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A variety of interesting parameters may depend on high dimensional re-
gressions. Machine learning can be used to estimate such parameters. How-
ever estimators based on machine learners can be severely biased by regular-
ization and/or model selection. Debiased machine learning uses Neyman or-
thogonal estimating equations to reduce such biases. Debiased machine learn-
ing generally requires estimation of unknown Riesz representers. A primary
innovation of this paper is to provide Riesz regression estimators of Riesz
representers that depend on the parameter of interest, rather than explicit for-
mulae, and that can employ any machine learner, including neural nets and
random forests. End-to-end algorithms emerge where the researcher chooses
the parameter of interest and the machine learner and the debiasing follows
automatically. Another innovation here is debiased machine learners of pa-
rameters depending on generalized regressions, including high-dimensional
generalized linear models. An empirical example of automatic debiased ma-
chine learning using neural nets is given. We find in Monte Carlo examples
that automatic debiasing sometimes performs better than debiasing via in-
verse propensity scores and never worse. Finite sample mean square error
bounds for Riesz regression estimators and asymptotic theory are also given.

1. Introduction. Many parameters of interest depend on regressions. Examples include
treatment effects, regression decompositions, and policy effects. Often, a regression may be
high dimensional, depending on many variables. For example there may be many covari-
ates for treatment effects. Machine learning methods such as neural nets, random forests,
and Lasso can be used to estimate parameters of interest that depend on high dimensional
regressions.

A general problem with estimating parameters of interest using machine learning is that
machine learners are biased by regularization and/or model selection. This bias may pass
through when the learner is plugged into a formula for a parameter of interest and make the
parameter estimator highly biased. This problem can be avoided by using Neyman orthogonal
estimating equations where machine learners have zero first-order effect. Cross-fitting, a form
of sample splitting, can also help.

The orthogonal estimating equations for regressions depend on a Riesz representer o that
must be estimated. The primary innovation of this paper is to provide an automatic estimator
of g that uses only the definition of the parameter of interest and the regression but does
not require knowing a formula for ovg. We give an objective function with expectation that
is minimized at o that depends only the parameter of interest. We refer to minimization of
this objective function as a Riesz regression, being equivalent to minimizing the expected
squared deviation from «aq. Neural nets, random forests, and other methods can be used for
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this Riesz regression. Using the Riesz regression estimator in the bias correction completes
an algorithm that 1) specifies the parameter of interest; 2) specifies a learner of the unknown
regression; and 3) uses the Riesz regression estimator of o determined by steps 1) and 2).

A second innovation of this paper is to construct and derive properties of estimators that
depend on generalized regressions, which minimize an expected loss over some linear set
of functions. These generalized regressions include conditional means, least squares pro-
jections, functions that minimize quasi-likelihoods, and quantile regressions. Debiasing for
generalized regressions depends on a weighted version of the Riesz representer. We give a
weighted Riesz regression that only uses the parameter of interest and the generalized regres-
sion for bias correction.

A third contribution of this paper is finite sample mean square error bounds for Reisz
regressions. These bounds are obtained using the critical radius of functions of o on which
the objective function depends and approximation error bounds for the unknown «. A fourth
contribution is convergence rates for neural net Riesz regressions. These are based on known
results on critical radius and approximation error for neural nets and the finite sample bounds
given here.

In work that followed up on the first version of this paper (Chernozhukov et al. (2022a))
we found that using Riesz regressions to debias neural net and random forest estimators of
the average treatment effect was much more accurate than state of the art methods based on
inverse propensity score weighting, in a Monte Carlo study. Both the automatic neural net
and random forest debiasing also led to accurate confidence intervals in those experiments.

Automatic debiasing for Lasso and reproducing kernel Hilbert space regressions was pre-
viously given by Chernozhukov, Newey and Singh (2022) and Singh, Xu and Gretton (2022)
respectively. The estimator of o given here goes beyond these to provide automatically de-
biasing for generalized regressions based on neural nets, random forests, and other machine
learners. These innovations allow researchers to use any of a wide variety of automatically
debiased machine learners learners to estimate parameters of interest that depend on gener-
alized regressions. For example, automatic debiased machine learning with neural nets could
be especially useful for parameters that depend on high dimensional, nonlinear generalized
regressions.

This paper builds on recent work on Neyman orthogonal scores and debiased machine
learning. We use model free orthogonal estimating equations like those of Chernozhukov
et al. (2022b) that are the sum of an identifying moment function and a bias adjustment
(influence function) term for generalized regression from Ichimura and Newey (2022). Those
papers did not give the Riesz regression. Finite sample mean square error bounds for a general
learner of ag are obtained by applying results of Foster and Syrgkanis (2019) that characterize
error bounds in terms of critical radius and approximation. The rate of convergence for neural
net Riesz regression use critical radius and approximation rate results given in Farrell, Liang
and Misra (2021a). Additional neural net rate conditions could be obtained using Yarotsky
(2018). The learner of oy differs from those of Farrell, Liang and Misra (2021a,b) in using
the Riesz regression rather than a known form for ay.

We also build upon ideas in classical semi- and nonparametric learning theory with low
dimensional regressions using traditional smoothing methods (Van Der Vaart (1991); Bickel
etal. (1993); Newey (1994); Robins and Rotnitzky (1995); Van der Vaart (2000)), that do not
apply to machine learners. The orthogonal estimating equations given in Chernozhukov et al.
(2022b) and used here build on previous work on nonparametric orthogonal moment func-
tions by Levit (1975); Hasminskii and Ibragimov (1978); Bickel and Ritov (1988); Newey,
Hsieh and Robins (2004). Targeted maximum likelihood (Van Der Laan and Rubin (2006))
based on machine learners has been considered by Van der Laan and Rose (2011) and large
sample theory given by Luedtke and van der Laan (2016).
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In section 2 we give the Reisz regression and an automatic debiased machine learning
algorithm for parameters that depend linearly on a nonparametric regression, including ex-
amples. Section 2 also gives finite sample mean square error bounds for the general and
neural net Riesz regression and asymptotic inference results for parameters that are linear
functionals of a nonparametric regression. Section 3.2 extends the estimation methods and
theory to nonlinear functionals of generalized regressions. In section 4 we illustrate the use-
fulness of our methods with an empirical application. Section 5 presents the results of our
simulation exercises.

2. Average Linear Effects for a Conditional Mean. To highlight the innovation pro-
vided by the Riesz regression, we first consider average linear effects that depend on a condi-
tional mean. In section 3 we consider the general setting of nonlinear functions of generalized
regressions.

2.1. Parameters of Interest. 'We consider data that consists of i.i.d. observations W7, ...,
W, each having CDF Fj. A data observation W includes an outcome variable Y and regres-
sors X. In this section, we focus on parameters that depend on the conditional mean of Y
given X . We will denote a possible such regression function by 7, with yo(z) = E[Y | X = z]
being the true regression function.

The parameter of interest 6§y has the form

2.1) 0o = E[m(W, )],

where m(w, ) is a functional that depends on a data observation w and a possible regression
function . For now, we assume that the expected functional v — E[m(W,~)] is linear and
continuous in +y, meaning that there is a constant C' > 0 with | E[m(W,~)]|? < CE[y(X)?]
for all v with E[y(X)?] < co. Under this assumption, there exists a function v, with
E[vim (X)?] < oo such that

(2.2) E[m(W,~)] = E[vm(X)y(X)] forall vy with E[y(X)?] < co.

The existence of this v, follows from the Riesz representation theorem, and it is equivalent
to the semiparametric variance bound for 6 being finite (see Newey (1994); Hirshberg and
Wager (2021); Chernozhukov, Newey and Singh (2019)). For these reasons vy, is often re-
ferred to as the Riesz representer. In this Section, where the parameter of interest depends on
a nonparametric regression, the Riesz representer v,, = cg needs to be estimated for debi-
ased machine learning. In section 3, where v may be a generalized regression, oy will be a
weighted version of the Riesz regression.

There are a variety of important, empirically relevant parameters of interest that have this
form. We illustrate with some familiar examples to help highlight and motivate the Riesz
regression:

EXAMPLE 1 (Average Treatment Effect ). Suppose that X = (D, Z) where D is a binary
treatment indicator, and Z are covariates. The parameter of interest is 6y in equation (2.1)
with

m(W,v) =~(1,2) — (0, Z).

IfY=D-Y(1)+(1—D)-Y(0), where potential outcomes (Y (1), Y (0)) are conditionally
independent of treatment D given covariates Z, then this object is the Average Treatment
Effect or ATE (Rosenbaum and Rubin (1983)). In this example the Riesz representer is

D 1-D
o= T T (@)
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where mp(z) = Pr(D = 1| Z = z) is the propensity score. Here (X ) is the difference of
the Horvitz and Thompson (1952) weights for treated and untreated and E[ag(X)?] < oo if
and only if E[mo(Z2) (1 — m(2))7!] < .

EXAMPLE 2 (Average Marginal Effect). Suppose again that X = (D, Z) where D is now
a continuous treatment or policy variable, and Z are covariates. The parameter of interest is
0y in equation (2.1) with

m(W7 ’Y) = ad’Y(X%

where we denote Jyg(z) = dg(x)/dd for any function g. This object can be interpreted as
an average treatment effect for continuous treatment D, see Imbens and Newey (2009). Here
the Riesz representer is

Oz()(X) = —8dlnf0(X),

where fy(X) is the (true) joint probability density function (pdf) of X . Here equation (2.2)
follows by integrating by parts, and then multiplying and dividing by fo(z).

