3.8) follow from Lemma 1.

The joint asymptotic distribution of
√
nµ̂εgt and

√
nµ̂εgs in (3.7) shows why the o�-diagonal elements in

their asymptotic variance is nonzero. Let σ2
f,g = V ar(fi|g), σ2

u,g = V ar(uit|g) and σu,gts = Cov(uit, uis|g).

Note that σu,gts degenerates to σ2
u,g if t = s. Then σ2

ε,g = σ2
f,g + σ2

u,g and σε,gts = σ2
f,g + σu,gts in a

panel population model because fi and uit are often assumed uncorrelated. Therefore, the partially matched

subsample causes correlation between the composite error εit and εis via the �xed e�ect fi as well as the

serial correlation in uit if there is any.

Recall that h(π̂,θ) = −µ̂ε. Hence, (3.8) is the generalization of the asymptotic distribution of
√
nh(π̂,θ)

in (2.19) to the case of partially matched samples. The asymptotic variance Ψε in Theorem 1 is the inverse of

the optimal weighting matrix to use in the pseudo panel MD estimation where samples from di�erent periods

may be partially matched, i.e. Ψε is the �M matrix� in this setup. The diagonal elements of Ψε are exactly

the same as those of the M matrix in the standard case of Imbens & Wooldridge (2007) where samples from

di�erent time periods are independent. In other words, Ψε and M only di�er on their o� diagonal elements.

When there is no matching, ψts,t = ψts,s = 0 and Ψε degenerates to M.

Let θ̂ψ be the optimal MD estimator using the inverse of Ψ̂
ε
as the weighting matrix, where the estimator

Ψ̂
ε
of Ψε will be de�ned in (3.15) in the next subsection. By the same argument that yields θ̂

opt
, θ̂ψ also

has a closed-form as given in

θ̂ψ =

[
µ̂x ′

(
Ψ̂
ε
)−1

µ̂x

]−1

µ̂x ′
(
Ψ̂
ε
)−1

µ̂y. (3.10)

The asymptotic variance of θ̂ψ can be obtained by replacing the M matrix in (2.23) with Ψε, i.e.,

Avar(θ̂ψ) = n−1
[
µx ′(Ψε)−1µx

]−1
(3.11)

The asymptotic standard deviations (s.d.'s hereafter) of θ̂ψ are the square roots of the diagonal elements of

(3.11). As a comparison, if we ignore that the samples are partially matched and use the �wrong� weighting

matrix M as de�ned in (2.20), we can still obtain a consistent estimator of θ, but it is asymptotically less

e�cient than θ̂ψ since it ignores the correlations among partially matched samples. Denote this estimator

by θ̂M. In addition, de�ne Ξ =
(
µx ′M−1µx

)−1
and A = µx ′M−1ΨεM−1µx. Then,

Avar(θ̂M) = n−1ΞAΞ, (3.12)

which is of a �sandwich� form and thus greater than (3.11) in the matrix sense (see Kodde et al. 1990 and
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Jia 2019 for formal proofs). The �nite-sample performance of θ̂ψ and θ̂M will be compared in a subsequent

simulation section.

Depending on the sampling design, especially the magnitude of the matching rates between two samples

from di�erent time periods, Ψε
g may have multiple nonzero super/sub-diagonals. To provide some examples,

this paper derives the structure of Ψε
g for yearly MORG and monthly Australia LFS, of which details are

given in the online appendix.

3.3 Estimation

This section �rst develops an estimator for Ψε
g and then de�nes the resulting estimators for Avar(θ̂ψ) and

Avar(θ̂M). Theorem 1 provides a pathway to estimate the optimal weighting matrix. We can �rst use some

initial estimator to calculate the residuals ε̌it's. Then we can use the sample variance of ε̌it in cell (g, t)

to estimate σ2
ε,g and the sample covariance of ε̌it and ε̌is in the intersection of cell (g, t) and cell (g, s) to

estimate σε,gts. Note that σε,gts cannot be naively estimated by the sample covariance between the residuals

in cell (g, t) and those in cell (g, s) because that sample covariance is not well de�ned. Note also that σ2
f,g,

σ2
u,g and σu,gts cannot be separately estimated unless we make more assumptions about the serial correlation

(e.g., σu,gts = 0).

Speci�cally, for t = s, σε,gts = σ2
ε,gt = V ar(εit|g), notice εit can be estimated by the residual ǔit obtained

by plugging into (2.5) the an initial estimator of θ. A commonly used candidate for the initial estimator is

the pseudo panel FE estimator θ̌ as de�ned in (2.10). Then, a consistent estimator of σ2
ε,gt is

σ̂2
ε,gt = n−1

gt

∑
i∈Igt

rig (ǔit − ũgt)
2

(3.13)

where ũgt ≡ n−1
gt

∑nt

i=1 ritgǔit is the sample average of ǔit within cell (g, t).

