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1. Introduction

 MTE (Heckman and Wtlacil, 1999, 2001, 2005) is a tool for describing, interpreting,
and analyzing heterogeneous causal effects of a nonrandom treatment.
« MTE(x,v) =E[Y; —Y|X =x,V =v]

 Existing methods of MTE rely heavily on IV.
* In this paper, we attempt to model, identify, and estimate MTE without IV.

« Main value of our method
« When IV is hard to find: consistently estimate heterogeneous causal effects
« When IV is available but under guestion: conveniently test exclusion of 1V
« When IV is valid: check robustness to alternative identifying assumptions




1. Introduction: literature review

 Set identification for sample selection models: Honore and Hu (2020, 2023)
 Sensitivity analysis for exclusion restrictions: Conley et al (2012), Kippersluis (2018)
 |dentification based on heteroscedasticity: Lewbel (2012, 2018)

» Extremal quantile regression for sample selection models: D’Haultfceuille et al (2018)

* Local irrelevance assumption in control function approach: D’Haultfceuille et al (2023)

Identification based on functional form: Escanciano et al (2016)
 linear outcome equations Y; = X’'; + Uy
 nonlinear propensity score w(x) = E[D|X = x]

« conditional mean independence E[U4|V,X] = E|Uy4|V]




1. Introduction: preliminaries

« Potential outcomes model

. Y=YO+D(Y1—Y0)=DY1+(1_D)Y0={YO itD=0

 Selection on observables (Y;,Yy) L D | X : PSMor IPW = ATE = E|Y; — Y]

 Selection on unobservables (Y;,Yy) L Z | X : ivregressY on (D = Z) X = LATE
« Denote D =ZD, + (1 — Z)D, where Z is binary, then LATE = E[Y; — Yy|D; = 1,D, = 0]

« Monotonicity assumption: Pr(D; = D,) = 1




1. Introduction: from LATE to MTE

 Selection model or generalized Roy model:
e D=1{u(X,Z2) = U} and (Y, Y,,U) L Z| X
» normalized to D = 1{Fyx(u(X,2)) = Fyx(U)} = 1{n(X,Z) =V}, where
 w(x,z) =E|D|X = x,Z = z] is the propensity score
* V isthe normalized error term s.t. V|X ~ Uniform(0,1) and V 1L X
« Wtlacil (2002) established equivalence of the selection model to the LATE model
« Marginal treatment effect is defined as MTE(x,v) = E|Y; — Y,|X = x,V = v]
+ ATE(x) = E[Y; — Yo|X = x] = [ MTE(x, v)dv

1

T1—Ty

« LATE(x) = f;ol MTE(x,v)dv where m; = w(x,1) and my, = m(x,0)

OE|Y|X=x,m(X,Z)=v]
ov

* ldentification of MTE: MTE(x,v) = (Z should be continuous)
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2. Model

 Selection model without IV : D = 1{u(X) = U}
« X Is not necessarily stochastically independent of U
« Separability or monotonicity is not required, e.g., U can depend functionally on X
 Exclusion restriction is not required, namely, all X can appear in outcome equations

Example 1. Consider a latent index rule for the treatment participation:
D=1{m(X,=) >0}, (2)

where the observables X can be statistically correlated with the unobservables =. and no re-
striction 1s imposed on the cross partials of the index function m. Without independence and
additive separability, model (2) is known to be completely vacuous, imposing no restrictions
on the observed or counterfactual outcomes (Heckman and Vytlacil, 2001). This general la-
tent index rule can fit into the threshold crossing rule (1) by taking (X)) = E|[m (X, =) |X |
and U = p(X) —m (X, =).




2. Model: normalization

 Selection model without IV : D = 1{u(X) = U}
« Canbenormalizedtobe: D = 1{n(X) >V}

» where n(x) = E[D|X = x| = Fyx(u(x)|x) is the propensity score

* and V = Fyx(U), satisfying V|X ~ Uniform(0,1) and V L X
« normalized error term
 the unobservables projected onto the subspace orthogonal to that spanned by X
* rank of U conditional on X
 willingness to pay
* resistence to treatment (cost) or distaste for treatment (preference)




2. Model: normalized error term

Example 2. Suppose that X s a scalar and that

() (GG w)

By the property of bivariate normal distribution, we have U |(X =z) ~ N (,{LU|X (x), J%lx)
and Fy x (u|x) = @([u— [ x (x)]/JU|X), where [ x () = (opx Jo%) . J%T|X —
1 — (07 /0% ), and ® (-) denotes the standard normal CDF. Hence,

V= Fyy (U|X) =0 (U_”U'X (X)) and V, = @ (U_”” (g)) .