EXAMPLE 3 (Average Policy Effect). Suppose that 7y does not vary with the distribution
of X. Then, the average effect of a conterfactual shift in the distribution of regressors, from a
known distribution with pdf gg to another known distribution with pdf g; is the 6 of equation
(2.1) with
91(X) — go(X)

fo(X)

where fo(z) is the (true) pdf of X in the data. Here the Riesz representer is

g1(X) — go(X)
fo(X) ’

with equation (2.2) following from the second equality in the expression for m (W, ).

m(W, ) = / () (g1 (z) — go(x))dz = B 1),

Oéo(X) =

2.2. Estimation . We will base estimation of 6y on a Neyman orthogonal estimating
equation, i.e. score, where first step estimation has zero first order effects, that is also doubly
robust in having expectation zero if either v = vy or a = «g. This score is

(2.3) P(w,7,a,0) =m(w,y) =0 + a(z)(y — (),
as in Chernozhukov et al. (2022b), where taking expectations gives, for any «, v,
E[y(W,7,a,60)] = E[m(W,)] — o + E[a(X)(Y —v(X))]
=E[m(W,y =10)] = Ela(X)(7(X) —70(X))]
(2.4) = — B[(a(X) — ao(X))(7(X) =70 (X))]:

Here we see that at the true parameter value 6y, the expectation of the score (W, ~, «, 0)
differs from zero only to second order and equals zero if either v = vy or a = . Thus the
score is Neyman orthogonal and doubly robust in that it has zero expectation if either v = g
or & = Q.

Estimation of oy is essential to construction of a debiased machine learner of the parameter
of interest. The primary innovation of this paper is to give an extremum characterization of
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ap and use this to estimate og. This extremum characterization is given by

ap = argmin E[(ag(X) — a(X))?]
= argmin Efag(X)? — 200(X)a(X) + a(X)?]
= argmin{—2E[vy, (X)a(X)] + Ela(X)*]}
(2.5) = argmin E[-2m(W, o) + a(X)?],

where the third equality holds because E[cg(X)?] does not depend on o and oy = vy, and
the fourth equality follows from equation (2.2) with v = «. This characterization can be used
to estimate g by replacing the expectation with the sample average and minimizing over
some set of possible o functions.

We call a resulting estimator of «y a Riesz regression, motivated by minimization of the
least squares objective function in equation (2.5). This estimator is automatic in dependng
only on the function m(w,y) that determines the parameter of interest and in not requiring
the form of ayg. In particular, this method does not depend on plugging in non-parametric
estimates of components of ay. This feature is useful when a does not have a simple form.
For causal parameters such as those of Examples 1-3, the Riesz regression avoids inverting a
learner of a conditional probability or a pdf. Instead, the Riesz regression learns aq directly.

Our estimation strategy for the parameter of interest is to combine the Reisz regression
estimator of ag and estimation of g in the Neyman orthogonal score with the use of cross-
fitting to reduce overfitting bias.' The outline of our estimation strategy is as follows:

1. Partition the set of data indices 1,...,n into L disjoint subsets of about equal size Iy,
{=1,...,L;
2. Foreachdatafold/=1,...,L:
a) Estimate 4, € G,, as a non-parametric regression of Y on X over some class of func-
tions G,, using observations not in .
b) Estimate the debiasing function &y using observations not in I, by minimizing a sam-
ple version of the objective function in equation (2.5) over a set of functions, as in

by = argoflel%, [Z {—2m(W;,a) + a(X;)?} + Ay ()
i¢l,
Where A, («) is a penalty term and r is a scalar determining the magnitude of penal-
ization.
3. Estimate the parameter of interest using the cross-fitted regression and debiasing function
in the moment function of equation (2.3) to obtain

L
0= 157 (mWi,30) + (X (Y~ 40(X0))

{=11i€l,

4. Estimate the standard error of § as /V /n, where:

L
V= % > {m(Wia%) +ae(Xi) (Vi = 5e(Xi)) = é}Q

ISee Newey and Robins (2018) for more on the advantages of cross-fitting.



Our estimation strategy is very general, allowing for any choice of learner 4y and any
Riesz regression ¢y encoded in the class of functions .4,,. Special kinds of Riesz regressions
have been given in previous literature. These include linear combinations of a dictionary of
functions (b1(x),...,by(x))’, and p large, with an L; penalty in the loss function (Cher-
nozhukov, Newey and Singh (2022)), or functions embedded in a reproducing kernel Hilbert
space (Singh (2021)). Chernozhukov et al. (2020) allowed for the estimation of « in arbi-
trary function spaces, but proposed a computationally harder minimax loss formulation. A
primary innovation of this paper is to provide the Riesz regression for automatic estimation
of ag and corresponding asymptotic theory.

As an example, below we will give primitive conditions for a neural net Riesz regression.
A general neural net takes the form

S g L2y T pm)

where H) = ={H, @) 1 are called neurons, z is the original finite-dimensional input, and
the function f; maps one layer of neurons to the next as in

firo s (HP )4 = (L {0 (0B i),

where each [ is a K;_; vector of parameters and o(u) is a nonlinear activation function.
We will focus on the case where o (u) is the RELU function o (u) = max{0, u}. An important
special case is a multilayer perceptron (MLP) network where the number of neurons K; = K
is the same for each layer, for which results were recently given by Farrell, Liang and Misra
(2021a). Sparse versions of this specification, where many of the elements of the coefficient
vectors 33, ; may be zero, have also been considered recently by Schmidt-Hieber (2020).
Yarotsky (2018) gave other neural net specifications with good approximation properties.

In the setting of Example 1, a neural net Riesz regression would be constructed as
ay(d, z) = a(d, z; Be), where:

b = axgmin [Z {=2(a(1, 23 8) — a(0, Z: §)] + a(Di, Zi: §)} + Ay (B)
i¢l,
for some penalty function A, (3) (e.g., L1, L2, or the elastic net). Because D is binary, a
convenient neural net architecture in this case could be a bi-headed MLP, «(d, z; 3, ¢, 61) =
dg(z; 8)'61+ (1 —d)g(z; B) o, where g(z; 3) is an MLP. An even more flexible specification
would be to have «(d, z; 5o, f1) = dg(z, Bo) + (1 —d)g(z, 1), i.e. an MLP for the case d = 1
and another MLP for the case d = 0. A
For Example 2, a neural net Riesz regression is &y(d, z) = a(d, z; B¢), where:

Be = arg min [Z {—2[040(Ds, Zi; B)] + a(Di, Zi; 8)* } + Ar(B) |-
igl,

In particular, notice that the loss function involves taking a derivative of the neural net with
respect to one of the inputs. A convenient parametrization of the neural net in this case
is a locally linear function «(d, z; ¢, 8) = ¢(d, z)'g(z; 8), where ¢(d, z) is a dictionary of
known, differentiable basis functions, and g(z; ) is a neural net (e.g. an MLP). In that case,
Oqa(d, z; B) = [0q9(d, )] g(z; B). This approach was used in Chernozhukov et al. (2022a)
to construct a random forest estimator of g, exhibiting good performance in Monte Carlo
simulations.

2.3. Large Sample Inference for Linear Effects of Regression. In this Section, we give
mean square convergence rates for learners ¢y and y/n-consistency and asymptotic normahty
results for the learner 6 of the object of interest and its asymptotic variance estimator V. We
first derive convergence rates for &.
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2.3.1. Convergence Rates for ¢y . In this subsection we suppress the ¢ subscript for
notational convenience. We consider the problem of estimating

ap = argmin E[—2m(W, o) + a(X)?],

where we have used the extremum characterization of oy in equation (2.5). For any random
variable a(W) let |la| = v/E[a(W)?] and ||a|| ., = sup,ew |a(w)|. For simplicity of expo-
sition we will only consider the case where the estimate is defined over a growing sieve space
A, and no regularization is used, i.e. A,(a) = 0:

I
&
=

o
=
=

(2.6) a in »_{-2m(W;a) +a(X;)’},
=1

Our estimation rate can easily be extended to regularized estimation with appropriate regular-
ization weight. We assume that m (W, «) is mean square continuous in the following sense:

ASSUMPTION 1. For some M > 0 it is the case that E[m/(W, a)2] < M |||

Define:
star(A, —ap) = {z = & (a(z) —ap(z)) :a € Ay, £€]0,1]}
star(mo A, —moag) = {w—=E{(MmW,a) —m(W,ap)) : a € Ay, £ €1[0,1]}

ASSUMPTION 2. || f|, < 1forall f €star(A, —ap) and f € star(mo A, —mo«ayg).

Define:
o = arg min E[-2m(W,a) + a(X)?]

a€cA,

to be the best approximation of o by an element of A,,.