To estimate σε,gts for t ̸= s, notice that the overlapped subsample of any two samples are matched and

the matching is known. Therefore, the matched subsample can be used to estimate σε,gts as in

σ̂ε,gts = m−1
gts

∑
i∈Igts

rig (ǔit − ũgts) (ǔis − ũgts) , for t ̸= s, (3.14)

where ũgts ≡ m−1
gts

∑
i∈Igts

ritgǔit = ũgts. (3.13) and (3.14) together de�nes the estimator σ̂gts for all t and s.

Finally, recall that ρg and κt can be consistently estimated by ρ̂gt = ngt/nt and κ̂t = nt/n, respectively.

The matching rates ψts,t and ψts,s are usually known from the sampling design, but they can also be estimated

by ψ̂ts,t = mts/nt = mgts/ngt and ψ̂ts,s = mts/ns = mgts/ngs, respectively, to re�ect the uncertainty caused

by unexpected events in sampling. Hence, the diagonal elements of Ψε
g, (ρgκt)

−1
σε,gts, can be consistently
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estimated by n
ngt

σ̂2
ε,gt which is the same as how we estimate the diagonal elements of Mg, and the o�-diagonal

elements ofΨε
g, (ψts,tψts,s)

1
2 (ρgκtρgκs)

− 1
2 σε,gts, can be consistently estimated by

mgtsn
ngtngs

σ̂ε,gts. The resulting

consistent estimator Ψ̂
ε

g contains
n
ngt

σ̂2
ε,gt's on the t-th principal diagonal and

mgtsn
ngtngs

σ̂ε,gts on position (s, t)

for t ̸= s, and the estimator of Ψε is

Ψ̂
ε
= diag

{
Ψ̂
ε

g

}
. (3.15)

Correspondingly, (3.11) can be estimated by

̂Avar(θ̂ψ) = n−1
[
µ̂x ′(Ψ̂

ε
)−1µ̂x

]−1

(3.16)

and (3.12) can be estimated by

̂Avar(θ̂M) = n−1Ξ̂ÂΞ̂ (3.17)

where Ξ̂ ≡
(
µ̂x ′M−1µ̂x)−1

and Â ≡ µ̂x ′M̂−1Ψ̂
ε
M̂−1µ̂x.

4 Simulation

This section brie�y presents a series of carefully designed simulation cases to show the �nite sample property

the pseudo panel MD estimators using the proposed weighting matrix Ψε. The model used to simulate data

is:

yit = β1 + β2xit + ηt + (αgi + ei︸ ︷︷ ︸
fi

) + uit, i ∈ It, t = 1, · · · , T, (4.1)

where xit ∼ N(gt/6, 1), β1 = β2 = 1, ηt = t − 1 and αg = g − 1. xit is independent of gi, ei and uit.

The simulation cases to be considered di�er in their variance speci�cations on fi|g (equivalently, ei|g) and

variance and serial covariance speci�cations on uit|g. The yearly MORG sampling design is adopted with

constant sample sizes (nt = n0 and thus κt = 1/T ) and �xed group proportions (ρgt = ρg = 1/G). This

implies a constant matching rate ψts,t = ψts,s = ψ = 50%. Throughout the simulation, G = 8 and T = 10 is

chosen as the focus speci�cation.

The main quantities of interest in the simulation study are two MD estimators of β2 and, more importantly,

their corresponding s.e.'s. From now on, the MORG estimator and s.e. refer to those obtained from the MD

estimation using (Ψ̂
ε
)−1 as the weighting matrix (see (3.10) and (3.16)). The SWH (abbreviated from

sandwich) estimator and s.e., on the other hand, refer to those obtained from using (M̂)−1 (see (2.22)

and (3.17)). In addition, the so-called Naive s.e. (see (2.24)) for the SWH estimator is also studied as a

comparison to the SWH s.e. The MORG and SWH s.e.'s should be consistent for their respective asymptotic
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counterparts that are referred to as the MORG and SWH asymptotic s.d.'s hereafter. The Naive s.e.'s,

however, are generally inconsistent for the SWH asymptotic s.d.'s under partially matched samples.