Oov|x Ov|x

It s straightforward that V 1L X since Fyx (v|x) = v, but that V, ¥ X since

Fyox (v]i) =@ ((JUX [ox) (2= 2) | g (v)) ,

Ou|x

and that V, is not uniformly distributed since Iy, (v) = ® (uyy () +opx @71 (v)).
D




2. Model: definition of MTE

MTE(x,v) = E[Y; — Yo|X = x,V = v]

 Relationship between MTE and commonly-used causal parameters:

1
ATE(x) = E|Y; — Y| X = x] = f MTE(x, v)dv
0

1 (x)
ATT(X) = E[Y1 — YO|X =x,D = 1] = —j MTE(X, v)dv
m(x) 0

ATUT(x) = E[Y; = Yo|X =x,D = 0] =

1
f MTE(x, v)dv

(x)

1—m(x)

1 (™
LATE(x,vg,v1) = E[Y; = YlX =x,vy <V < vy = —— f MTE(x, v)dv
1 Y0 Jy,

11
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3. Identification

 Selection model without IV : D = 1{n(X) = V}

* ldentification by functional form (in a semiparametric version)

* nonlinear mw(x)

 linear outcome equations Y; = X'; + Uy,

 conditional mean independence E[U4|V, X]| = E[U4|V]

 w(X)— X'B,; provides excluded variation, playing the role of a continuous 1V

« Some notation before imposing the assumptions
e« X = (X% XP) where X¢ is continuous and XP is discrete
° T[O(xc) — T[(xCJ 0)

* Denote x, ;Ef, or zrf as the k-th element of z, ¢, D

or r

13



3. Identification: nonlinearity

Assumption NL (Non-Linearity). Assume that m satisfies the following NL1 when
dim (XC) = 1. or NL2 when dim (XC') > 2.

— NL1 {(dim (XC) = 1): there exist two different constants x%, ¢ in the support of
X such that mo (x¢) = mo ().

- NL2 (dim (X<) > 2): there exist two vectors x<. & in the support of X and two el-
ements k. j of the set {1, 2,--- .dim (XC)} such that mo and E [Y X¢=2“XP=0,D = d] .
d = 0.1. are differentiable at x and 7. and that (i) akxl(}( ) # 0. (i1) 9;m ( C) =+ 0,

(iii) Do () £ 0, (iv) B, (3) # 0, (v) dxmo (2°)/ B0 (a€) £ Do () / Bymo ().

« Assumption NL2 will not hold if my(x¢) = f(¥'x%). Otherwise, it generally holds.

Example 3. Consider the case of two continuous covariates. Suppose. for some smooth
function f. mo () = f (712§ + 7225 + va2§2S) ormg (2€) = f (’“li? + Y925 + 73 (&?)2) .
Then we have Oy ( ‘C) / Ty (IC) = (*‘, 1T ";»-'3;1,"5) / ("}-'2 + ’“3if) for the interaction case.
or 81:10( )/89.«10( ) — (”;’1 + 2"“3&?)/";2 for the quadratic case. In both cases. As-

sumption NL2 (v) generally holds for ¢ and 7% satisfying x$ # z§ .
e

14




3. Identification: linearity

Assumption L (Linearity). Assume that E Yy X = 2| = ag+ 2’3, for some fized oy
and B,;, d=0,1.
Assumption CMI (Conditional Mean Independence). Denote Uy = Yq — X'B,, d =
0,1. Assume that E Uy |V, X | = E Uy |V'| with probability one for d =0, 1.
« Under Assumptions L and CMI, we have:
A (zov) =" (B = Bo) + E[UL — Uy |V =]
ElY|X=z,D=d]|=2"8;+ gq (7 (x))

1 1
QU(P):E[UMV?"P}:T;O E[Up| V = v]dv,
1 pP
91(?):E[U1\V£p]:§/ E[U,|V = v]dv.
0
ElU|V=p = g(p)—(1—-p)as’ (p),
E[U,|V=p = g:(p)+pa" (p). 1




3. Identification: Assumption CMI

« E|U4V,X]=E|Uy4|V]
 Standard in the MTE literature
» also referred as separability

* Note that by definition
* ElUylX] = a4 = E[U4]
e V1X

« Assumption CMI essentially requires
the copula of (U4, V) not depend on X
* much weaker than (Uy, U) L X
 does not rule out the marginal
dependence of U; or U on X

Example 4. Suppose that X is a scalar and that

{"—d 0 Jg Taqrr 0
U ~ N 0 B Tdur 1 Tux .
A— 0 0 Tux U%(

Note that U is correlated with X in this setting. By the property of multivariate normal
distribution, we have

() (22)
U pux (z) Pau 9yix

\ T 5 1 oA
where [y x () = (oux /oy )z and opix =1 —(opx /0% ). Hence.

