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Outline

@ Motivation



Population of interest is not infinite

e Classical survey sampling: a random sample is drawn from an infinite
super-population.

» The super-population may be the right target: one may be more
concerned with a conceptual population of people like those at present
living in China. See Barnard (1973).

» Simplifies asymptotic analysis.

@ But there are cases where the infinite super population assumption is
not appropriate.

» “The Current Population Survey (CPS) must estimate such parameters
as unemployment rates for the population of the U.S.A. during each
particular month and super-population parameters are irrelevant to the
main purpose of the C.P.S.”" Hartley (1975).

» The infinite super population may still be good enough approximation
if the sampling rate A4 is small.

» The finite-population correction (fpc) is needed only if the sample is
nontrivial relative to the finite population of interest.

e fpc can become more prominent as sampling technology advances.



Sampling may not be independent over time

@ A standard pseudo panel data set is composed of repeated cross
sections that are independent over time.

@ Depending on the sampling design, samples from different time period
may not be independent. Example: CPS itself; the merged outgoing
rotation groups (MORG) in CPS; the Australia Labour Force Survey
(LFS) and the Brazil Continuous National Household Sample Survey
(Continuous PNAD)
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© A Pseudo Panel Model



Panel at the individual level

@ Population model:
Yie =XigB+dn' +fi+ue, t=1,...,T (1)

or
Yie =% 0+e+uy, t=1,..., T (2)

where x;; = (xjt,d¢,c;) for d; the time dummy vector and ¢; the group
dummy vector. uj; is the idiosyncratic error. f; is the individual-level
fixed effects.

e 0= (B, n',a) is the structural parameter of interest.

@ G predetermined time-invariant groups. Let g; be the group
membership for draw i. For gj = g, E(fi|g) = 0, the group effect.

® e = fi — 04, is the individual fixed effect net of the group effect. The
composite error is

gy = ej+ ujr = (fi — &tg,) + Ujr = Yir — x;;0. (3)



Panel at the group level

@ Imbens and Wooldridge (2007): minimum distance (MD) framework is
a natural fit.

o Key identifying assumption: the exogeneity of g; with respect to ujz,
i.e.,
E(utlg)=0, g=1,2,...,G. (4)

@ g; is essentially a valid instrumental variable (1V), but used differently
to get to the group-level model:

Uy =MUgb, g=1,...,G, t=1,..., T, (5)

where u), = E(yic|g) and u,, = E(x;t|g) are the group means of the
covariates in the population.

@ GT group-time cells. A G x T pseudo panel.

@ Inoue (2008) uses GMM. Conditional moments evaluated at all
discrete values of g; and get exactly the same conditions.



The fixed-effects estimator for pseudo panel models

e Equation (5) suggests a naive approach to estimate 60
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where fi7, and fig, are the sample group means of y;: and x;;.

@ FE s.e.’s are invalid as they do not account for the estimation errors in
Ny nx
.ugt and ;ugt



MD for pseudo panel models
o Reduced-form parameter vector m = (Uy;, 151, Yo, Wios- - - Hiors WeT)
V(& —m) 5 N(0,9) (7)

@ Rewrite the group-level equations in the “composite residual” form
hgt(m,0) = —pug + U0 =0, g=1,...,G, t=1,..., T,
and stack all the residuals hg in one column vector h(x,0) as

h(m,0) = —p” + u*6. (8)

o Essentially by the delta method,
Vih(%,0) % N(0,M(6)). (9)
M(6) =B(6)Q2B(6). (10)

where M(0) is the inverse of the optimal weighting matrix;
B(6) = Vzh(m,0) = diag {(—l,ﬁ;t)} for By = By + 0tg + 14



MD for pseudo panel models, continued

@ the optimal MD estimator for 6:

8% = argmin h(#,0)M1h(%, ). (11)
0
where M is an estimator for M(8) using some initial estimator for 6.
o Closed-form

= [ ] (12)

@ Variance
(13)



Structure of M

@ Diagonal if samples are independent over time: recall €; = e; + uj

M = diag { (pgeke) " Var (€iclg) } (14)

where
> pgt is the fraction of population t in group g. Usually pg: = p, for a
stable population.