THEOREM 2.1. Let d,, be an upper bound on the critical radius of star(A, — og) and
star(m o A,, — mo «ayp). If Assumptions 1 and 2 are satisfied then it follows that with proba-
bility 1 — (, for some universal constant C,

MlIn(1
o a0l < € (332 + la” = aalf + HEE),

See e.g. Foster and Syrgkanis (2019) for the definition of the critical radius used in the
statement this result. To use Theorem 2.1 to obtain a mean square convergence rate for &
it is important to know the critical radius and the rate at which ||a. — ayp]| shrinks as the
approximating set .4,, becomes richer. For example, Farrell, Liang and Misra (2021a) have
recently obtained such results for deep, ReLU neural nets. We can apply their results to obtain
a mean square rate for such a learner of cvg when z is a d dimensional input for the multilayer
perceptron (MLP) network with m layers and width K.

The convergence rate depends on the smoothness of the function ag(z), as specified in
the following result. Specifically we assume that the support of X is contained in a Cartesian
product X of compact intervals and o (X) can be extended to a function that is continuously
differentiable on X" and has 3 continuous derivatives.



COROLLARY 2.2. If(i) the support of X is contained in a Cartesian product of compact
intervals and (X)) can be extended to a function that is continuously differentiable with 3
continuous derivatives; (ii) A, is an MLP network with d inputs, width K, and depth m with
K — 00 and m — oo, (iii) m o A, is representable as such a network; then there is C > 0
such that, for any € > 0,

|6 — ao|? = Op(K2m? In(K?m) In(n) /n + [Kmy/In(K2m)]~28/d+e),

When « is smooth enough, in that (3 is large enough, the upper bound on ||& — ag|| in
Corollary 2.2 gives a mean square convergence rate that can be close to, but less than n~1/2
Such rate can be obtained by choosing the width K and depth m to approximately balance

the two terms in Corollary 2.2, K =< nwid) In(n), m =< In(n), as in Farrell, Liang and Misra
(2021a), in which case

& — a0l =0, (n*ﬁ 1n8(n)) .

Faster rates could be obtained using the neural nets of Yarotsky (2018) or the sparse neural
nets of Schmidt-Hieber (2020). We focus on Corollary 2.2 for the MLP neural net because it
is a widely used architecture in practice, and because the rates obtained are fast enough for
the estimators of the parameter of interest to be asymptotically normal.

2.3.2. Large Sample Inference for 6. We use additional regularity conditions to show
asymptotic normality of ¢ and consistency of the asymptotic variance estimator V. We will
first give a general result for 6 that applies to any &, and does not rely on Theorem 2.1 for a
convergence rate for &,. Similarly, any regression learner 4, can be used here as long as its
mean-square convergence rate is fast enough, as formalized below. Such convergence rate re-
sults are available for shallow (Chen and White (1999)) and deep (Yarotsky (2018); Schmidt-
Hieber (2020); Farrell, Liang and Misra (2021a)) neural nets, random forests (Syrgkanis and
Zampetakis (2020)), LASSO (Bickel, Ritov and Tsybakov (2009)), boosting (Luo, Spindler
and Kiick (2022)) and other high-dimensional methods.

The following assumption imposes a few additional regularity conditions. Let o3 (X) =
E[(Y —~0(X))? | X] denote the conditional variance of Y given X.

ASSUMPTION 3. ay(X) and o3 (X) are bounded and E[m/(W,v0)?] < co.

Next, we require mean square consistency of 4, and &y, that the product of their mean-
square convergence rates is smaller than n~'/2, and a boundedness condition for é.

ASSUMPTION 4. (i) |92 — 70| 2 0 and ||ag — a|| = 0; (i) v/72 || 3¢ — ~ol| |6 — cvo|| 2>
0; (iii) (X)) is bounded.

Part (i) implies that both 4, and &, are consistent in mean square. Part (ii) captures an
important tradeoff between the rates of convergence for 4, and é&y. In settings where the
regression can be estimated at a relatively fast rate of convergence, the learner for the de-
biasing function can converge more slowly, and vice versa, as long as the product of their
mean-square convergence rates vanishes faster than n~'/2. The results we have obtained for
the neural net learner &, can be used to verify these conditions and we do so in Corollary
2.4 to follow. The mean square convergence of 4y is a primitive condition for this paper and
allows use of a wide variety of 4, in the construction of the estimator.

We have the following large sample inference result under these conditions.
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THEOREM 2.3. If Assumptions 1, 3 and 4 are satisfied, then
V(=003 NO,V) and VBV,

where V is the variance estimator defined in subsection 2.2 and V = E[{m(W,~o) — 6 +
ao(X) (Y —70(X))}]-

Next we use Theorem 2.1 and Corollary 2.2 to formulate regularity conditions when &y is
the neural net learner of « in section 2.2. Let

2 = K*m?In(K?*m)In(n)/n+ [Kmy/In(K2m)]~28/d+e,

This €2,, is taken from the upper bound for ||é; — g ||* in Corollary 2.2 and so characterizes
the mean square convergence rate of the automatic neural net learner &,.

COROLLARY 2.4. Suppose that Assumptions 1, 2, 3 and the hypotheses of Corollary 2.2
hold. Moreover, suppose that |5 — Yol = 0, €an — 0 and \/n |5 — 7ol| €an = 0. Then, for
the neural net learner &y of Corollary 2.2, we have

Vi@ —0) B NO,V) and V5V
3. Average Effects for Generalized Regressions.

3.1. Linear Effects. In this section we extend the results to parameters that depend on
functions 7y other than the conditional mean, that we refer to as generalized regressions.
Suppose that 7y is defined as the solution to a general M -estimation problem:

(3.1) ~o :=argmin E[{(W,~)],
~yel

where I' is a closed (in mean square) linear subspace of L?(X ). For example, when £(W, ) =
(Y — 4(X))? is the square loss and I' = L*(X), then 7o(X) = E[Y | X] and we recover
the case of regression.

By the first order condition of the minimization problem (3.1), g satisfies

(3.2) E[p(W,7)b(X)] =0 forallbeT.

for some functional p(W, ), typically a generalized notion of the (negative) derivative of the
loss function ¢(TV,~). In the case of regression, we can take p(W,v) =Y — (X)) to be the
non-parametric residual. For other statistical problems, we will refer to the function p(W, )
as a generalized residual. The results of this section will apply to any ~q that is identified by
an orthogonality condition as in (3.2), even beyond M -estimation problems.

This setting covers many interesting features of the conditional distribution of Y given
X. First, suppose that I' = L?(X), so that the functional form of -y, is unrestricted. For ex-
ample, when p(W,~v) =7 — 1(Y <~(X)) for 0 < 7 < 1, then 7o(x) is the 7-th conditional
quantile of Y given X = z. When p(W,~) = A(v(X))[Y — p(v(X))] for a link function
w(a) and another function A(a), this corresponds to the first order conditions of a general-
ized linear model (Nelder and Wedderburn, 1972). For binary Y € {0, 1}, n(a) the standard
logistic CDF, and A(a) = 1, for instance, this set up corresponds to a (non-parametric) logis-
tic regression, where vo(X) = '(Pr(Y =1| X)) =In(Pr(Y =1| X)/Pr(Y =0 X))
corresponds to the log-odds.

The set I' could be used to encode parametric or semi-parametric restrictions on yg. One
example is X = (X1, Xo,...) and I" the mean square closure of finite linear combinations
of X. This corresponds to a high (infinite) dimensional, approximately sparse I', where the
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orthogonality condition is equivalent to E[X;p(W,~0)] = 0 for all j. In a case considered
also by Hirshberg and Wager (2021) and Farrell, Liang and Misra (2021a), I" is the mean
square closure of {a(X1) 4+ X,b(X1)} where a(X) is a scalar function and b(X1) a vec-
tor of functions, each having unrestricted functional form. We could also take I' to be the
mean-square closure of additive functions a1(X1) + a2(X2), where X; and X, are distinct
components of X. In some cases, the resulting vy will have a projection interpretation: for
instance, when £(W, ) is the square loss, then o = arg min,er E[(E[Y | X] — v(X))?] is
the best approximation to E[Y | X] in I in the mean-square sense.

For now, we also continue to assume that the parameter of interest has the form 6y =
E[m(W, )], where v +— m(W,~) is linear and E[m(W,~)] is mean square continuous on
I". We will relax the linearity assumption in section 3.2. We will extend the results of the
previous section by modifying (2.3). Define, for any v, € I, a score:

(3.3) P(w, 7,0, 0) = m(w,y) = 0+ az)p(w,7),
where we have replaced y — y(x) with the generalized residual p(W, 7).

This score satisfies E[¢)(W, 0, a, 0p)] = E[a(X)p(W, v9)] = 0 for any « € T by (3.2), and
hence it is Neyman-orthogonal with respect to a. To get Neyman orthogonality with respect
to v we need to find a function g that satisfies

(3.4) ;E[w(W,’YoJrrd,ao)] — B{om(X) 4+ a0(X) 0,(X)}5(X)] =0 VseT,
r=0

where v, (X) is the Riesz representer in (2.2) and, for a scalar a,

0p(X) = LElp(Wr0+a) | X]|
a a=0
that we assume exists. We further assume that we can normalize the sign of p(W,~) so that
v,(X) <0, as will hold when E[p(W,~o + a) | X] is monotonically decreasing in a. For
example, when p(W,v) =Y — «(X) as in Section 2 we have v,(X) = —1. Also, when
p(W,7) =p — 1Y <~(X)) then v,(X) = —fyx(70(X) | X), the negative of the con-
ditional pdf of Y given X evaluated at y = vo(X).> The Neyman-orthogonality condition
above includes v,(X'), which was previously equal to —1. Here v,(X) is needed to account
for the effect of  on the residual p(W,~).

