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Population of interest is not in�nite

Classical survey sampling: a random sample is drawn from an in�nite
super-population.

▶ The super-population may be the right target: one may be more
concerned with a conceptual population of people like those at present
living in China. See Barnard (1973).

▶ Simpli�es asymptotic analysis.

But there are cases where the in�nite super population assumption is
not appropriate.

▶ �The Current Population Survey (CPS) must estimate such parameters
as unemployment rates for the population of the U.S.A. during each
particular month and super-population parameters are irrelevant to the
main purpose of the C.P.S.� Hartley (1975).

▶ The in�nite super population may still be good enough approximation
if the sampling rate λ is small.

▶ The �nite-population correction (fpc) is needed only if the sample is
nontrivial relative to the �nite population of interest.

fpc can become more prominent as sampling technology advances.



Sampling may not be independent over time

A standard pseudo panel data set is composed of repeated cross

sections that are independent over time.

Depending on the sampling design, samples from di�erent time period

may not be independent. Example: CPS itself; the merged outgoing

rotation groups (MORG) in CPS; the Australia Labour Force Survey

(LFS) and the Brazil Continuous National Household Sample Survey

(Continuous PNAD)



Outline

1 Motivation

2 A Pseudo Panel Model

3 Sampling-Based Finite-Population Correction

4 Partially-Matched-Sample Correction



Panel at the individual level

Population model:

yit = xitβ +dtη
′+ fi +uit , t = 1, . . . ,T (1)

or

yit = xitθ + ei +uit , t = 1, . . . ,T (2)

where xit ≡ (xit ,dt ,ci ) for dt the time dummy vector and ci the group

dummy vector. uit is the idiosyncratic error. fi is the individual-level
�xed e�ects.

θ ≡ (β ′,η ′,α ′)′ is the structural parameter of interest.

G predetermined time-invariant groups. Let gi be the group
membership for draw i . For gi = g , E (fi |g) = αg , the group e�ect.

ei ≡ fi −αgi is the individual �xed e�ect net of the group e�ect. The

composite error is

εit = ei +uit = (fi −αgi )+uit = yit − xitθ . (3)



Panel at the group level

Imbens and Wooldridge (2007): minimum distance (MD) framework is

a natural �t.

Key identifying assumption: the exogeneity of gi with respect to uit ,
i.e.,

E (uit |g) = 0, g = 1,2, . . . ,G . (4)

gi is essentially a valid instrumental variable (IV), but used di�erently

to get to the group-level model:

µ
y
gt = µ

x
gtθ , g = 1, . . . ,G , t = 1, . . . ,T , (5)

where µ
y
gt ≡ E (yit |g) and µ

x
gt ≡ E (xit |g) are the group means of the

covariates in the population.

GT group-time cells. A G ×T pseudo panel.

Inoue (2008) uses GMM. Conditional moments evaluated at all

discrete values of gi and get exactly the same conditions.



The �xed-e�ects estimator for pseudo panel models

Equation (5) suggests a naive approach to estimate θ

θ̌ =

(
∑
g ,t

µ̂
x ′
gt µ̂

x
gt

)−1

∑
g ,t

µ̂
x ′
gt µ̂

y
gt . (6)

where µ̂
y
gt and µ̂

x
gt are the sample group means of yit and xit .

FE s.e.'s are invalid as they do not account for the estimation errors in

µ̂
y
gt and µ̂

x
gt



MD for pseudo panel models

Reduced-form parameter vector π ≡ (µy
11,µ

x
11,µ

y
12,µ

x
12, . . . ,µ

y
GT ,µ

x
GT )

′

√
n (π̂ −π)

d→ N(0,Ω) (7)

Rewrite the group-level equations in the �composite residual� form

hgt(π,θ)≡−µ
y
gt +µ

x
gtθ = 0, g = 1, . . . ,G , t = 1, . . . ,T ,

and stack all the residuals hgt in one column vector h(π,θ) as

h(π,θ)≡−µ
y +µ

x
θ . (8)

Essentially by the delta method,

√
nh(π̂,θ)

d→ N(0,M(θ)). (9)

M(θ) = B(θ)ΩB(θ). (10)

where M(θ) is the inverse of the optimal weighting matrix;

B(θ) = ∇πh(π,θ) = diag
{
(−1,β ′

gt)
}
for β gt ≡ β 1+αg +ηt .