» K; the fraction of the whole population panel accounted for by
population t
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© Sampling-Based Finite-Population Correction



A finite population: sample mean

@ Notation: N for quantities in the population and S for quantities in
the sample.

e Given a finite population My = {yn1,¥n2,---,YNN}, Suppose we are
interested in the population mean of y

1 N
YN:NI;}/NI

@ A sample is a subset of 1y represented by the vector of inclusion
indicators (Z1,2>,...,2Zy) € {0,1}V. An intuitive estimator for yy is
the sample average

1N
yni == Y. Ziyni
i-Z=1 ni3

where =Y, Z;

e No design-based uncertainty in the sense of Abadie et al. (2020).



A finite population: variance of the sample mean

@ It can be shown that ys has mean yy and variance

_ 1 1
var(ys) = P T

where vy = ﬁ):,’-\’:l (yni —)7/\/)2 is the population variance of y. An
unbiased estimator for vy is the sample variance

1

Oy =
n—1

_ 1 _
Y (wi—7s) = 7122:' (yni — 7s)°-
i-Z=1 n—1%5

@ Therefore, an unbiased estimator for var(ys) is

var(ys) = (,17 _ i/) . (15)



A finite population CLT

@ Adopt the classical finite population CLTs for simple random sampling
by Hajek (1960), reviewed recently by Li and Ding (2017). Also used
is Lehmann (1999).

@ Theorem 1 in Li and Ding 2017 (originally in Hajek (1960)): as
N — oo, we have o
Ys— YN
Vvar(¥s)
if min(nl,an) - UM — oo, where my = maxi<i<n (yni —yn)° is the
maximum squared distance of the yy;'s from the population mean .

e Multiply both sides of Equation (16) by \/n\/var(ys) to get the

root-n format

< Normal(0,1) (16)

V(s — yn) % Normal(0, (1 — 1) vy)

where

A=n/N (17)



The finite population correction to M

o Recall M = diag {(pgeke) ! Var (eir|g) }
o With fpc:
M), = (1 —A)diag {(pgk:) " Var (eir|g) } (18)
and
Avar [\/n(8* ~ 0)] = [w My tu) (19)
= (1 A) [ M i) (20)

If s, M, =diag {(1 —At) (pgKt)_1 Var(e,-t|g)}
Estimation is straightforward.

An example where this may matter: the Integrated Public Use
Microdata Series (IPUMS) include a random sample of 10% of the
census



Simulation: setup

o Individual-level panel DGP

yit:ﬁ1+ﬁ2xit+nt+fi+uita i:17"'7Nt7 t:]-v"'>T' (21)

> B:(ﬁlaBQ):(lvl)’ nt:tili ag:gilv
» fi ~ N(ag,10).
» G=6, T=4

“education” x;; ~ N(gt/6,1),

o Key: In the first step, T finite populations of fixed sizes are simulated
using (21) and then kept fixed. In the second step, a random sample
is independently drawn from each of the T populations simulated in
the first step with the sampling rate A.



Figure: Inference comparison for the optimal pseudo-panel MD estimators with

and without the finite-population correction ([32 and ﬁg, respectively).
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Table 1: Inference comparison for the optimal psendo-panel MD estimators with and without the finite-
population correction.

A O3 (Pa) sd. Gomean  Gp mean o9 % Bias &9 Y% Bias  d9 % Bias Asy.

.01 0.213 0.211 0.212 -1.2 -0.7 0.5

.05 0.209 0.207 0.213 -0.6 2.0 2.6

.10 0.202 0.203 0.214 0.7 6.1 54

15 0.193 0.197 0.214 2.3 10.9 8.5

.20 0.195 0.192 0.215 -1.7 10.0 11.8
.25 0.188 0.182 0.211 -2.9 12.1 15.5
.30 0.174 0.177 0.212 2.1 22.0 19.5
.35 0.169 0.168 0.208 -0.7 23.2 24.0
40 0.165 0.169 0.218 2.6 324 29.1
45 0.152 0.156 0.210 2.5 383 34.8
.50 0.154 0.146 0.207 -5.1 34.3 41.4
.55 0.148 0.147 0.219 -0.9 47.8 49.1
.60 0.138 0.137 0.216 -1.0 56.5 58.1
.65 0.128 0.129 0.217 0.3 69.6 69.0
.70 0.114 0.112 0.205 -1.9 79.1 82.6
.75 0.106 0.104 0.208 -1.7 96.5 100.0
.80 0.097 0.096 0.214 -0.8 121.7 123.6
.85 0.087 0.084 0.218 -2.5 151.7 158.2
.90 0.068 0.069 0.217 1.5 221.0 216.2
.95 0.047 0.047 0.210 -1.0 3428 347.2