REMARK 3.1. The orthogonal score will also be doubly robust, in the sense that
E[¢Y(W,00,7,a0)] =0 for all v € T, if and only if E[ag(X)p(WW,v)] is affine in . This
follows from E[m (W, )] being linear in y and from Chernozhukov et al. (2022b). There are
many interesting cases where double robustness does not hold, such as conditional quantiles
or generalized linear models. Even if the score in equation (3.3) is not doubly robust, it will
still be orthogonal, enabling /n-consistent estimation and asymptotically normal inference
on Ay when g and o are estimated by machine learning.

A key innovation of our work is to note that Equation (3.4) can be viewed as the first order
condition to the following optimization problem:

ap = arg IaneilgE[—va(X)a(X) —,(X)a(X)?]
= axgmin { -2 Elun (X)a(X)] - Elu,(X)a(X)?]}

(3.5) =arg mei%lE[—Zm(W, @) —v,(X)a(X)?],

Note that since ~0 corresponds to the p quantile of Y | X, if we denote with vg(p, X ) the p-th conditional

quantile and with dp~yg(p, X) its derivative with respect to p, then we have vp(X) = —(Ipyg(p, X ))_1.
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where the second equality follows by linearity of expectations, and the third equality follows
by equation (2.2). Thus, oy minimizes the expectation of an objective function that depends
on « only through the functional of interest m (W, «) and a(X). As with equation (2.5),
minimizing this objective function does not require any knowledge of the form of «y.

When v,(X) # —1 the a will not be the Riesz representer v,,(X). Instead, ap can be
interpreted as minimizing weighted least squares criterion that depends on the Riesz repre-
senter. As shown in Ichimura and Newey (2022),

2
(3.6) ag = argglei?E [_UP(X) (_Z’Z((;;)) _ a(X)> ] .

Thus op(X') minimizes a weighted least square criterion with weight —v,(X) and the vari-
able being predicted given by —v;,(X)/v,(X). For this reason we refer to ap(X) as a
weighted Riesz regression.

Though the objective functions of equations (3.5) and (3.6) differ only by a constant, only
equation (3.5) possesses the desirable properties that we set out to accomplish of depending
solely on known functions of «. The objective in equation (3.5) was not given in Ichimura
and Newey (2022).

In some cases there will be a function v, (W) such that E[v,(W) | X] = v,(X). By iterated
expectations, the objective function is not affected by replacing v,(X) with 7,(1V), because

E[-2m(W,a) — v,(X)a(X)?) = E[-2m(W,a) - 5,(W)a(X)?.

In practice, it may be easier to minimize the objective function that depends on v,(W) to
avoid having to estimate v,(X) = E[v,(W) | X]. For this reason, we focus on a sample
objective function that depends on an estimator v, (V) of v,(WV) that is allowed to take 1V
as input, instead of just X.

To obtain an estimate of a, we replace the sample criterion in step (2b) of the algorithm
in subsection 2.2 with:

(3.7) Gy = arg;giﬁ ; {—2m(W;,a) — ﬁp(Wi)a(Xi)Q} + A (),

for A,, C T, where 0,(W) is an estimator of v,(X), in the sense that:
(3:8) I8 = vl = E [ (B5,(W) | X] = 0,(X))?| = 0,(1).

We refer to this Gy as a weighted Riesz regression estimator. When v,(z) is known, we can
use 0,(W) =v,(X), and the expectation of this objective function is (3.5), plus a penalty.
Steps (3) and (4) are modified accordingly to:

L
0= 505 (m(Wa ) + (X p(Wi 30)
{=11i€l,
1 & . 2
V=303 {mWis0) = 0+ ae(X)p(Wi30) |

{=11€l,

EXAMPLE 4 (Inverse Propensity Score Weighting).  The propensity score is useful for
recovering counterfacutual distributions from observational data by weighting using the in-
verse propensity score (Horvitz and Thompson (1952)). The superior performance of the
automatic debiased machine learner in Chernozhukov et al. (2022a), which is based on esti-
mating the inverse of the propensity score directly, suggests the potential usefulness of this
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approach more generally. In this example we consider estimators of counterfactual averages
based on estimators of the inverse propensity score.

To describe the estimators let D be a treatment indicator, Y be an outcome variable,
with counterfactual value Y (1) satisfying Y (1)D = Y D, Z be covariates, and vo(Z) =
1/Pr(D =1|Z). be the inverse propensity score. When D and Y (1) are independent con-
ditional on Z and (%) is finite with probability one, the mean 6y of Y (1) is given by

b0 = E[m(W,70)], m(W,v) =DY~(Z).
Also, the inverse propensity score satisfies
E[p(W,70) | Z] =0, p(W,y) =1 — Dy(Z).

This conditional moment restriction can be interpreted as balancing for all possible functions
of the covariates. This means that y(Z) is a generalized regression where I" is all functions
of Z with finite second moment and the residual is p(W,y) =1 — D~(Z). Furthermore, the
conditional moment restriction corresponds to the first order condition for

70 = argmin B[-2y(Z) + Dy(2)?]

Thus 7o can be estimated by minimizing the sample average of —2v(Z) + D~(Z)? over
some set I',, of functions of Z, as in

e=argmin | ¥ {=2v(Z;) + Div(Z:)*} + A, ()|
TS e,
Also here v,(Z) = — E[D | Z], so that we can take v,(I¥') = —D, and obtain &, as

Gy =arg min [3 {=2D;Y;0(Z;) + Dia Z:)*} + Ar(0)]
l¢][
= arg min [Z Di{Y; — a(Z:)}? + Ar(a))],
i¢l,
where the last equality follows by adding D;Y;? inside the brackets, which does not affect
the minimizer, and completing the square. Here we see that & is a least squares learner of
E[Y | D =1, Z]. The resulting estimator of the parameter of interest is

L
0= 3" S {DVAAZ) + aulZ) - Du(Z)]}
{=11i€l,

L
1 . . A
= > {6u(Z) + DiFe(Zi)[Yi — éu(Z:)]} -

(=1icl,
Here 6 has the classic doubly robust form Robins and Rotnitzky (1995) of an average regres-
sion plus a bias correction term, with the key feature that the estimator 4,(Z;) of the inverse

of the propensity score appears in place of the inverse of a propensity score estimator.

Below we give regularity conditions and a theorem to extend the results of subsection 2.3.1
to the case where v,(x) is unknown and needs to be estimated. For simplicity of exposition
we will only consider the case where the estimator is defined over a growing sieve space A,
and no regularization is used, i.e. A,(a) =0:

(3.9) @—argofg%zl{—zm(wi,a) — b, (W) a(Xi)?}
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Our estimation rate can easily be extended to regularized estimation with appropriate regu-
larization weight. Let V,, denote the function space in which the estimator 9, is restricted to
lie in. Let o, be any function in A,, (e.g. we will typically consider o, = inf e 4, || — o[,
but o, can in fact be any function that is not chosen based on the samples). Define:

star(v/Vn - (An — o)) = {w = £/ Jo(w)] (a(z) — o (2)) : @ € An,v €V, £€[0,1]}
star(mo A, —moay) = {w—=E{(mW,a) —m(W,ay)) :a € Ay, £ €10,1]}

ASSUMPTION 5. || f]|,, <1 forall f e star(v/V, - (A, — ) and f € star(mo A, —
mo Q).

We remark that the uniform upper bound of 1 can be replaced by any constant upper
bound b and the rate that we achieve will be identical, up to an extra multiplicative factor b,
via a standard re-scaling argument (i.e. applying our result to re-scaled version of the original
problem and then scaling back the guarantee).

ASSUMPTION 6. The function v, and its estimate 0, satisty that |0,(WV)|, |v,(X)| < C,
almost surely, and that for any a € A,,, the true function v, satisfies:

(3.10) ~ Elu,(X)(@(X) - 0. (X)) > AE[(a(X) - ax (X)),

for some constants A, C' > 0. For notational convenience, A < 1.

THEOREM 3.2.  Let 0, be an upper bound on the critical radius of star(v/Vy, - (An — )
and star(m o A, —mo ). If Assumptions 1, 5 and 6 are satisfied then it follows that with
probability 1 — (, for some universal constant C,

A2 An

o~ a0l < € (3302 + o = cul® + gl = ool + H50L ).

Moreover, we note that if a separate sample was used to estimate 9, and not the same as the
one that was used for &, then we can weaken the theorem to only require §,, to upper bound
the critical radius of star(A, — a.) and not star(v/V, - (A, — a.)). Note that a sufficient
condition for Equation (3.10) is that |v,(X)| > A, almost surely. However, for most function
spaces A, this condition can be satisfied by more benign assumptions. For this it is crucial
that we only invoked the property at the difference of two functions that both lie in A,, and
not for instance for o — ayg (since oy can potentially lie outside of the space). For instance, if
the functions in A,, are are high-dimensional linear functions ¢(X)’(, then Equation (3.10)
is satisfied, with A = u/C, if:

E[|v,(X)[o(X)p(X)] = ul, E[p(X)o(X)] = C1,
since then, if we let o« = ¢(-)'3 and o, = ¢(+)' B« and v = 3 — S3,, then:
la = || = V" E[p(X)(X) v < C|lvl3

< SV’Eva<X>|¢<X>¢<X>']u - fEva(Xma(X) (X))

The following assumption provides regularity conditions on the residual p(w,~) and the
functional of interest m(w,~y) for the generalized regression case.