To induce nonzero σε,gts for s ̸= t, varying σ2
f,g over g is used in relevant cases. The feature that σ2

f,g

varies with g is referred to as cohort-wise heteroskedasticity in fi hereafter. Besides fi, another source for

nonzero σε,gts is heteroskedasticity over group-time cells and/or serial correlation in uit. To introduce serial

correlation in uit, the �rst order autoregressive model (AR(1)),

uit = γ0uit−1 + ξit (4.2)

with the initial condition ui0 = 0, is used in relevant cases. The innovation terms ξit's are independent

across i and t and follow the distribution ξit|g ∼ N(0, σ2
ξ,gt) where σ

2
ξ,gt ≡ V ar(ξit|g) could depend on g and

t. σ2
u,gt and σu,gts ≡ Cov(uit, uis|g) vary with (g, t) accordingly. Such varying σ2

u,gt is termed as cell-wise

heteroskedasticity in uit hereafter, as it may depend on both g and t.

To discover what DGP features favor the MORG estimator and s.e., four benchmark cases (Cases 1.1 to

1.4) and three extended cases (Cases 2 to 4) are designed. In the four benchmark cases, fi is homoskedastic

and uit is homoskedastic and serially uncorrelated. These cases di�er, however, on the relative magnitudes

of σ2
f,g and σ2

u,gt. In Case 1.1, σ2
f,g = 1, σ2

u,gt = 100; in Case 1.2, σ2
f,g = 100, σ2

u,gt = 1; in Case 1.3,

σ2
f,g = 1, σ2

u,gt = 1; in Case 1.4, σ2
f,g = 100, σ2

u,gt = 100. Although block diagonal in all the four benchmark

cases, Ψε in Case 1.1 is numerically close to the identity matrix. In Case 1.2 where σ2
f,g dominates σ2

u,gt,

a numerically nontrivial block diagonal structure of Ψε emerges, but the elements on each of the principal,

super and sub diagonals are the same across the diagonal. Cases 1.3 and 1.4 produce essentially the same

block diagonal structure of Ψε that only di�er by a scaling factor, and the deviation of Ψε from the identity

matrix is less pronounced than in Case 1.2. In fact, knowing the DGP allows us to calculate the theoretical

relative di�erences between the asymptotic SWH and MORG s.d.'s for β2. In Cases 1.1 to 1.4, they are are

4.55× 10−6, 5.84%, 0.969% and 0.969%, respectively.

Case 2 introduces the following cohort-wise heteroskedasticity in fi,

σ2
f,g = 100 · 1{g≤G/2} + 1{g>G/2}, (4.3)

where σ2
f,g dominates σ2

u,gt for g ≤ G/2 but is comparable to σ2
u,gt for g > G/2. The rest setup is the

same as in Case 1.1. In Case 2, the cohort-wise heteroskedasticity in fi supposedly creates a slightly smaller

di�erence betweenΨε andM than in Case 1.2. Consequently, a smaller theoretical relative di�erence between

the asymptotic SWH and MORG s.d.'s, 2.19%, appears.
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In Case 3, fi reverts to the homoskedastic speci�cation with σ2
f,g = 1, but uit is cell-wise heteroskedastic

and serial correlated. Speci�cally, uit follows (4.2) with γ0 = −0.95, and σ2
ξ,gt follows the speci�cation

σ2
ξ,gt = V ar(ξit|g) = max

{
1,
[
σ2
b,gt − γ20σ

2
b,g(t−1)

]}
. (4.4)

where, for real numbers a and p, σ2
b,gt ≡ bgt

[
sin
(
a gt
GT

)]p
and bgt ≡ 10 · 1A + 100 · 1Ā with A = {g ≤

G/2 or t ≤ T/2}. (4.4) essentially endows σ2
u,gt with the pattern of σ2

b,gt and at the same time ensures that

σ2
ξ,gt > 0. The parameter values used is (γ0, a, p) = (−0.95, 3.1415, 0.5). The resulting deviation of Ψε from

M is prominent: The theoritical relative di�erence between the asymptotic SWH and MORG s.d.'s for β2 is

16.80%.

The ultimate case, Case 4, merges the feature of cohort-wise heteroskedastic fi in Case 2 and that of the

cell-wise heteroskedastic and serial correlated uit in Case 3, creating the wildest variance/covariance variation

in the composite error in the simulation study. The resulting relative di�erence in the asymptotic SWH and

MORG s.d.'s. is 22.56%.

To mimic the fact that the population is �nite in reality, �nite populations are used in the simulation.

