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INTRODUCTION

Many interesting parameters depend on regressions.
~Average treatment effect (ATE).

~Dynamic economic models depend on conditional choice probabili-
ties.

—Regressor effects in generalized linear regression (GLR).

The regression may be high dimensional.

This talk Is about estimating economic and causal parameters that
depend on high dimensional regressions.



Machine learners of regressions provide good predictions in a variety
of high dimensional settings.

Methods include neural nets, random forests, Lasso.

Machine learning is good for prediction but biased by regularization
and/or model selection.

If "plug-in" machine learner into formula for parameter of interest
the bias "passes through" and gives incorrect, very poorly centered,
confidence intervals.



Reduce bias by using Neyman orthogonal moment functions and
cross-fitting.

See Belloni, et. al. (2012, 2014), Chernozhukov et. al. (2018,
“Debiased/Double Machine Learning for Treatment and Structural
Parameters,” Econometrics Journal) and (2016, 2022, "Locally Ro-
bust Semiparametric Estimation," Econometrica).

Neyman orthogonal means zero first order effect of regression on
expected moment function.

Cross-fitting is a form of sample splitting where moment function is
averaged over different observations than used to estimate regres-

sions; see Bickel (1982), Schick (1986).



Neyman orthogonal moment function depends on unknown debiasing
function ap.

A primary innovation of this paper is a least squares objective function
minimized by «og that depends only on parameter of interest and so
is "automatic."

We refer to this as "Riesz regression" because it estimates the Riesz
representer from analysis.

Neural nets, random forests, and other machine learners can be used
for Riesz regression.



Another innovation is estimators depending on generalized linear re-
gressions GLR, minimizers of an expected loss.

Examples include conditional means, quantile regressions, and quasi-
likelihood maximizers.

Here give weighted Riesz regression to estimate «ay.

Other contributions include finite sample mean square error bounds
for Riesz regressions and convergence rates for neural net Riesz re-
gressions.

Give application to effect of race on banks’ mortgage denial decisions.



PARAMETERS OF INTEREST

Let W denote a data observation that includes an outcome variable
Y regressors X.

Start with 0y that depends on conditional mean ~4(X) = E[Y|X].

Example 1: Average Treatment Effect (ATE). X = (D, Z) and ~(z) =
vo(d, 2), where D € {0,1} is treatment indicator and Z are covariates.

0o = E[’VO(]-? Z) - ’70(07 Z)]

0o is ATE if potential outcomes mean independent of treatment D
conditional on covariates and propensity score wg(Z) = Pr(D = 1|2) Is
never equal to 1 or 0a (Rosenbaum and Rubin, 1983).



ATE and other parameters of interest have the form
0o = E[m(W,70)],

where m(w,v) is a scalar function of a possible data observation w
and a possible regression function v and m(w, ) is linear in .

Focus on m(w,~) such that there exists ag(X) with E[og(X)?] < oo
and

E[m(W,~)] = Elag(X)v(X)] for all v with E[y(X)?] < .

This is "Riesz representation" from analysis; includes all root-n con-
sistently estimable 05 = E[m(W,~)].



Example 1: Average Treatment Effect (ATE). Here

m(W,v) = ~(1,2) —~(0, 2),

D 1—-D
“olX) = m0(2) 1—mo(2)’

here ag(X) Is well known.



NEYMAN ORTHOGONALITY

Neyman orthogonal moment function is

P(w, vy, a, 0) = m(w,v) — 0+ az)[y — v(x)].

Chernozhukov et al. (2022, "Locally Robust Semiparametric Estima-
tion").

Second term debiases because variation in v in m(W, ) away from ~,
is cancelled out by variation of opposite sign in the bias correction

term ag(X)[Y — v(X)].



ESTIMATION

We use estimators of the regression and the debiasing function in the
Neyman orthogonal moment function, along with cross-fitting.

Let I,, (¢ =1,...,L), be partition of the observation index set {1, ...,n}
into L distinct subsets of about equal size; In practice L =5 (5-fold)
or L = 10 (10-fold) cross-fitting is often used.

Let 4, and &, be estimators constructed from the observations that
are not in I,.