Mean and standard deviation (s.d.) are across Monte Carlo Simulations.
Percentage biases are calculated relative to the s.d..

The last column is the asymptotic value of the percentage bias in 3.



fpc in general

@ Can be trivially extended to any regression analysis where the sample
is a nontrivial proportion of the finite population.
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@ Partially-Matched-Sample Correction



Recall: Sampling may not be independent over time

@ A standard pseudo panel data set is composed of repeated cross
sections that are independent over time.

@ Depending on the sampling design, samples from different time period
may not be independent. Example: CPS itself; the merged outgoing
rotation groups (MORG) in CPS; the Australia Labour Force Survey
(LFS) and the Brazil Continuous National Household Sample Survey
(Continuous PNAD)



Sampling Design

Definition

Simplified Partially Matched Sampling Design

© At time t =1: (i) randomly sample n; observations to form sample 1
and (ii) randomly select a subsample of ny s, observations from
sample 1 to keep to period 2.

Q Attime t for t =2,..., T: (i) randomly sample (n; — n¢_1 stay)
observations from the population and combine with the subsample left
from t —1 to get sample t and (ii) if t < T, randomly select a
subsample of n¢ sta, observations in the newly drawn subsample of
(ns — n¢ stay) observations to keep to period t+1; if t =T, stop.
Repeat step 2 until stop is reached.




Temporal correlation

o Recall M(6) = diag {(pgke) ! Var (€it|g)} in the standard case. It's
diagonal because \/nflg, and \/nflg; t # s are asymptotically
independent.

o Now need to derive the joint asymptotic distribution of \/nfi7, and
Vnflgs for t # s

o Notice that ug, = Uy, — 130 = —hg(m,8). So
\/E.agt = _\/Ehgt(nv 9)



Decompose [ig; into two parts: the matched and the
unmatched

o Decompose i, as

nNE -1 -1
‘ngt = ngt Z r,-t7g8,-t + ngt Z r,'t7g€,'t. (22)
1€ Iss i€ I\ Its

where rjz = 1{gl.:g7,‘€]t}, Z; the index set for sample t,
Fis = I+ N I for matched, and S\ Fifor unmatched in sample t.

o Matching rate: Let yys+ be the fraction of sample t that is in the
matched subsample between sample t and sample s and ;s s be
defined similarly.

o For ease of illustration, assume Wis s = Wist = W and pgr = P,



Decompose [ig; into two parts: the matched and the
unmatched

@ CLT on the 1st part (the unmatched), for t and s jointly

(age) 40 ]6)- (7776 )]

@ CLT on the 2nd part (the matched), for t and s jointly,

(ﬁ@g-tz)g,v[(o) <V/ng[8i2t|g] l;/ngar(f;|g))]
Ve 0) \wpgVar(filg) wpeE[eZlg] )]’



Merge the two asymptotic distributions

@ Combine the two parts, and notice
Ngt/Nt — Pg,Ne/N — K¢, ns/n — Ks, we have

1€
NG (‘fgf) 4
gs

0 (pgke) E [€7]g] v, (Keks) M2 Var(filg)
N <<O> ’ <V/pg1(gKth)1/2 Var(fi|g) g(PgKt)flE [3,2s|g] >>



The Main Theorem

. 1

Deflne \UZ_ts = (Wt57twts,$)%]1ts (pgK‘tpng) 2 G&gts Where ]Its = 1{1_»7,55};

G&?’g = Var(eir|g) and O¢ gts = Cov(&ir, €is|g) which degenerates to Gg,g if
t =s. Then, under the given DGP (1) and the sampling design in