Moreover, varying sampling rates are considered as a robustness check. For each simulation case de�ned above,

the sampling rate varies from 0.1% to 1% with a step size of 0.1%, whereas the �nite population cohort size

shrinks from 240, 000 to 24, 000 accordingly so that the realized sample cohort size is approximately 240. This

design eliminates the e�ect of varying sample size on inference. Rigorously speaking, using �nite populations

requires some adjustment to inference, but the adjustment is negligible here given the large population sizes

and small sampling rates used.10

Figure 4.1 presents a summary of the key simulation �ndings based on 1000 replications. More detailed

results can be found in the online appendix. Two observations stand out. First, the relative di�erences of the

MORG and SWH s.e.'s w.r.t to their corresponding Monte Carlo (MC) s.d.'s (blue and red lines) �uctuate

around zero in all 7 cases, which are �nite-sample evidence for the consistency of the MORG and SWH s.e.'s.

That is not the case for the Naive s.e. (green lines) when Ψε di�ers from the identity matrix (all cases

except 1.1). Therefore, ignoring dependence among samples and naively use M as the optimal weighting

matrix generally yields biased inference. Note that the �nite-sample bias in the Naive s.e. in Case 4 is not as

noticeable as that in Case 2 or 3. This is probably attributable to the �nite-sample biases in the Naive s.e.'s

in Cases 2 and 3 having opposite signs, which more or less o�set each other when aggregated in Case 4.

Secondly, and perhaps more importantly, when Ψε di�ers non-trivially from M (Cases 1.2, 2, 3 and 4),

we get nontrivial e�ciency gains in MORG s.e.s over SWH s.e.s (yellow lines). This is as expected. Also, the

10In fact, by Li & Ding 2017, using �nite populations merits a multiplicative shrinkage factor
√
1− λ on the s.e.'s, where λ is

the sampling rate. For λ in (0.1%, 1%),
√
1− λ lies in (0.9950, 0.9995).
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Figure 4.1: Cases 1.1 to 4 simulation results for G = 6 and T = 10 from 1000 replications. The sampling
rate (sr) varies from 0.1% to 1% with step 0.1%. The �nite population size varies accordingly so that the
sample cohort size in each period is roughly 240.
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observed e�ciency gains well match their theoretical values: Averaging the results over the 10 sampling rates,

the SWH s.e.'s are .1038%, 6.899%, 1.097% and 1.101% greater than the MORG s.e.'s for Cases 1.1 to 1.4,

respectively; for Cases 2 to 4, the di�erences are 2.19%, 16.80% and 17.48%, respectively. In addition, Cases

1.2, 2, 3 and 4 highlight that the relative magnitude of the group-time cell variance of the �xed e�ect w.r.t.

that of the idiosyncratic error, cohort-wise heteroskedasticity in the �xed e�ect, cell-wise heteroskedasticity

and/or serial correlation in the idiosyncratic error are typical sources for potential e�ciency gains of using

Ψε.

5 An Empirical Illustration

As an illustration, this section applies the MORG and SWH estimators and their s.e.'s to the classical

empirical question of estimating monetary returns to education.11 This analysis uses the MORG �les spanning

from 2010 to 2019 (T = 10). The speci�cation is similar to that in Angrist & Krueger (1991). Speci�cally,

the sample are restricted to black and white men only. The dependent variable used is the logarithm of

hourly earnings. The key regressor is education measured in years. A race dummy, a marital status dummy

and a metropolitan status dummy (standard metropolitan statistical area, or SMSA) are included in the

control variable list. The marital status dummy is de�ned so that married civilian spouse present, married

armed force spouse present and married spouse absent or separated are grouped in to the married group

whereas widowed, divorced, separated and never married are grouped into the other group. Age and age

squared are also included to capture the potential nonlinear age e�ects. In addition, 9 region dummies are

included to control spatial variations. The samples are further restricted to individuals aged 26-55 in 2018

(born 1963-1992) and are divided to six 5-year birth cohorts (G = 6).

The main results are presented in Table 1. To save space, the estimates on the the region dummies are

omitted, and additional estimates separately obtained from 2010-2014 and 2015-2019 are provided in the

online appendix. The results from pooled OLS (POLS, �rst two columns) are reported for comparison. For

the sake of brevity, the discussion focuses solely on the results on education. Consistent with the theory and

the simulation results discussed earlier, the MORG s.e. for education is smaller than the SWH s.e. no matter

the age function is included or not in the speci�cation (Column 3 vs 5, Column 4 v.s. 6). Speci�cally, the

SWH s.e. is approximately 14% greater than the MORG s.e in the absence of the age function, and 11%

greater when the age function is included. Furthermore, there is a noticeable discrepancy between the Naive

s.e. and the SWH s.e. under both speci�cations, indicating potential bias in the Naive s.e. for this particular

application.