ASSUMPTION 7. (i) ag(X) and E[p(W,~0)? | X] are bounded and E[m(W,~0)?] < oo;
(ii) &y(X) is bounded; (iii) E[{p(W,7) — p(W,70)}?] = 0 if ||y — 40| — 0; (iv) there is
C > 0 such that for all ||y — 70| small enough, E[{p(W,~) — p(W,70)}*] < Cllv — 70l/?,
where p(X,v) =E[p(W,7) | X].
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The next condition allows for p(1V, ) to be nonlinear in ~.

ASSUMPTION 8.  Either p(W,~) is affine in y or n'/4 |5, — 7o = 0 and there are C, & >
0 such that

[E[m(W, ) = o + ao(X)p(W, )] < C Iy = 70l* -
whenever ||y —o||? <e.
This assumption imposes the usual faster than n~/* convergence rate for 4, when p(w,7)

is nonlinear in 7 but does not require that rate when p(W, ) is linear in .
We have the following large sample inference result under these conditions.

THEOREM 3.3. If Assumptions 1, 4, 7 and 8 are satisfied, then
V(@ —00) B NO,V) and VBV
where V = E[{m(W,~0) — 0 + ao(X)p(W,70) }2].

3.2. Nonlinear Effects of Multiple Regressions. Some important objects of interest are
expectations of nonlinear functionals of multiple regressions. In this Section we give Auto-
DML for such effects. Such effects have the form 6y = E[m(W,~y)] where m(w,~) is non-
linear in a possible value v of multiple generalized regressions (v1(X1),...,7s(X))" with
regressors X, residual p;(W,~;), and I'; specific to each regression 7;(X;). The corre-
sponding orthogonal score like is like that of subsection 3.1 except that the bias correction is
a sum of .J terms with the j?* term being the bias correction for the learner of 7. Similarly
to Newey (1994), pg. 1357, the orthogonal score is

J
Gl Plw,y,0,0) =m(W,y) =0+ ai(X;)pj(W,7;), sy €T
j=1

Each of the terms in the bias correction can be estimated by the product of a learner
&¢(X;) and the residual p;(W,4,¢), but now the learner é;¢(X;) differs from the one given
in section 3.1 in the way needed to account correctly for nonlinearity of m(W, ) in ~y. The
difference is that in the objective function for é¢(X;) the functional of interest m(w, ) is
replaced by an estimated Gateaux derivative with respect to the j** component of . Let

DJ(W aj) = %m(m e + Tej()éj)
7=0

be such a Gateaux derivative estimator, where e; denotes the j-th column of the identity
matrix. This derivative will often be straightforward to calculate as an analytic derivative
with respect to the scalar 7. When m(w, ) is linear in a single ~y this derivative just evaluates
m(Wi,v) at v = « giving the m(W, «) of subsection 2.2.

To obtain éj(X;) we also make use of an estimated derivative 0,;(W;) of p;(W,~;) with
respect to 7y, at %;¢. Then &y is given by

(3.12) Gj¢ = arg min > [=2D;(Wi, 0) — 65 (Wi)e; (X;i)?] ¢
G gl

where A7, is the set of approximating functions for a;;. As with linear m(w,~y) this d de-

pends just on m(w,y) and the first step. Thus &, is automatic, in the same way as in section

2, in only requiring m(w,y) and the regression residual p;(W;,~;) for its construction.
Below we give two examples of this setting:
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EXAMPLE 5 (Marginal Effect in a Generalized Regression Model). Suppose that X =
(D, Z), where D is a continuous treatment or policy variable and Z are covariates. We are
interested in 0y = E[m(W, )] with

m(W,7y) = Oapp(7(X))0ay(X).

The function 7 € I' is assumed to satisfy the orthogonality condition (3.2) for p(W,~) =
A(v(X))[Y — p(y(X))]. This is the first order condition of a Generalized Regression Model
with link function p(a) (Nelder and Wedderburn (1972)). For example, when Y is binary,
p(a) is a CDF and A(a) = Oyu(a)/[u(a)(1 — u(a))], and T is the mean square closure of
finite linear combinations of X, this corresponds to a high dimensional, approximately sparse
binary response model. .

In this example, J = 1, D(W,a) = 02(3(X))045(X)a(X) + Oapt(5(X))0ga(X) and
8p(X) = DAY = 1(3(X))] = A(3(X))Pasa(5(X)). In the Logit case, A(a) = 1 and
so this simplifies to 9,(X) = —0apt(7(X)). The weighted Riesz regression estimator ¢y can
be found by evaluating (3.12) at these quantities, and then used to build the Neyman orthog-
onal score (3.11).

EXAMPLE 6 (Inverse Logit Propensity Score Weighting). Suppose now that Y is a con-
tinuous or discrete outcome, X = (D, Z) where D is a binary treatment and Z are covariates,
and the parameter of interest is 0y = E[m/(W, )] with

DY
A((2))

where A(a) is the standard logistic CDF. The parameter -y € I" satisfies the orthogonality
condition (3.2) for p(W,~) = D — A(y(Z)). This corresponds to inverse propensity score
weighting of the outcome, where the propensity score is modelled by a flexible Logit speci-
fication. For example, if I" is the mean square closure of finite linear combinations of X, this
corresponds to a high dimensional, approximately sparse logit model; if I' is the space of all
square-integrable functions, the model is essentially unrestricted.

In this example, J =1, D(W,a) = —DY 9, A((X))a(X)/A(H(X))? and 9,(X) =
—0,A(¥(X)). The debiasing function &, can be found by evaluating (3.12) at these quanti-
ties, and then used to build the Neyman orthogonal score (3.11).

m(W,v) =

It is straightforward to obtain a convergence rate for &, analogous to Theorem 3.2. The

following result does so while accounting for the presence of 4 in ﬁj (W;, ci). For notational
convenience we suppress the j subscripts.

ASSUMPTION 9. The estimate D satisfies that:
(3.13) |E[D(W, o) — D(W, &)]| < €mn |||

THEOREM 3.4. If the conditions of Theorem 3.2 and Assumption 9 is satisfied then it
follows that with probability 1 — (, for some universal constant C,
M

. 1 Lo
&~ aol* < © (52 + 5 e = aoll” + 55 (19 = wll + €hn) +

Azn A2

Mh;;l/o) |

The construction of 6 is analogous to that in subsection 2.2 with the bias correction term
being the sum of terms for each v; in 7. That is,

o L J
(3.14) O=—2_ > Am(Wihn) + > aje(X;i)p (Wi 3ie)},
Jj=1

(=11€l,
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2

1 L J
EZZ za’W Z ]’L /0] 13'7]5)
(=11€l, 7j=1

It is straightforward to specify conditions for asymptotic normality of 6 and consistency
of V by combining the conditions of section 3.1 with the convergence rate result of Corollary
2.2. For relative simplicity we give a result only for neural net learners. We also assume for
simplicity that each X; has the same dimension d.

ASSUMPTION 10.  E[m(W,v9)?] < oo and for each 3, (i) E[p;(W,~j0)* | X] is bounded
(i), E[{p;(W,v;) — pi(W,%0)}?] = 0 if || —vjoll — O; (ii) there is C' > 0 such that

for all [|; — yjol| small enough E[{p;(X;,v;) — p;(X,70)}*] < Cllv; — vjoll*, where
p;(Xj,75) = Elp; (W, ;) [ X;].

This condition is analogous to Assumption 7.

ASSUMPTION 11. n/4 |5, — ol 2, 0 for each j and there are C, e > 0 such that for

J
E[m( 90—}-204]0 pPWoal| <C S My = ol®

whenever ||y; — vjol* <eforall j=1,...,J.
This condition is analogous to Assumption 8.

THEOREM 3.5. If Assumptions 1, 4, 10 and 11 are satisfied for each j =1,...,J, then
V(0 —00) BN, V), VIV
where V= E[{m(W,0) — o + 327 ajo(X;)p; (W, vj0) }].

4. Empirical Application. To illustrate our methods, we study whether applicant race is
a significant predictor of banks’ mortgage denial decisions. Following Munnell et al. (1996),
we use the publicly available Boston Home Mortgage Disclosure Act (HDMA) dataset. The
dataset contains information on 2,925 mortgage applications made in 1990 in the Greater
Boston metropolitan area. We restrict attention to black and white applicants in single-family
households (excluding other racial minorities and multi-family residences), which reduces
our sample size to 2,380 observations.