Assumption 1, the joint asymptotic distribution of \/nflg, and \/nflg; is

i) 4n| (o) (o8 vt
nl ‘s =N i & 23
Vﬁ(u; o) \wi, i (23)

In addition, the joint asymptotic distribution of \/nji;, forg =1,...,G and
t=1,..., T can be written as

Vf % N (0, WF) (24)
where W& = diag (lllz,) ¢ and

v, = {WZfS}TT'




The Optimal MD estimator for partially matched samples

o Let éw be the optimal MD estimator using the inverse of W° as the
weighting matrix,

R en—1 171 ey —1
0y = | (¥°) " e (9) e (26)
The asymptotic variance of éw can be obtained by replacing the M

matrix in (13) with W¢, i.e.,

-1

Avar(By) = n* [/ (we) 1] (27)



Discussion

l]:[s _1 .
° \llzts = (Wis,t Vis,s)2 = (PgKePgKs) 2 Og gts reveals why the off-diagonal
elements in their asymptotic variance is nonzero: for €; and & with /

referring to the same individual,
2
Oc.gts = Of g + Ougts

where Gf’g = Var(fi|g) and Oy gts = Cov(ujt, uis|g).

@ Therefore, the partially matched subsample causes correlation between
the composite error &; and €;s via the fixed effect f; as well as the
serial correlation in uj; if there is any.

@ Numerically, a relatively large y is also important.



W for MORG, T =3

e For MORG, that y; =1/2 implies only data from adjacent years have
matched subsamples,

W = (1-2)x
(pgk1) ‘o2 vi (p2Ka Kz)f% Og12 0
Y1 (P§K1 Kz)ii Og12 (PgK2)_1 61g22 ] (PéKz K3)7% 0g23
0 vi (p2ioKs) 20go3  (pgks) ' 02

(28)



Weé for LFS , T =3

e For the Australia Labour Force Survey, y3 =7/8, y» =6/8, .... When

T =3,
W = (1-1)x
1 1
(Pg Kl)_l o2 7] (Pé K1 K2) 20g12 W2 (Pg2 K1 K3) j Og13
] (p§r<1 Kz)ii Og12 (PgK2)_1 61;2 71 (Pg2 K> K3)7§ 0g23
1 s =
Vo (PzKiks) 20g13 i (pgKkoks) ? Ogos (Pgis) Oa3

(29)



Estimation

o For t =5, Oggts = Gs%gt = Var(eir|g),

6-827gt = ”;tl Y rieg (Uie — fige)? (30)
I'ejt

where Uj; is the residual obtained using the FE estimator 0, and
LNIgt = n;tl 27;1 r,‘tglj,‘t.
o For t # s, use the matched subsample between sample t and sample s:

notice that rjsg = risg for i € s,

c,\F"z,gts = m;tls Z litg (mit - agts) (His - Ugts) ,for t 7& S, (31)
1€ Iss

where mgts = Yic 4, litg-



Simulation

o xir~ N(gt/6,1), Bi=Pr=1nN=t—1land ag=g—1. xit is
independent of g;, e; and uj;.

Vit = P+ Boxie + Ne +(0g, +€1) + Ui, i € F, t=1,---, T, (32)
f

@ The simulation cases to be considered differ in their variance
specifications on f;|g (equivalently, e;|g) and variance and serial
covariance specifications on ujt|g. Four benchmark cases (Cases 1.1 to
1.4) and three extended cases (Cases 2 to 4) are designed

@ The yearly MORG sampling design is adopted with constant sample
sizes (ny = np and thus x; =1/T) and fixed group proportions
(Pgt =pg =1/G). This implies a constant matching rate
Yist = Ytss = Y = 50%

e G=8and T =10.



02 and 02, in the seven designs

8 u,g

Figure: The plots of 67 1, 6Z , and o7, against j(g,t) = (g —1)T + ¢ for
g=1.,Gandt=1,...T under G=8 and T =10.
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Simulation

@ Benchmark cases:

» Case 1.1, O'fg =1, o2 &= =100; ( o, ugt dominates O'fg)

» Case 1.2, =100, Gu =1 (07 ¢ dominates o 2 at)

» Case 1.3, Gfg =1,00 =1 (Gfg, Gigt same low level)

> Case 1.4, 07, =100, 0] 4, = 100. (07, 04 same high level)
o Case 2: cohort-wise heteroskedastic f; only

Glgg =100-1{g<g 2y +1ig>6/2) (33)

(G,?’g dominates G2 ; in half of the cells)
@ Case 3: cell-wise heteroskedastic and serial correlated wu;; only.