11For surveys of this literature, see Card 1999, Card 2001, Heckman et al. 2006, McMahon 2009 and Oreopoulos & Petronijevic
2013 among others.
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Table 1: CPS, 2010-2019

(1) (2) (3) (4) (5) (6) (7) (8)
PPOLS POLS MORG MORG SWH SWH Naive Naive

Years of Edu. 0.085∗∗∗ 0.084∗∗∗ 0.249∗∗∗ 0.218∗∗∗ 0.294∗∗∗ 0.245∗∗∗ 0.294∗∗∗ 0.245∗∗∗

(0.000) (0.000) (0.053) (0.052) (0.063) (0.061) (0.068) (0.067)
Married 0.141∗∗∗ 0.127∗∗∗ 0.675∗∗∗ 0.297 0.688∗∗∗ 0.319 0.688∗∗∗ 0.319

(0.002) (0.002) (0.120) (0.164) (0.131) (0.183) (0.121) (0.165)
Black -0.184∗∗∗ -0.187∗∗∗ 0.306 0.009 1.109 0.498 1.109 0.498

(0.003) (0.003) (0.801) (0.681) (0.922) (0.781) (0.897) (0.768)
Age 0.083∗∗∗ 0.008 -0.035 -0.035

(0.001) (0.099) (0.117) (0.121)
Age Squared -0.001∗∗∗ -0.000∗∗ -0.000∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000)
Metropolitan 0.081∗∗∗ 0.081∗∗∗ 0.224 0.344 0.192 0.365 0.192 0.365

(0.002) (0.002) (0.544) (0.468) (0.703) (0.586) (0.803) (0.671)
R-squared 0.269 0.276
N 449568 449568

Years 2010-2019

Results on region dummies, group dummies and time dummies are omitted.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Although the primary focus of the paper is not on the MD coe�cient estimates, their deviation from

the conventional return-to-education estimates in the literature warrants a discussion. In the presence of

the age function, the estimated monetary returns to one more year of education in Table 1 are 22% and

23% for the MORG and SWH estimators, respectively, and are statistically signi�cant. These estimates are

approximately double the usual estimates of around 10% found in the literature. In comparison, the POLS

estimator, regardless of whether the age function is used, yields a more stable and lower return around 8%,

which is in the ballpark of the literature. The inclusion of the age function signi�cantly impacts the MD

estimates but has minimal e�ect on the POLS estimates.

The substantial discrepancy between POLS and MD can be attributed to the di�erent variations they

use to estimate the coe�cients in the underlying linear panel date model. The MD estimators essentially are

weighted cohort-level FE estimators � they use only the cohort-level within variation over time for each birth

cohort to estimate the return to education. POLS, on the other hand, explores both the cohort-level within

variation and the within-cell variation at the individual level. The within-cell variation may reveal a very

di�erent association between wage and education from the that embedded in the cohort-level within variation,

as there may exist individual-level speci�c correlations between the idiosyncratic error (uit) and education.12

When projected on to the cohort level, this individual-level correlation is only be partially accounted for if

the group membership is not exogenous w.r.t. the idiosyncratic error. There will be remaining correlation

between the cell mean of the idiosyncratic error, E(uit|gi), and that of education, E(eduit|gi), which would

12Similar for association between wage and other covariates. Dropped hereafter to simply the interpretation.
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bias the MD estimators.

Is the group membership exogenous under the current speci�cation used? Probably not. For example,

Card & Lemieux (2001) show that falling relative supply of educated workers is one important factor in

explaining the widening of the college-high school wage gap during the 1980's and 1990's. This factor,

however, is not controlled in the analysis here.13 Hence, the MD estimators may still be biased, although

they accounted for the �xed e�ect and thus removed the bias induced by the �xed e�ect. The POLS

estimators are also biased because they fail to address the individual-level �xed e�ect, and education is likely

endogenous as well. In general, POLS and MD will be close to each other only if the are both unbiased, i.e.,

if education is exogenous to both the �xed e�ect and the idiosyncratic error at the individual level and the

group membership is exogenous to the idiosyncratic error.

6 Concluding Remarks

The partially-matched-sample correction to the optimal weighting matrix in MD pseudo panel estimation

is motivated by the observation that dependence between samples from di�erent periods may arise due to

partially matched sampling designs such as CPS in the U.S. and LFS in Australia. In this paper, using this

correction under partially matched sampling has been shown to be e�ective in achieving signi�cant e�ciency

gains in both a simulation study and an empirical application. Future extensions can consider generalizations

to dynamic models and unequally spaced pseudo panels; a closer look at the di�erent variations explored for

identi�cation by approaches on individual-level data (such as POLS) and those on cohort-level data (such as

pseudo panel MD) would also bene�t the literature.
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