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Optimal Allocation Strategies in a Discrete-Time Exponential Bandit

Problem

by Audrey Hu and Liang Zou

Abstract. This study addresses a theoretic-bandit problem involving a "safe" and

a "risky" arm across countable periods. Departing from the “either-or” binary

choices in previous studies, we explore smooth allocation strategies using the first-

order approach. Modelling both the action and the posterior as state variables, we

obtain clear characterizations of the optimal allocation strategies and comparative

statics. The optimal plan significantly enhances the binary strategies, yielding a

higher probability of breakthrough and a higher expected payoff. The Goldilocks

principle emerges in that the incentives for exploring the risky arm peak at a level

that is neither too diffi cult nor too easy.

Keywords: two-armed bandit; first-order approach; discrete time; exponential

distribution, Goldilocks principle.
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1 Introduction

This paper examines a discrete-time, two-armed bandit problem, focusing on the

fundamental trade-off between exploiting a "safe" arm with a known return and

exploring a "risky" arm with uncertain outcomes. The risky arm can either be

"good," offering a higher return than the safe arm, or "bad," providing no value. In

each period, an agent must allocate a single unit of time between these two options.

Success occurs when a "breakthrough" confirms that the risky arm is good. However,

if the arm is bad, no breakthrough is possible, leading to wasted exploration time.

This bandit model serves as an insightful metaphor for real-world challenges, such as

research and development (R&D), pharmaceutical trials, mineral exploration, and

seeking proof for major conjectures.

Despite extensive research, most economic applications of this model have been

limited to discrete choice sets or convex/linear payoff functions. As a result, optimal

solutions often rely on a binary strategy: allocating all available time to either the

safe or risky arm and choosing an optimal stopping point if no breakthrough occurs.

This approach, consistent with the Gittins and Jones (1974) index theorem, is rel-

atively straightforward to analyze as it avoids the complexity of interior solutions

(see Bergemann and Välimäki (2010) for a survey). However, many real-world sce-

narios involve continuous decision variables. For example, how much capital should

a company allocate to R&D annually? How much time should a scholar devote to

uncertain but potentially groundbreaking research? How should a monopolist set

trial prices to gauge consumer demand for a new product? In such cases, where the

objective functions are concave, the optimal strategies are likely to involve interior

solutions. The limited research on these solutions is due more to their analytical

complexity than to their lack of relevance (see Rothschild (1974)).

The conventional approach to bandit problems typically treats posterior beliefs

as state variables and assumes that allocations are time-invariant functions of those

beliefs. However, when allocation strategies depend on first-order conditions that
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influence subsequent beliefs, the problem becomes analytically complex. Our study

introduces a novel approach by first reconfiguring the state space to include both

posterior beliefs and allocations as state variables, and then using a “backward

recursion”method to obtain a full characterization of the optimal allocation plan.

This approach, without loss of generality, allows us to solve a class of two-armed

bandit problems– those involving a "breakthrough or nothing" (BorN)– with clear

and explicit analytical solutions.

We find that when allocations are allowed to take any value in the interval [0,1],

no indexing policy with a stopping time is optimal. The optimal strategy for the ex-

ponential BorN bandit involves continuous, non-binary allocations in the range (0,1),

with the exploration process never stopping. While it may seem counterintuitive–

since repeated failures should indicate that the risky arm is likely "bad"– a conflict

arises between Bayes’rule for updating beliefs and the first-order condition for op-

timality, leading to this continuous exploration strategy.

Notably, this non-stop exploration does not guarantee discovering the "good"

arm. Unless the agent begins with a prior belief of 1, there is always a positive

probability that a good arm may never yield a breakthrough, no matter how long

exploration continues. In the absence of a breakthrough, the optimal allocation

gradually converges to zero.

Our analysis uncovers three ineffi ciencies associated with restricting decisions

to binary strategies. First, the cutoff belief under binary strategies is higher than

the optimal belief, meaning that the agent may forgo exploration when it would be

warranted under the optimal strategy. Second, even when the prior belief is high

enough to justify full-time exploration of the risky arm under a binary strategy,

the total time devoted to exploration is less than it would be under the optimal

continuous strategy, reducing the optimal probability of a breakthrough. Third,

effi ciency requires balancing the marginal cost and marginal benefit (accounting for

the learning effect) in each period. The binary constraint prevents this, resulting in

lower expected payoffs during periods without a breakthrough.
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Additionally, our study reveals that the optimal allocation strategy follows the

Goldilocks principle: the incentive to explore is strongest when the task is neither

too diffi cult nor too easy.