MD for pseudo panel models, continued

the optimal MD estimator for θ :

θ̂
opt

= argmin
θ

h(π̂,θ)′M̂−1h(π̂,θ). (11)

where M̂ is an estimator for M(θ) using some initial estimator for θ .

Closed-form

θ̂
opt

=
[
µ̂
x ′M̂−1

µ̂
x
]−1

µ̂
x ′M̂−1

µ̂
y . (12)

Variance

Avar
[√

n(θ̂
opt −θ)

]
=
[
µ
x ′M−1

µ
x
]−1

(13)



Structure of M

Diagonal if samples are independent over time: recall εit ≡ ei +uit

M= diag
{
(ρgtκt)

−1Var (εit |g)
}

(14)

where
▶ ρgt is the fraction of population t in group g . Usually ρgt = ρg for a

stable population.
▶ κt the fraction of the whole population panel accounted for by

population t
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A �nite population: sample mean

Notation: N for quantities in the population and S for quantities in

the sample.

Given a �nite population ΠN = {yN1,yN2, . . . ,yNN}, suppose we are
interested in the population mean of y

ȳN =
1

N

N

∑
i=1

yNi

A sample is a subset of ΠN represented by the vector of inclusion

indicators (Z1,Z2, . . . ,ZN) ∈ {0,1}N . An intuitive estimator for ȳN is

the sample average

ȳS =
1

n ∑
i :Zi=1

yNi =
1

n

N

∑
i=1

ZiyNi

where n = ∑
N
i=1Zi

No design-based uncertainty in the sense of Abadie et al. (2020).



A �nite population: variance of the sample mean

It can be shown that ȳS has mean ȳN and variance

var(ȳS) =

(
1

n
− 1

N

)
υN ,

where υN = 1
N−1 ∑

N
i=1 (yNi − ȳN)

2 is the population variance of y . An
unbiased estimator for υN is the sample variance

υ̂N =
1

n−1 ∑
i :Zi=1

(yNi − ȳS)
2 =

1

n−1 ∑
i

Zi (yNi − ȳS)
2 .

Therefore, an unbiased estimator for var(ȳS) is

̂var(ȳS) =
(
1

n
− 1

N

)
υ̂N . (15)



A �nite population CLT

Adopt the classical �nite population CLTs for simple random sampling

by Hájek (1960), reviewed recently by Li and Ding (2017). Also used

is Lehmann (1999).

Theorem 1 in Li and Ding 2017 (originally in Hájek (1960)): as

N → ∞, we have
ȳS − ȳN√
var(ȳS)

d→ Normal(0,1) (16)

if 1
min(n,N−n) ·

mN
vN

→ ∞, where mN =max1≤i≤N (yNi − ȳN)
2 is the

maximum squared distance of the yNi 's from the population mean ȳN .

Multiply both sides of Equation (16) by
√
n
√
var(ȳS) to get the

root-n format

√
n (ȳS − ȳN)

d→ Normal(0,(1−λ )υN)

where

λ ≡ n/N (17)



The �nite population correction to M

Recall M= diag
{
(ρgtκt)

−1Var (eit |g)
}

With fpc:

Mλ = (1−λ )diag
{
(ρgκt)

−1Var (eit |g)
}

(18)

and

Avar
[√

n(θ̂
opt −θ)

]
=
[
µ
x ′M−1

λ
µ
x
]−1

(19)

= (1−λ )
[
µ
x ′M−1

µ
x
]−1

(20)

If λt , Mλ = diag
{
(1−λt)(ρgκt)

−1Var (eit |g)
}

Estimation is straightforward.

An example where this may matter: the Integrated Public Use

Microdata Series (IPUMS) include a random sample of 10% of the

census



Simulation: setup

Individual-level panel DGP

yit = β1+β2xit +ηt + fi +uit , i = 1, · · · ,Nt , t = 1, · · · ,T . (21)

▶ β = (β1,β2) = (1,1), ηt = t−1, αg = g −1,
▶ fi ∼ N(αg ,10).
▶ G = 6, T = 4.
▶ �education� xit ∼ N(gt/6,1),

Key: In the �rst step, T �nite populations of �xed sizes are simulated

using (21) and then kept �xed. In the second step, a random sample

is independently drawn from each of the T populations simulated in

the �rst step with the sampling rate λ .