The 0 and associated asymptotic variance estimator V are

L
O — % > {m(Wi, Ap) + (X)) Y — Ae(X3)13
(=11l

. 1& "2 N AL A A
V= > ip, g = m(Wy, 3p) — 0 + 6y(X5) [V — Ae(X5)].
(=11l



RIESZ REGRESSION

The function og is identified as minimizer of population objective
function:

ag = argmin B[{ag(X) — o(X)}?]
= argmin Elag(X)* — 200(X)a(X) + a(X)]
= argmin{—2E[ag(X)a(X)] + Ela(X)]}
= argmin{-2E[m(W, a)] + Ela(X)?]}
= argmin{ E[-2m(W, a) + (X))

The key is the 4th equality which follows by the Riesz representation
Elag(X)a(X)] = E[m(W, )], for all a.

Automatic in that ag minimizes an objective function that depends
only on m(W, a) and a(X).

Riesz regression is a primary innovation of this paper.



To estimate ag replace the expectation by a sample average and min-
imize over class A, of approximating functions,

& = arg Or;né&{% Z[—2m(Wi, a) + Oé(Xi)z] + p)\(a)}a
=1

where A is some set of functions of =, Wy, ..., W,, are observations on
W, and Py () is some possible penalty.

"Automatic" in only using m(W, o) and nothing about form of «y.
Example 1: ATE, where m(w, o) = a(1, z) — (0, 2),

& = arg argi[l\ {% En:[—2(04(1, Z;) — a(0, Z;)) + a(X;)%] + Py(e)}.
n Mz

The class A, could be neural nets, making & a neural net estimator
of Q.



THEORY

Assumption 1: For some M > 0 it is the case that E[m(W, a)?] < M E[a(X)?].

Define
star(A — ag) = {2z — £ (a(z) — ap(x)) :a € A, € €]0,1]}
star(mo A —moag) = {z — &(m(w; a) —m(w;ag)) :a € A, £€]0,1]}

Assumption 2: || f||,o < 1 forall f € star(A—ag) and f € star(mo A—moay).

Let
o = arg or]]eiﬂl{E[_2m(W’ o) + Oé(X)z]}

be the best approximation of ag by an element of an approximating set A. Define
the critical radius of a set of functions in the usual way and ||a|| = \/E[a(X)z].

Theorem 1: Let dy, be an upper bound on the critical radius of star(A — ag) and
star(m o A —mo«ag). If Assumptions 1 and 2 are satisfied then for some universal
constant C' it follows that with probability 1 — (

A 2
|& — aoll® < C(M6}; + ||l — agl|” +

Min(1/Q)



Theorem 2: If i) E[m(W,~v)2] < C ||7]%, ii) ag(X) and Var(Y|X) bounded; iii)

~ p ~ p A A p
foreach £, |54 — voll = 0, [|&¢ — aoll — 0, and v/n |70 — voll |&e — ol —
0 then

V(0 — 6y) -% N(0,V).

Special case of Lemma 18 of "Locally Robust Semiparametric Esti-
mation."



MONTE CARLO FOR ATE

Second paper above compares performance of Reisz regression NN
estimator with Dragon Net of Shi et al. (2019) which uses inverse of
NN propensity score estimator in &.

Monte Carlo design is 1000 semi-synthetic data sets based on the
Infant Health and Development Program (IHDP).

IHDP a randomized control trial about effect of home visits and at-
tendance at specialized clinics on future developmental and health
outcomes for low birth weight, premature infants (Gross, 1993).

Data using NPCI package in R under setting “A" (Dorie, 2016).

747 observations of an outcome Y, a binary treatment T, and 25
continuous and binary confounders X.

Debiasing function estimator & is same as Shi et al. (2019) except
use Riesz regression instead of inverse of NN estimator of propensity
score Pr(D = 1|Z7).



Results of Monte Carlo using NN for outcome and Riesz regression.

Median Absolute Error + std. error

Riesz Reg  Dragon Net
110 + .003 .146 + .010

Also coverage probability of nominal 95% confidence interval was
.950.

Perhaps NN Riesz regression is better than inverting estimator of

propensity score Pr(D = 1|Z) when Z is high dimensional and the
denominator probability can be close to zero.



GENERALIZED LINEAR REGRESSION

Let T be linear, mean square closed set.
A GLR is minimizer of expected objetive function over linear set T,

Yo = arg [ynEIP E[Q(VV, ’Y)]

First order condition is, for a constant a,

Eb(X)p(W,~vg)] =0forallbel, p(W,~v) = —%Q(W,’y +a). (1)

Here p(W,~) is a residual and equation (1) specifies that the residual
Is orthogonal to regression set I'; what follows depends just on this
residual.

Includes conditional quantiles and many other ~j.



Continue with parameter that is linear in ~g;

0o = E[m(W,~g)], m(W,~) is linear in ~.