EUg|lU=u,X =z] = LidU (u—pyx (2))-

By Ezample 2. we have V = @ ( {U — lrix {.\’)]f ouix ). so that U = opx @7 (V) +
Hoix (X). Consequently.

E[Ug|V=v.X=2z2|=F [Ud| U=opx® "' (v) + ppx (2), X = ;r} = JgdU ! (v),
U X

and Assumption CMI holds. More generally, to allow for the dependence of Uy on X as
well. we can instead set

Lv(—i f X — I} ~ N 0 - O'i {‘T} G:d{'_,"
U Lyix (@) @ Opix

in place of (/). where o2(x) is the conditional variance of Uy given X = x. Since

E Uy V =v. X = 2| is irrelevant to the variance of Uy by the above analysis, Assump-

tion CMI will still hold in the presence of such heteroscedastic Uy.



3. Identification: main result

Theorem 1. If Assumptions L, NL, CMI, and S hold, then [3; and gq(p) at all p in the
support of the propensity score P are identified for d =0, 1.

« Theorem 1 implies identification of MTE without 1V :

AMTE (2,0) = 2 (By = Bo) + [0 (v) = g0 ()] + vg1” (v) + (1 = ) g5 (v)
 as well as other causal parameters :

AME (z) = 2" (B, = By) + [91 (1) — 90 (0)],
A (z) = 2" (B, = Bo) + g1 (7 () + U-mlz )) Ez)(:r)) — % (0)3

ATUT (2) = &/ (B, — By) + g1 (1) 1“’_(?@)( m(x)) g0 (7 (2)),

AMATE (3 40 wg) = 2 (B, — By) + v2g1 (v2) — w11 (v1) + (1 — v2) go (v2) — (1 — v1) 9o ('Ul)_
V2 — U

17




3. Identification: sketch of proof

- The identification is grounded on E[Y|X = x,D = d] = x'Bq + ga(m(x))

.+ Denote my(x©) = E[Y|X® = x,XP = 0,D = d] = x5 + ga(mo(x©))
e my(x%) and my(x¢) = E[D|X¢ = x¢, XP = 0] are directly identified from the data

akﬂ'o (.X'C)
ajTL'O (XC)

» xg o & =xg+eandx; - & =x +e- (— ) then oy (x©) remains unchanged

aij Oxro(x€)

6xk - 6jn0(xc)

+ my(&°) = xc»ﬁg + gd(ﬂo(xc)) T e ﬁg,k — € ZI;ZZ((;CQ ' :Bd,j

e intuition: the derivative of implicit function my(x%) = c is

¢« my(¢) —my(x®) =€- ﬁg,k — € ZRZS((;CE)) ' lgc(l:,j

’ md(gc) —-my(%°) =€ ﬁg,k — € Z"Z;’gcg ,Bd]
B

18
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4. Estimation: first stage

 First stage: estimation of propensity score m(x) = E[D|X = x] and P; = w(X;)

« Recommendation: nonparametric estimation
"o dim(X) b ((XC — 2O/ L\ {xD _ D
1=1"1 HI:] 1 (( il €I )/ LH) { = }

n dim(X¢
© T b (XS = 20)/ ha) | 1{XP = P}

() = P; =7 (X;)

 Probit/Logit or semiparametric estimation are also allowed

« D =1{W’y = U} where W contains all covariates in X and their interactions or
higher-order terms

20




4. Estimation: second stage

 Second stage: estimation of selection model E|Y;|X;,D; =d] = X;'B4 + g4(P;)

* Recommendation: semiparametric estimation

Ba = [Z > ai (Xi - X5) (Xi - X;) {Z Y ai (Xi — X5) (Vi = Y))

1=1 7=1+1 1=1 j=1+1

B P,
2

(60)-[So () (25)] B ), ) 6imx00)

 Parametric estimation if we are willing to parameterize g, or E[U4|V]

(]

« polynomial or normal polynomial: E[U4|V = v] = XE_, pgr @™ " (v)

21
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5. Application

« Head Start is a major federally funded preschool program in the US
* targeted at children from low-income (below the poverty line) families
« serving more than 1 million children at a cost of $ 10 billion in 2019

« Many studies show short-term positive effects on cognitive outcomes

« However, results on longer-term effects of Head Start are far from united
« relatively more results on crime and health outcomes
* less agreement regarding educational attainment and earnings

* De Haan and Leuven (2020, JoLE) attempts to fill this gap
 National Longitudinal Study of Youth (NLSY) 1979
« distributional treatment effects
« partial identification without needing IV

* \We revisit long-term effects of Head Start using De Haan and Leuven’s dataset.