Figure: Inference comparison for the optimal pseudo-panel MD estimators with
and without the �nite-population correction (β̃2 and β̂2, respectively).





fpc in general

Can be trivially extended to any regression analysis where the sample

is a nontrivial proportion of the �nite population.
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Recall: Sampling may not be independent over time

A standard pseudo panel data set is composed of repeated cross

sections that are independent over time.

Depending on the sampling design, samples from di�erent time period

may not be independent. Example: CPS itself; the merged outgoing

rotation groups (MORG) in CPS; the Australia Labour Force Survey

(LFS) and the Brazil Continuous National Household Sample Survey

(Continuous PNAD)



Sampling Design

De�nition

Simpli�ed Partially Matched Sampling Design

1 At time t = 1: (i) randomly sample n1 observations to form sample 1

and (ii) randomly select a subsample of n1,stay observations from

sample 1 to keep to period 2.

2 At time t for t = 2, ...,T : (i) randomly sample (nt −nt−1,stay )
observations from the population and combine with the subsample left

from t−1 to get sample t and (ii) if t < T , randomly select a

subsample of nt,stay observations in the newly drawn subsample of

(ns −nt,stay ) observations to keep to period t+1; if t = T , stop.

Repeat step 2 until stop is reached.



Temporal correlation

Recall M(θ) = diag
{
(ρgκt)

−1Var (εit |g)
}
in the standard case. It's

diagonal because
√
nµ̂ε

gt and
√
nµ̂ε

gs t ̸= s are asymptotically

independent.

Now need to derive the joint asymptotic distribution of
√
nµ̂ε

gt and√
nµ̂ε

gs for t ̸= s

Notice that µε
gt = µ

y
gt −µ

x
gtθ =−hgt(π,θ). So√

nµ̂ε
gt =−

√
nhgt(π,θ)



Decompose µ̂ε
gt into two parts: the matched and the

unmatched

Decompose µ̂ε
gt as

µ̂
ε
gt = n−1gt ∑

i∈Its

rit,gεit +n−1gt ∑
i∈It\Its

rit,gεit . (22)

where ritg = 1{gi=g ,i∈It}, It the index set for sample t,
Its = It ∩Is for matched, and It\Its for unmatched in sample t.

Matching rate: Let ψts,t be the fraction of sample t that is in the

matched subsample between sample t and sample s and ψts,s be

de�ned similarly.

For ease of illustration, assume ψts,s = ψts,t = ψ and ρgt = ρg .



Decompose µ̂ε
gt into two parts: the matched and the

unmatched

CLT on the 1st part (the unmatched), for t and s jointly(√
nt µ̂

ε
gt1√

ns µ̂ε
gs1

)
d→ N

[(
0

0

)
,

(
(1−ψ)ρgE

[
ε2it |g

]
0

0 (1−ψ)ρgE
[
ε2is |g

])]
CLT on the 2nd part (the matched), for t and s jointly,(√

nt µ̂
ε
gt2√

ns µ̂ε
gs2

)
d→ N

[(
0

0

)
,

(
ψρgE

[
ε2it |g

]
ψρgVar(fi |g)

ψρgVar(fi |g) ψρgE
[
ε2is |g

])] ,



Merge the two asymptotic distributions

Combine the two parts, and notice

ngt/nt → ρg ,nt/n→ κt ,ns/n→ κs , we have

√
n

(
µ̂ε
gt

µ̂ε
gs

)
d→

N

((
0

0

)
,

(
(ρgκt)

−1E
[
ε2it |g

]
ψρ−1

g (κtκs)
−1/2Var(fi |g)

ψρ−1
g (κtκs)

−1/2Var(fi |g) (ρgκt)
−1E

[
ε2is |g

] ))



The Main Theorem

Theorem

De�ne Ψε
gts = (ψts,tψts,s)

1

2
Its (ρgκtρgκs)

− 1

2 σε,gts where Its ≡ 1{t ̸=s},
σ2

ε,g ≡ Var(εit |g) and σε,gts ≡ Cov(εit ,εis |g) which degenerates to σ2
ε,g if

t = s. Then, under the given DGP (1) and the sampling design in

Assumption 1, the joint asymptotic distribution of
√
nµ̂ε

gt and
√
nµ̂ε

gs is

√
n

(
µ̂ε
gt

µ̂ε
gs

)
d→ N

[(
0

0

)
,

(
Ψε

gtt Ψε
gst

Ψε
gts Ψε

gss

)]
(23)