Uit = Youjr—1 + it (34)

Gg ot = Var(&irlg) = max{l, [Gg_gt - ygcgg t—1)} } . (35)

where Gbgt = byt [sm( GT)] and bgt =10-14+100-14 with
A={g<G/2or t<T/2} and (%,a,p) =(—0.95,3.1415,0.5).

@ Case 4, merges Case 2 and Case 3



Figure: G =6 and T = 10. 1000 replications. The sampling rate (sr) varies from
0.1% to 1% with step 0.1%. The sample cohort size in each period is roughly
240.
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The Sandwich-Form Inference

e SWH

A A A

Avar(6y) = n"1ZAZ (36)
where = = (ﬁtx’l\/lflﬁl)f1 and A = pM-1¥ M1 0%,
@ Yellow line: MORG s.e. (using lilg) is more efficient than SWH s.e.

when W is nontrivial different from the diagonal M.

@ Blue and red line: Both MORG and SWH provide good finite-sample
approximations to their respective asymptotic targets.

@ Green line: Naive s.e. generally biased.



An empirical illustration: estimating monetary returns to
education

@ For surveys of this literature, see Card 1999, Card 2001, Heckman,
Lochner, and Todd 2006, McMahon 2009 and Oreopoulos and
Petronijevic 2013 among others.

@ The specification is similar to that in Angrist and Krueger (1991).
@ The MORG files spanning from 2010 to 2019 (T = 10).



Table 1: CPS, 2010-2019

(0 2 () ) () (©) (7 ®)
PPOLS POLS MORG  MORG SWH SWH Naive Naive
Years of Edu.  0.085**  0.084**  0.249***  0.218%*  0.294***  0.245***  0.294***  0.245**
0.000)  (D.000)  (0.053)  (0.052)  (0.063) (0.061)  (D.068)  (0.067)
Marzied 01417 0,127 0.675™  0.297  0.688*** 0319  0.688**  0.319
0.002)  (0.002)  (0.120)  (0.164)  (0.131)  (0.183)  (0.121)  (0.165)
Black -0.184%**  -0.187**  0.306 0.009 1.109 0.498 1.109 0.498
(0.003) (0.003) (0.801)  (0.681)  (0.922)  (0.781)  (0.897)  (0.768)
Age 0.083*** 0.008 -0.035 -0.035
(0.001) (0.099) (0.117) (0.121)
Age Squared -0.001™* -0.000%" -0.000" -0.000™"
(0.000) (0.000) (0.000) (0.000)
Metropolitan — 0.081***  0.081*** 0.224 0.344 0.192 0.365 0.192 0.365
(0.002) (0.002) (0.544)  (0.468)  (0.703)  (0.586)  (0.803)  (0.671)
R-squared 0.269 0.276
N 449568 449568

Years 2010-2019

Results on region dummies, group dummies and time dummies are omitted.
* p < 0.05 % p <001, *** p< 0001



Consistent with the theory and the simulation results, the SWH s.e.
for education is greater than the MORG s.e. no matter the age
function is included or not in the specification (Column 3 vs 5, 11%;
Column 4 v.s. 6, 14%).

noticeable discrepancy between the Naive s.e. and the SWH s.e.
under both specifications, indicating potential bias in the Naive s.e.
for this particular application.

additional estimates separately obtained from 2010-2014 and
2015-2019 in online appendix.

The results from pooled OLS (POLS, first two columns) are reported
for comparison.



Summary

@ The simplest version of the finite population correction is a shrinkage
factor that equals 1 — A to the usual optimal weighting matrix and
asymptotic variance under infinite super population, where A is the
sampling rate.

@ The partially matched sampling design causes temporal correlation
between samples from different time periods, giving rise to a

block-diagonal weighting matrix in the minimum distance (MD)
estimation of pseudo panel models.

» (Asymptotically) more efficient.
» Conventional s.e. conservative.
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