Here let v, (x) € T be Riesz representer,

E[m(W,~)] = Elon(X)y(X)], Elvm(X)?] < oo,

Example 2: Average Difference in Log-odds.

Here consider a binary outcome of interest Y € {0, 1}

Pr(Y = 1|D, 2)
Pr(Y =0|D, 2)’

0o = Elvo(1, Z) — v0(0, Z2)], vo(D,Z) =In

This ~g is a generalized regression where

p(W,7) =Y — pu(v(X)), pis logit CDF.



Orthogonal moment function for GLR from Ichimura and Newey
(2022) is

Y(w,v,a,0) =m(w,v) — 0+ a(z)p(w,v), y€I, ael.

Here ag(x)p(w,~) "cancels out" first-order effect of v on on m(w, ).



Suppose there is 5,(W)

B (W)IX] = — - Blp(Wyr0 + a)|X]|

where a 1S a scalar.
Normalize so that v,(X) < 0.

Weighted Riesz regression is

ag = arg min E[—2m(W, o) — 5p(W)a(X)?].

Weight ©,(W) corrects for effect of von E[ag(X)p(W,~)].



For ©,(W) an estimator of ©5,(W), a weighted Riesz regression estima-
tor of ag Is

& = arg min {— Z[—Zm(Wi, o) — Dp(Wy)a(X;)%] + Py ()}

Example 2: Recall that p(W,~v) = Y — u(y(X)); we can use 9,(W;) =
—1a(Y(X))

for pu,(a) = duy(a)/da; a weighted Riesz regression estimator of «q is

& = arg min (- Y"[-2{a(L, )~ a(0, Z)} + 1 (3(X)a( X)) + Pr(a)}.
n 1=1



Estimator with cross-fitting is constructed analogously to before.

~ 1 n ~ A

0==> > {m(Wy40) + &u(X;) p(Ws, 4¢(X5)) },
n /=1 ’LEIg
1 L "D AN AL A A
n (=11l

Extensions of Theorems 1 and 2 for generalized regression given in
the paper.

These account for presence of 9,(W;); convergence rate passes through
to a.



EMPIRICAL EXAMPLE

Question: Does race predict mortgage denial decisions of banks.

Following Munnell et al. (1996), we use the publicly available Boston
Home Mortgage Disclosure Act (HDMA) dataset.

The dataset of 2,925 mortgage applications for 1990.in the greater
Boston metropolitan area.

We restrict attention to black and white applicants, single-family
households (excluding other racial minorities and multi-family resi-
dences), which reduces our sample size to 2,380 observations.



12 covariates involving individual characteristics and some credit his-
tory.

Our outcome of interest is an indicator Y = 1 if the mortgage appli-
cation was denied.

Estimate three parameters of interest.



1. Difference in Probability of Mortgage Denial:

90 — E[/YO(]W Z) - 70(072)]7 ’YO(D,Z) — E[Y|D7 Z]

This parameter is an average difference in probability of mortgage
denial between a black and a white applicant with the same value of
covariates Z.

2. Average Difference in Log-Odds of Mortgage Denial:

Pr(Y = 1|D, Z)

Pr(Y =0|D, 2)
Approximate average percentage difference in odds of mortgage de-

nial between a black and a white applicant with the same value of
covariates Z.

0o = E[’YO(]-) Z) - 70(07 Z)]a ’70(D7 Z) = In

3. Average Difference in Odds of Mortgage Denial:
Pr(Y = 1|D, Z)
Pr(Y =0|D, 2)’

0o = Elexp(vo(1, Z)) — exp(70(0, Z))], vo(D, Z) = In



Results: Average over covariates of racial differences in probability of
denial.

Mortgage Denial Estimated Using Neural Nets

Probability Log-Odds Odds
est se est se est se

0.080 (0.021) 0.829 (0.152) 0.157 (0.044)



NONLINEAR FUNCTIONS OF »

Can also allow for m(W,~) to be nonlinear in ~.

Let D(W, ) = Om(W, 4 + ta)/0t|,_q for scalar t be derivative of m(W, v)
with respect to ~ Iin direction o at 4.

Form & by replacing m(W, a) by D(W, «) in Riesz regression, i.e.

& =arg min { ;[ 2D(Wy, @) — 0 ,(W)a(X,)%] + Py(a)}-

Estimators & and V same as above.



SUMMARY

Automatic debiased machine learners using Riesz regression.

Enables debiased machine learning using neural nets, random forests
and other machine learners.

Performs well in Monte Carlo examples.
Debiased machine learners for GLR

Empirical examples.