In addition, the joint asymptotic distribution of
√
nµ̂ε

gt for g = 1, ...,G and

t = 1, ...,T can be written as

√
nµ̂

ε d→ N (0,Ψε) (24)

where Ψε = diag
(
Ψε

g

)
G
and

Ψε
g =

{
Ψε

gts

}
TT

. (25)



The Optimal MD estimator for partially matched samples

Let θ̂ ψ be the optimal MD estimator using the inverse of Ψ̂
ε
as the

weighting matrix,

θ̂ ψ =

[
µ̂
x ′
(
Ψ̂

ε
)−1

µ̂
x

]−1
µ̂
x ′
(
Ψ̂

ε
)−1

µ̂
y . (26)

The asymptotic variance of θ̂ ψ can be obtained by replacing the M

matrix in (13) with Ψε , i.e.,

Avar(θ̂ ψ) = n−1
[
µ
x ′(Ψε)−1µ

x
]−1

(27)



Discussion

Ψε
gts = (ψts,tψts,s)

1

2
Its (ρgκtρgκs)

− 1

2 σε,gts reveals why the o�-diagonal

elements in their asymptotic variance is nonzero: for εit and εis with i
referring to the same individual,

σε,gts = σ
2
f ,g +σu,gts

where σ2
f ,g = Var(fi |g) and σu,gts = Cov(uit ,uis |g).

Therefore, the partially matched subsample causes correlation between

the composite error εit and εis via the �xed e�ect fi as well as the
serial correlation in uit if there is any.

Numerically, a relatively large ψ is also important.



Ψε for MORG, T = 3

For MORG, that ψ1 = 1/2 implies only data from adjacent years have

matched subsamples,

Ψε
g = (1−λ )×

(ρgκ1)
−1

σ2
g1 ψ1

(
ρ2
gκ1κ2

)− 1

2 σg12 0

ψ1

(
ρ2
gκ1κ2

)− 1

2 σg12 (ρgκ2)
−1

σ2
g2 ψ1

(
ρ2
gκ2κ3

)− 1

2 σg23

0 ψ1

(
ρ2
gκ2κ3

)− 1

2 σg23 (ρgκ3)
−1

σ2
g3

 .
(28)



Ψε for LFS , T = 3

For the Australia Labour Force Survey, ψ1 = 7/8, ψ2 = 6/8, .... When

T = 3,

Ψε
g = (1−λ )×

(ρgκ1)
−1

σ2
g1 ψ1

(
ρ2
gκ1κ2

)− 1

2 σg12 ψ2

(
ρ2
gκ1κ3

)− 1

2 σg13

ψ1

(
ρ2
gκ1κ2

)− 1

2 σg12 (ρgκ2)
−1

σ2
g2 ψ1

(
ρ2
gκ2κ3

)− 1

2 σg23

ψ2

(
ρ2
gκ1κ3

)− 1

2 σg13 ψ1

(
ρ2
gκ2κ3

)− 1

2 σg23 (ρgκ3)
−1

σ2
g3


(29)



Estimation

For t = s, σε,gts = σ2
ε,gt = Var(εit |g),

σ̂
2
ε,gt = n−1gt ∑

i∈It

ritg (ǔit − ũgt)
2 (30)

where ǔit is the residual obtained using the FE estimator θ̌ , and

ũgt = n−1gt ∑
nt
i=1 ritg ǔit .

For t ̸= s, use the matched subsample between sample t and sample s:
notice that ritg = risg for i ∈ Its ,

σ̂ε,gts =m−1
gts ∑

i∈Its

ritg (ǔit − ũgts)(ǔis − ũgts) , for t ̸= s, (31)

where mgts = ∑i∈Its
ritg .



Simulation

xit ∼ N(gt/6,1), β1 = β2 = 1, ηt = t−1 and αg = g −1. xit is
independent of gi , ei and uit .

yit = β1+β2xit +ηt +(αgi + ei︸ ︷︷ ︸
fi

)+uit , i ∈ It , t = 1, · · · ,T , (32)

The simulation cases to be considered di�er in their variance

speci�cations on fi |g (equivalently, ei |g) and variance and serial

covariance speci�cations on uit |g . Four benchmark cases (Cases 1.1 to

1.4) and three extended cases (Cases 2 to 4) are designed

The yearly MORG sampling design is adopted with constant sample

sizes (nt = n0 and thus κt = 1/T ) and �xed group proportions

(ρgt = ρg = 1/G ). This implies a constant matching rate

ψts,t = ψts,s = ψ = 50%

G = 8 and T = 10.