Our outcome of interest is an indicator Y = 1 if the mortgage application was denied. Our
regressor of interest is an indicator D = 1 if the applicant is black. We also have access to
a vector of covariates, which we denote by Z, containing financial and other characteristics
of the applicant that banks may factor into their mortgage denial decisions. These include
monthly debt to income (DTI) ratio; monthly housing expenses to income (HTI) ratio; loan
to assessed property value (LTV) ratio; a categorical variable for “bad” consumer credit score
with 6 categories (1 if no slow payments or delinquencies, 2 if one or two slow payments or
delinquencies, 3 if more than two slow payments or delinquencies, 4 if insufficient credit
history for determination, 5 if delinquent credit history with payments 60 days overdue, and
6 if delinquent credit history with payments 90 days overdue); a categorical variable for “bad”
mortgage credit score with 4 categories (1 if no late mortgage payments, 2 if no mortgage
payment history, 3 if one or two late mortgage payments, and 4 if more than two late mortgage
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TABLE 1
Summary Statistics

Full Sample Black White

mean sd mean sd mean sd

Deny 0.12 032 028 045 0.09 029

Monthly DTT Ratio  0.19 0.01 0.19 0.01 0.19 0.01
Monthly HTI Ratio  0.12 0.01 0.12 0.01 0.12 0.01
LTV Ratio 037 0.03 038 0.01 037 0.03
Consumer Credit Ind. 2.12 1.67 3.02  2.01 1.97 1.55
Mortgage Credit Ind. 172 054 1.88 042 1.69  0.55
Public Record 0.07 026 0.18 038 0.06 0.23
Denied Insurance  0.02  0.14  0.05 022 002 0.12
Self-Employed  0.12 032 0.07 026 0.12 033
Single 039 049 052 050 037 048

High School 098 0.13 097 0.18 099 0.12
Industry Unemp. 3.77 2.03 345 150 383 210
Condominium 029 045 049 050 025 044

N 2,380 339 2,041

payments); an indicator for public record of credit problems including bankruptcy, charge-
offs, and collective actions; an indicator for denial of application for mortgage insurance;
three indicators for self-employed, single, and high school graduate, the 1989 Massachusetts
unemployment rate in the applicant’s industry, and an indicator for whether the unit is a
condominium.

Table 1 reports the sample means and standard deviations of the variables used in the
analysis. The probability of being denied a mortgage is 19 percentage points higher for black
applicants than for white applicants. However, black applicants are also more likely to have
financial and socio-economic characteristics linked to mortgage denial, as Table 1 shows.
For example, black applicants have higher (worse) consumer and mortgage credit indices on
average, and are more likely to have a public record of credit problems and to be single. We
would like to test whether the racial differences in probability of mortgage denial persist once
we control for these covariates.

To showcase the versatility of our method, we present results for three estimands:

1. Difference in Probability of Mortgage Denial:
to :E[’YO(LZ) _70(072)]7 where 70(D7Z) :PI'(Y: 1 ’ D7Z) :E[Y ‘ sz}

This is an average linear effect for a conditional mean (Section 2). This parameter can be
interpreted as an average difference in probability of mortgage denial between a black and
a white applicant with the same value of covariates Z.

2. Average Difference in Log-Odds of Mortgage Denial:

Pr(Y=1|D,Z
90 = E[’}/Q(l, Z) — ’)/0(0, Z)], where ’)/o(D, Z) =In PI‘EY -0 : D: Z;
This is an average non-linear effect for a generalized regression (Section 3.2). Because
In(a) —In(b) ~ (a — b) /b when (a — b) /b is small, this parameter can be interpreted as an
approximate average percentage difference in odds of mortgage denial between a black
and a white applicant with the same value of covariates Z. As discussed in Section 3.2,
this 7o minimizes the logistic regression loss function,

(W) =Y InA(y(X)) + (1 = Y)In[l — A(r(X))],
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with corresponding generalized residual

p(W,y) =Y = A(v(X)),
for A(t) :=1/(1 + e "), the standard logistic CDF.

3. Average Difference in Odds of Mortgage Denial:

Pr(Y=1|D,2)
Pr(Y=0|D,Z)

This is an average non-linear effect for a generalized regression (Section 3.2). It can be

interpreted as an average difference in odds of mortgage denial between a black and a
white applicant with the same value of covariates Z.

0o = E[e°(12) — ¢0(0.2)] " where ~o(D,Z) =1In

We estimate these parameters using AutoDML, where both 4 and & are neural net learners.
For the difference in probability, we have v,(X) = —1, since g is a conditional mean. For
the average difference in log-odds and the average difference in odds, v,(X) = —A(70(X)),
where A(t) :=e~!/(1 — e~*)? is the standard logistic PDF, which we estimate by replacing
7o with a preliminary estimate “,, also based on a neural net learner. We describe the
architecture and training hyperparameter choice in detail in Appendix B.

TABLE 2
Empirical Application Results: Racial Differences in Probability, Average Log-Odds and Average Odds of
Mortgage Denial

Probability Log-Odds Odds

est se€ est se est N+

Main Spec.  0.080  (0.021) 0.829 (0.152) 0.157 (0.044)

Table 2 presents the results of our main analysis. Once we control for covariates, the differ-
ence in probability of mortgage denial decreases from 19 to 8 percentage points. If we look at
the average log-odds or odds instead, we observe differences of 0.829 or 0.157, respectively.
These differences are all estimated to be statistically different from O at the 1% significance
level.

A slight modification of our method allows us to estimate average differences for sub-
groups of applicants with certain characteristics (analogous to conditional average treatment
effects or CATEs). Suppose we want to estimate an average effect for applicants with Z; = z
for a particular covariate Z;. To obtain these, we weight the Neyman orthogonal estimating
equation (3.14) as follows:

0(z) = o ZZW'L Wi, 4e) + e (Xi) p(Wi, 4e) }-

Z € 1 ’LEIp

When Z; is a categorical variable, we take w;(2) = 1{Z; = z}. When Z; is continuous, we
take w;(z) = K((Z; — z)/h) for a kernel function K and a small but fixed bandwith h.?
Figure 1 presents the racial differences in probability, average log-odds and average odds by
values of the consumer credit index and the monthly DTT ratio. Remarkably, we estimate the
racial differences in all three estimands to be higher for applicants with a delinquent credit
history or with insufficient credit history (although the latter is quite imprecisely estimated).
The racial differences appear to be constant for most of the range of the monthly DTI ratio
variable, except values below 0.075 for which it is also imprecisely estimated.

3Chernozhukov, Newey and Singh (2019) analyze a localized version of this parameter, that is, the limit as
h — 0, which is beyond the scope of this paper.
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Fig 1: Heterogeneous Effects

5. Monte Carlo Simulations.

5.1. Based on the Empirical Application. First, we analyze the performance of our
method in the setting of our empirical application. We redraw the covariates Z based on
a generative adversarial network (GAN) trained on the real mortgage data. We use an elastic-
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net Logit, with penalties chosen by cross-validation, to estimate the outcome regression
Pr(Y =1| D, Z) and the propensity score Pr(D = 1| Z) in the real mortgage data, which
we take as ground truth in our simulations. We present results for the three estimands on
interest in Section 4: the difference in probability, the average difference in log-odds and the
average difference in odds.

Table 3 presents simulation results over 1,000 draws for n = 2,000 and n = 10, 000.
The first column shows the non-parametric R? for v, defined as R?(y) =1 — E[(4(X) —
70(X))?]/Var(yo(X)), where the expectation is evaluated over a test set not used to esti-
mate 4. The second column shows the same non-parametric R? metric for oe. We also give
the mean absolute error (MAE), bias, standard deviation (sd), the average standard error to
standard deviation ratio (se/sd) and the coverage of a 95% confidence interval (covg.).

For the estimands we study, the Riesz regression oy can be characterized explicitly based
on the Riesz representer for the Average Treatment Effect (ATE),

B D 1-D
- Pr(D=1|2) 1-Pr(D=1|2)

For the difference in probability estimand, which is an average linear effect for a conditional
mean (Section 2), ag(X) = v, (X). For the average difference in log-odds, which is an av-
erage linear effect for a generalized regression (Section 3.1), the weighted Riesz regression
is oo (X) = v (X)/(=v,(X)), where v,(X) = —A(70(X)). Finally, for the average differ-
ence in odds, which is an average non-linear effect for a generalized regression (Section 3.2),
we have ag(X) = €7y, (X) /(—v,(X)).

Our automatic debasing method does not make use of this explicit characterization of «.
To benchmark our results, we compare its performance to an estimator that uses the explicit
characterization of «vg. In the ATE setting, this is known as an Augmented Inverse Propensity
Weighting (AIPW) estimator, so we will refer to these as AIPW-like. To build the AIPW-like
estimator of 0y we plug learners of the outcome and treatment propensities Pr(Y =1| D, Z)
and Pr(D = 1| Z) into the formula for ag; we try both a non-parametric version based
on neural nets (the same architecture and hyperparameters as our main specification) and a
“well-specified” version, where we use the same elastic-net Logit that we used to build the
ground truth.

A comparison between auto-DML and the AIPW-like benchmark sheds light on the advan-
tages of our automatic approach. For large sample sizes, n = 10,000, both methods perform
comparably well. There is no loss in efficiency between our main specification (which uses
a non-parametric, NN-based method) and the correctly-specified AIPW estimator (which
uses correctly specified parametric learners for v and «). Our automatic debiasing method
achieves close to nominal coverage, whereas the AIPW-like method gets worse coverage
when we use the non-parametric, neural net specification. A reason for that could be that,
in the explicit characterization of aq, we are plugging numbers that are close to zero into a
denominator (such as the propensity score Pr(D =1 | Z) or the logit pdf v,(X)), so that
estimation error amplifies. This is reflected into the large negative non-parametric R? for o
when n = 2, 000.