23



5. Application: a review

Average effects
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5. Application: data

Table 1
Descriptive Statistics
Head Start Race
All Yes No White Black  Hispanic

Head Start 23 .08 49 21
ﬂge 32.1 32.0 32.1 32.1 32.1 32.0
Female .50 52 .50 49 51 51
Race:

White 49 16 .59

Black 31 66 21

Hispanic .20 A7 .20
Parental education:

Less than high school 21 26 .19 10 .19 .50

Some high school 15 22 13 11 25 11

High school 40 38 41 47 40 .24

College, 1-3 years 12 .07 13 .14 .09 .08

College, >4 vears 12 07 14 18 06 06
Family income 1978 16303 11,603 17,759 21,09 10946 13,077
Years of education 12.8 12.6 12.8 13.1 12.6 12.1
Wage income 22633 19,637 23456 25226 19,057 20,790
N 4876 1,132 3744 2404 1518 954

NoTE.—Sample sizes for wage income are 3,781 (all), 815 (Head Start ves), 2,966 (Head Start no), 1,985

N (white), 1,060 (black), and 736 (Hispanic).
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5. Application: first stage

Frequency of Propensity Score by Treatment Status Kernel Regression for the Largest Data Cell
| : <
© - |
|
:
00 | o
| o]
I (.?) o
2 © - : =
7] ‘w
c I c
g | A
=t - I 2
| a
| O
|
N [
o - I -l = I ! I 1 T T
T T T T T ; T T | T 0 10 20 30 40 50
0 A 2 .3 4 5 .6 7 .8 9 1 Family Income, 1978
Propensity Score
. 95%Cl Ipoly smooth

. Treated [ | Untreated

kernel = epanechnikov, degree = 0, bandwidth = 2.07, pwidth = 3.1
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5. Application: parametric second stage

 Linear specification: E[U4|V = v] = 0,49 + 04,V
 Bootstrapped confidence interval with 1000 replications

Estimated MTE (Years of Education) Estimated MTE (Wage Income)
m —
N —
Ln_ -
O —
c —
~r 0 |
1 1 | I I | | ' 1 1 ! 1] 1 | I
0 A 2 3 4 5 6 0 A 2 3 4 5 .6
Unobserved resistance to treatment (V) Unobserved resistance to treatment (V)

27




5. Application: semiparametric second stage

« E|U4|V = v] is nonparametrically specified
 Bootstrapped confidence interval with 1000 replications

Estimated MTE (Years of Education) Estimated Marginal Treatment Effects
0 —
N -
t:) .
D —
l..l.';J -
= o™
' T 1 T T T T T T T T T T
0 A 2 3 4 5 .6 0 A 2 .3 4 5
Unobserved resistance to treatment (V) Unobserved resistance to treatment (V)
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5. Application: counterfactual

« ElY3|1 X =x,V=v]=x"B;+E|[Uy|V =]
v] = (EX)'Bq + EUg|V = v]

¢ E[Yd|V

Marginal Structural Functions (Years of Education)

15
1

13

11
1

T T T

. . 4
Unobserved resistance to treatment (V)

Marginal treated outcome E[Y1|V]
Marginal untreated outcome E[YO0|V]

Marginal Structural Functions (Wage Income)

2 . 4
Unobserved resistance to treatment (V)

Marginal treated outcome E[Y1|V]
Marginal untreated outcome E[Y0|V]
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5. Application: interpretation

15

14

13

12

11

« E[Y|V =v] =E[Yy|V=v]+E[Y; —Y,|D =1,V =v]-E[D|V = v]

Marginal Response Functions (Years of Education)

2 3 4 5
Unobserved resistance to treatment (V)

Marginal observed outcome E[Y|V] (left axis)
Average observed outcome E[Y] (left axis)
Marginal probability of participation E[D|V] (right axis)

11
1

10.5
1

10
1

9.5

Marginal Response Functions (Wage Income)

2 3 A4 5
Unobserved resistance to treatment (V)

Marginal observed outcome E[Y|V] (left axis)
Average observed outcome E[Y] (left axis)
Marginal probability of participation E[D|V] (right axis)
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6. Conclusion

* \We propose an I'V-free model for MTE that nests most IV models for MTE
« \We give a set of sufficient conditions that guarantees identification of MTE without IV
 based on the method of identification by functional form

« \We provides an empirical application to illustrate the usefulness of our method
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Thank you for your listening

My e-mail: panzhew@zufe.edu.cn