σ2
f ,g and σ2

u,gt in the seven designs

Figure: The plots of σ2

u,gt , σ2

ξ ,gt and σ2

f ,g against j(g , t) = (g −1)T + t for

g = 1, ..,G and t = 1, ...,T under G = 8 and T = 10.



Simulation
Benchmark cases:

▶ Case 1.1, σ2

f ,g = 1, σ2

u,gt = 100; ( σ2

u,gt dominates σ2

f ,g )
▶ Case 1.2, σ2

f ,g = 100, σ2

u,gt = 1; (σ2

f ,g dominates σ2

u,gt)
▶ Case 1.3, σ2

f ,g = 1, σ2

u,gt = 1; (σ2

f ,g , σ2

u,gt same low level)
▶ Case 1.4, σ2

f ,g = 100, σ2

u,gt = 100. (σ2

f ,g , σ2

u,gt same high level)

Case 2: cohort-wise heteroskedastic fi only

σ
2
f ,g = 100 ·1{g≤G/2}+1{g>G/2}, (33)

(σ2
f ,g dominates σ2

u,gt in half of the cells)

Case 3: cell-wise heteroskedastic and serial correlated uit only.

uit = γ0uit−1+ξit (34)

σ
2
ξ ,gt = Var(ξit |g) = max

{
1,
[
σ
2
b,gt − γ

2
0σ

2
b,g(t−1)

]}
. (35)

where σ2
b,gt ≡ bgt

[
sin
(
a gt
GT

)]p
and bgt ≡ 10 ·1A+100 ·1Ā with

A= {g ≤ G/2 or t ≤ T/2} and (γ0,a,p) = (−0.95,3.1415,0.5).

Case 4, merges Case 2 and Case 3



Figure: G = 6 and T = 10. 1000 replications. The sampling rate (sr) varies from
0.1% to 1% with step 0.1%. The sample cohort size in each period is roughly
240.
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The Sandwich-Form Inference

SWH
̂Avar(θ̂M) = n−1Ξ̂ÂΞ̂ (36)

where Ξ̂≡
(
µ̂
x ′M−1µ̂

x
)−1

and Â≡ µ̂
x ′M̂−1Ψ̂

ε
M̂−1µ̂

x.

Yellow line: MORG s.e. (using Ψ̂
ε
) is more e�cient than SWH s.e.

when Ψ̂
ε
is nontrivial di�erent from the diagonal M̂.

Blue and red line: Both MORG and SWH provide good �nite-sample

approximations to their respective asymptotic targets.

Green line: Naive s.e. generally biased.



An empirical illustration: estimating monetary returns to

education

For surveys of this literature, see Card 1999, Card 2001, Heckman,

Lochner, and Todd 2006, McMahon 2009 and Oreopoulos and

Petronijevic 2013 among others.

The speci�cation is similar to that in Angrist and Krueger (1991).

The MORG �les spanning from 2010 to 2019 (T = 10).





Consistent with the theory and the simulation results, the SWH s.e.

for education is greater than the MORG s.e. no matter the age

function is included or not in the speci�cation (Column 3 vs 5, 11%;

Column 4 v.s. 6, 14%).

noticeable discrepancy between the Naive s.e. and the SWH s.e.

under both speci�cations, indicating potential bias in the Naive s.e.

for this particular application.

additional estimates separately obtained from 2010-2014 and

2015-2019 in online appendix.

The results from pooled OLS (POLS, �rst two columns) are reported

for comparison.



Summary

The simplest version of the �nite population correction is a shrinkage

factor that equals 1−λ to the usual optimal weighting matrix and

asymptotic variance under in�nite super population, where λ is the

sampling rate.

The partially matched sampling design causes temporal correlation
between samples from di�erent time periods, giving rise to a
block-diagonal weighting matrix in the minimum distance (MD)
estimation of pseudo panel models.

▶ (Asymptotically) more e�cient.
▶ Conventional s.e. conservative.
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