Consistent with these results, in work that followed up on the first version of this paper
(Chernozhukov et al. (2022a)), we found that our automatic debiasing method using neural
net and random forest Riesz regressions performed much better than state of the art methods
based on inverse propensity score weighting in Monte Carlo experiments. Singh and Sun
(2023) also found that automatic debiased estimators performed better than plugin-based
estimators in the setting of local average treatment effects.

v (X)
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TABLE 3
Simulation Results: Based on the Empirical Application

Probability

RQ(*y) R2(a) MAE  bias sd se/sd  covg.

n=2,000
Main Spec.  0.639 0.820  0.021 0.005 0.027 0.938 0.931
AIPW,NN  0.622 -1e7 0.022  0.005 0.028 0.890 0.923
AIPW, well spec.  0.807 0912 0.021 0.003 0.026 0956 0.932

n = 10,000
Main Spec.  0.898 0969  0.009 0.002 0.012 0973 0.946
AIPW,NN  0.892 0969 0.009 0.002 0.012 0970 0.938
AIPW, well spec.  0.963 0988 0.009 0.001 0.012 0984 0.949

Log-Odds

Rz(v) R2(a) MAE  bias sd se/sd  covg.

n=2,000
Main Spec.  0.583 0368 0203 -0.010 0.265 0.871 0.899
AIPW,NN  0.585 -2e7 0.197 0.019 0.260 0.840 0.893
AIPW, well spec.  0.767 -3e3 0.191 -0.019 0.243 0909 00915

n = 10,000
Main Spec.  0.889 0914 0.086 0.000 0.107 0910 0.925
AIPW,NN  0.888 0925 0.084 0.007 0.104 0927 0.928
AIPW, well spec.  0.959 0959 0.083 -0.007 0.104 0977 0.938

Odds

RQ(*y) R2(a) MAE  bias sd se/sd  covg.

n=2,000
Main Spec.  0.589 0.653 0.039 0.015 0.055 0.786 0.932
AIPW,NN  0.585 -9e6 0.044 0.018 0.061 0.820 0.931
AIPW, well spec.  0.767 -2e10  0.199 0.174 4567 0.022 0.899

n = 10,000
Main Spec.  0.889 0.830 0.015 0.003 0.019 0948 0.947
AIPW,NN  0.888 0.867 0.016 0.006 0.020 0.960 0.936
AIPW, well spec.  0.959 0.866  0.017 0.005 0.021 0994 095

5.2. Additional Simulations. We present an additional set of simulations when 7 is a
quantile of the conditional distribution of Y | X for a continuous outcome Y. For simplicity,
we will focus on the conditional median. As discussed in Section 3.1, this corresponds to the
generalized residual p(W,~) = 0.5 — 1(Y < v(X)), which is a sub-derivative of the “check”
loss function ¢/(W,~v) =0.5]Y — v(X)]|.

We will consider four simulation settings. In the first setting, the object of interest
will be the average difference in conditional median for a binary treatment D, that is,
6o = E[0(1,Z) — (0, Z)]. We assume that Pr(D =1 | Z) = logit(—0.1+0.5Z; — 0.2Z5),
and that Y = py (X) + € with py (X) =0.5D — 0.2D x Z3 + 0.3Z3 and € ~ N(0,1). The
second setting considers the same data generating process, but we use a twice-differentiable
quantile loss based on Epanechnikov kernel smoothing, due to He et al. (2023), rather than
the non-differentiable check loss function. In the third setting, our object of interest is the
average derivative of the conditional median with respect to a continuous treatment D, that
is, 0o = E[0qv0(D, Z)], where we draw D = up(Z) +n for up(Z) = —0.1+0.5Z; —0.2Z,
and n ~ N(0,1); the distribution of Y | X is as before. The last setting uses the same
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TABLE 4
Simulation Results: Additional Designs

Quantiles

R? ) R? () MAE  bias sd se/sd covg.

n=2,000
Main Spec.  0.737 0981 0.045 -0.003 0.055 1.035 0.96

n = 10,000
Main Spec.  0.890  0.993  0.020 0.001 0.025 1.022 0.957

Quantiles, Smooth Loss

R? y) R? (o) MAE  bias sd se/sd covg.

n=2,000
Main Spec.  0.757  -8.562 0.044 -0.006 0.116 0.469 0.957
n = 10,000

Main Spec.  0.898 0.993  0.019 0.000 0.024 0.984 0.948

Quantiles, Smooth Loss, Continuous Treatment

Rz('y) R2(a) MAE  bias sd se/sd covg.

n = 2,000
Main Spec.  0.869  0.944  0.021 -0.002 0.026 0.968  0.928

n = 10,000
Main Spec.  0.952 0979  0.010 -0.002 0.012 0941  0.922

Quantiles, Smooth Loss, Continuous Treatment, Non-Linear Effect

R? ) R? () MAE  bias sd se/sd covg.

n=2,000
Main Spec. 0976 0926  0.036 0.013 0.043 0.933 0.926
n = 10,000

Main Spec.  0.990  0.964 0.016 0.002 0.019 0.947 0.938

data generating process, but it focuses on a non-linear parameter, the average derivative
squared 0y = E[(0470(D, Z))?]. This parameter is useful, for example, in testing whether
94v0(D, Z) = 0 with probability 1. In all settings, to work with a realistic data generating
process for the covariates, we will draw Z from the same GAN trained on the real mortgage
data that we used in the previous subsection.

The results over 1,000 simulation draws are presented in Table 4. In all the settings we
consider, our estimator performs well, with low bias and coverage confidence intervals close
to the nominal 95% level.
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APPENDIX A: PROOFS

PROOF OF THEOREM 2.1. This is a special case of Theorem 3.2 with v,(X) = 0,(X) =
—1 and €,, = 0. We prove the more general version below. ]

PROOF OF COROLLARY 2.2. An upper bound for the critical radius of a MLP neural net
is given in equation (A.10) of Farrell, Liang and Misra (2021a). Using the fact that the number
of parameters given there is bounded by C'K?m it follows that

(A1) 5, < C\/K2m2 ln(me) In(n)

)

where C' denotes a generic positive constant. Let €, = infyec 4 zex |(z) — ap(x)] . It follows
by the uniform approximating bounds given in FLM, in particular in the first inequality on
the top of p. 206, that

K2m?In(K%m) < Ce;*P(In(1/e,) + 1),
It follows that for any € > 0 and n large enough,

en < C{Km+/In(K?m)} P+,

where the presence of € allows us to ignore the (In(1/¢,,) + 1)7 term. It follows that

(A.2) la* — ap|| < Cen < C{Em/In(K2m)}~P/d+e.
The conclusion then follows from Theorem 1 and squaring and plugging in the inequalities
from equations (A.1) and (A.2). O]

PROOF OF THEOREM 2.3. This is a special case of Theorem 3.3 with p(W,~v) =Y —
~(X). Note that Assumption 3 implies Assumption 7 (i). Assumptions 7 (ii), (iii) and 8 are
obviously satisfied for this choice of p(W,~) =Y — ~(X). O

PROOF OF COROLLARY 2.4. By Corollary 2.2, |6y — ag|| = Op(€qn), which satisfies
the rate conditions of Assumption 4. The conclusion follows by Theorem 2.3. O

PROOF OF THEOREM 3.2. Throughout this proof, let C' > 0 denote a generic constant
(possibly different each time it appears), and let E,,[-] denote the empirical expectation over
a sample of size n, i.e. E,[Z] = 1 30 | Z;,

L,(a,v) = Ep[—2m(W,«) — v(W)a(X)2],
L(a,v) = B[-2m(W,a) —v(W)a(X)?]
Note that

a= argofg{l Ly (o, 0p).

Since I is a closed linear space and «y is defined as the minimizer of L(a) over I, then we
have the first-order condition that for all v € I':

0
(A.3) EL(QO +7TV,0,) . =0

Moreover, note that by the linearity of the moment m and linearity of expectation:

;_L(ao + Tv,0) ., = E[-2m(W;v) — 20(W)ap(X)v(X)]

(A4) = E[-2m(W;v) = 2E[o(W) [ X]ao(X)r(X)]
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Thus we have:
—L(o + 7Tr,v) —QL(Oz—i-I/U) —QL(a—i—uv)
87' 0 TV, 7_207 87’ 0 TV, ; 87’ 0 TV,Vp o
= —2E[ao(X) (E[o(W) [ X] — v,(X)) v(X)]

Il
=)

Define:
0,(X) = E[b,(W) | X]

By a Taylor expansion, with v = « — o and some 7 € [0, 1]:

G, X 2 R
EL(CMO +Tv,0p) B + WL(O(O +7v,0,) .

= — 2E[a0(X)(5,(X) — v,(X)) v(X)] — 2B[,(X)v(X)?]

Lo, v,) — L(,0p) =

By a Cauchy-Schwarz inequality and an AM-GM inequality and since «(X) is bounded:
2

2E{a0(X) (6, (X) — 0, (XD 0] £ 1~ vl Il < S5 6, — vl + 210?
Moreover, by our assumption |,(W)| < C = |0,(X)| < C. Thus:
2C|v|* = =2 E[b,(X)r(X)?*] = = 2E[0,(X)v(X)?] = | E[(0p(X) — 0,(X))v(X)?|
> —2E[,(X)v(X)’] =[5, — v, | VE(X)Y]
> —2E[u,(X)w(X)*] = Clld, — v, | VEM(X)?]
= —2E[u,(X)r(X)’]

Let v, = o — o and vy = o, — ag, such that v = v, 4+ 1. Since —v,(X) > 0, and
—E[v,(X)vi(X)? > AE[v:(X)?], we have:

~ By (X)v(X)?) = Ellop(X)v:(X)?] + 2E[|u,(X)] v (X )r0(X)] + Bl (X)| vo(X)?]
> ElJo,(X)1(X)?] = 2E[Jup(X)| |+ (X)r0(X)]]

> Efjo, (X)) (X)?] - %E[va(X)IV*(X)z] — 2B[Jv,(X)|vo(X)?]

> BlJo,(X)| v (X)] - 5

- CH@p - Up” V]|

E[Jup(X)[1:(X)?] = 2C E[ro(X)?]
> 5 Bllup(X)|v(X)?] — 2C E[vo(X)?]

> 2By (X)? - 20 E[v(X)?]

N> N =

Combining the last two inequalities:

2C|VI* 2 —2E[0,(X)1(X)?] 2 Mws]® = 4C|wol® — C |6, — vyl ¥l

> Alwall? = 4C101 — €l ~ vl (el + ol
A C2\ .
> Sl = 5Clhal? - (C+ 55 ) = ol
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We conclude that for some constant C, for any o € I':
(A.S5)

i~ ol + P > Lo, 5,) — Lo, ) 2 Sl — Cllnl = 1, — vl
Next, by Lemma 11 of Foster and Syrgkanis (2019), the fact that —2m(W, o) — v(W)a(X)?

is Lipschitz with respect to the vector (m (W, a), /|v(W)|a(X)) and by choosing § := 6,, +
coy/In(c1/¢)/n, where 6, is an upper bound on the critical radius of star(v/V,, - (A — ax))

and star(m o A — m o ), then with probability 1 — ¢, for all « € A,, and v € V,:
| Ly (c,v) — Lyp(a,v) — (L(a,v) — L, v))|
<0 (5 <\/E[\v(W)\(Oé(X) — a.(X))? + VE[(m(W, ) — m(W, a*))Q]) + 52)

By MSE-continuity of the moment and the fact that |0,(1V)| is upper bounded by a constant:

[Ln(a ) = Lulaw, 5y) = (Lo ) = Law,5,)) = O (0v/M [la = au| +8%) = e1(a)

Finally, since & = arg minge 4, Ln(cv), we have that:
Ly (&,0,) — Lp(ax,0,) <0
Combined with the concentration inequality, yields:
L(8,8,) = L, ) < L(@ ) = L{an, 5) = (L@ 5,) = Ln(0e,3,)) < e2(a)

Invoking Equation (A.5) at a = &:

26— aull? < L(@ o) — Llao, 3,) + Cllwpl2 + S 13, = v,

B) "= »Up » Up 3 0o~ Up

< L(@,) — Lo, ) + Lo, 8) — Lo, ) + ol + S 13, — v,

(by Equation (A.5) at o = avy)
A . 2C" »
< L(a,9,) = Law, ) +2C w1 > + TH% —vl?

. 2C | »
< €1(@) + 20 o — o> + S8, — |1

By the AM-GM inequality:
A A M 1 -
Sl -l < Jla = aul?+0 (58 + law = cull + {15, ~ vl
Re-arranging yields:
. M 1 1 -
o <0 (358 + Sl = cul’ + 516, - 1)
Finally, note that:

|6 — aol® < 2l|é — a||” + 2| — o *
M , 1 2, 1z 2
< 0<A25 +(1+A> s = a0l + 351135 =l ) 0

Finally, note that by definition ||1§p — |l = 1|9p — v, x-
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PROOF OF THEOREM 3.3. Throughout this proof, let C' > 0 denote a generic constant
(possibly different each time it appears). To show the first conclusion we verify Assumptions
1-3 of (Chernozhukov et al., 2022b, CEINR), with g(w,~,0) and ¢(w,~, «,0) there given

by m(w,~) — 6 and «(x)p(w, ) respectively. By Assumption 1 and |5, — o 2 0,

/ 9w, 32 80) — g(w, 70, 00) | Fo(dw) = / {m(w,3¢) — m(w,70) 2 Fo(duw)

(A.6) <M |5 —l* 0.

By Assumption 7 (i), (iii) and |5, — o = 0,

/Hﬁﬁ(wv%aoﬁo)—¢(w770,a0,90)H2F0(dw)2/040(37)2{0(7«0:%)—P(wﬁo)}zFo(dw)

A7 <C [{ptw,0) - plw ) Fofdw) % 0
By Assumption 7 (i), since ||éy; — ag|| = 0, iterated expectations gives
- 2
[ [t 30:2080) = o0, 00,00 Futit) = [ {aa(a) = an(w))p(0,20)° o)

(A.8) < C'léy — ao)* 0.

Therefore, Assumption 1 (i), (ii), and (iii) of CEINR is satisfied.
Next note that:

Ap(w) := p(w, Ap, G, 0e) — d(w, Y0, G, ) — d(w, A, a0, 00) + G(w, Y0, 0, 0o)
= {au(z) — ao(x) Hp(w,3e) — p(w,70)}-

Let p(X,v) = E[p(W,v) | X]. Then by iterated expectations, the Cauchy-Schwartz in-
equality, and Assumptions 7 and 4,

/ Ag(w) Fo(dw) = / {Gu() — ao(@)Hp(w,3e) — plw,10)} Fo(dx)

< llée = aoll[o(-4e) = p(-70)]l
(A.9) < Cllag — aol 15 = 0]l = 0p(n~"/?).

Since dy(x) and ag(x) are bounded,

W) Futdw) = [{Ge(o) ~ o)} (ol 30) = plw, ) Fo(d)

(A.10) <ClA—l* 2o,

as in equation (A.7). By equations (A.9) and (A.10) it follows that Assumption 2 (i) of CEINR
is satisfied.

Assumption 3 of CEINR follows by Assumption 8. Therefore each of Assumptions 1-
3 of CEINR are satisfied, so the first conclusion follows by Lemma 15 of CEINR and the
Lindeberg-Lévy central limit theorem.

Finally, by the first conclusion 6 %> §, and thus

/{m(w,%) —0— m(w,~o) + HO}ZFO(dw) )

so that the hypotheses of Lemma 16 of CEINR are satisfied, giving the second conclusion.
O
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PROOF OF 3.4. he proof would be identical to Theorem 3.2, with the only difference be-
ing that v now contains two nuisance parameters (D, v,) and:

0 0 0
) = 21 |-
g (oo + T, 0) T (o + TV, ) o (o + 7TV, v0)

= E[D(W;v) = D(W;v)] = 2E[ao(X) (E[p(W) | X] = v,(X)) v(X)]

=0

The first part can then be bounded as:
|E[D(W;v) = D(W:)]| < e[V
The proof then follows identically to the proof of Theorem 3.2. U

PROOF OF 3.5. It follows exactly as in the proof of Lemma 15 of CEINR that for each j

\f Z aﬂ JZ)pJ(WZ’IVJK) QJO(XJZ)pj (WZaVJO)]

1€l
\f Z Gjo(Xji) — ajo(Xj0)]p(Wi, vj0) + ZOCJO i) le (Wi, 3je) — (Wi, vj0)] 4 0p(1)
1€l, zelz

- % ajo(z;)[p(w,¥je) — p(w, 7o) Fo(dw) + op(1),

\/—Z 1775 (lefyO)] \/‘ [m(w7’%) _QO]FO(dw) +0P(1)'

i€l

Also by Assumption 11 it is the case that ||¥;, — 7;o|| < & for all j with probability approach-
ing one, so that by the triangle inequality and Assumption 9 iii) we have

J
NG Z Wi Ae) = 0o+ > &je(X5i)pj (Wi, Aje) — (Wi, %0, @0, 60)]

i€l J=1
< < /[m(w,’w) — 00+ ZJ:O‘jo(xj)Pj(w”AW)]FO(dw) +op(1)
Vi =

J
< V0 3" 13— violl® = vViop((n4)2) = 0,(1),
j=1
where
J
(w70, 0,00) == m(w,70) — o+ > _ ajo(x;)p; (w, ¥j0)-
j=1
The first conclusion then follows by the triangle inequality and the central limit theorem. The

second conclusion follows in analogous way, treating each j separately, using the arguments
in Lemma 16 of CEINR. O
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APPENDIX B: HYPERPARAMETERS

Here we give details on the hyperparameters in the architecture and training of neural nets
used in our main specification in Sections 4 and 5.

The regression learner 4 and the debiasing function learner & are both parametrized as
neural nets with two hidden layers and ReLLU activation function. The width of the hidden
layers, the learning rate and the training L2 penalty are tuned on a grid based on the out-of-
sample loss on a test set (30% of the data). We train the parameters of the neural net using
the Adam optimizer of PyTorch, with a batch size of 128. During training, we randomly
drop some layers out with a dropout probability of 0.05. We also do early stopping to avoid
overfitting, where we end the training process if the loss on a separate validation set (also
30% of the data) decreases by less than 1077 in 5 consecutive rounds.
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