Related Literature

To the best of our knowledge, this is the first study to derive interior optimal

allocation strategies for discrete-time BorN (breakthrough or nothing) bandits. In

similar BorN settings, Bergemann and Hege (1998, 2005) examined the financing

of innovation, assuming that the probability of a breakthrough is linear with in-

vestment. They derived an optimal binary strategy and focused on how financing

decisions affect the stopping time. Rosenberg et al. (2007) extended Keller et al.

(2005) model of strategic experimentation by allowing players to observe each other’s

actions but not their payoffs, finding that all equilibria involve time-varying cutoff

strategies. Heidhues et al. (2015) explored a discrete-time version of the Keller-Rady-

Cripps model, showing that payoff observability significantly influences equilibrium

properties. Binary actions are also a frequent feature in the learning literature (e.g.,

Murto and Välimäki (2011)).

Recent economic literature on bandit problems has largely focused on continuous-

time models, as noted by Bolton and Harris (1999), who highlighted the tractability

of such models. In a BorN framework, Choi (1997) was the first to study R&D

races under hazard rate uncertainty. Malueg and Tsutsui (1997) were the first to

characterize optimal allocation strategies with interior solutions, although they in-

troduced a fixed cost to discourage continuous experimentation. The seminal work

by Keller et al. (2005) on exponential bandits derived a "bang-bang" strategy, where

the agent fully allocates time to the risky arm when the posterior belief exceeds a

certain threshold, and switches to the safe arm when it falls below. This strategy im-

plies an optimal stopping time, after which no further time is allocated to the risky

arm. The bang-bang strategy remains prevalent in both theoretical and empirical

studies, either assumed or derived (e.g., Awaya and Krishna (2021); D. Thomas

(2021); Besanko and Wu (2013)). Sadler (2021) modeled an agent working on suc-
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cessive BorN-exponential bandits, interpreted as ideas, and investigated socially

optimal tax or subsidy policies that maximize the value of research spillovers. The

references in Sadler (2021) contain additional earlier works related to exponential

bandits.

2 The Model

Time is discrete, with countable periods t ∈ N = {1, 2, ...}. A decision-maker

(henceforth referred to as the agent), is endowed with one unit of a perfectly divisible

resource (referred to as time) per period and faces a two-armed bandit problem. One

arm is "safe," and the other is "risky." The safe arm provides a known return of

` > 0 per period. The discount factor is δ ∈ (0, 1), so if the agent allocates full

time to the safe arm indefinitely, its present value is L = `/(1 − δ). The agent’s

task is to decide how much time to allocate to the risky arm in each period. Let

at ∈ [0, 1] represent the fraction of time allocated to the risky arm in period t, with

the remaining time devoted to the safe arm, which yields a certain return of (1−at)`.

The risky arm has an unknown type– it can either be "good" or "bad." If it is bad,

it yields nothing; if it is good, it is worth full-time exploitation, with an expected

present value G = γL ∈ (L,∞), where γ > 1 measures the relative attractiveness of

the good risky arm compared to the safe arm.

A breakthrough occurs when the agent obtains conclusive evidence that the

risky arm is good. Before this happens, the probability of a breakthrough in any

period t, given that the risky arm is good, follows an exponential distribution:

F (at) = 1− e−λat, where λ > 0 represents how easy it is to achieve a breakthrough.

Following standard approaches in bandit problems, we assume memoryless experi-

ments, where the probability of success in each period depends solely on the current

allocation.

The agent starts with a prior belief π0 ∈ [0, 1] that the risky arm is good.

According to Bayes’ rule, if the agent allocates a1..., at−1 in periods 1 to t − 1
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without a breakthrough, the posterior belief after period t is updated as follows:

πt =

 1+ if a breakthrough occurs in period t
πt−1e−λat

1−πt−1(1−e−λat)
if no breakthrough in t

(1)

If a breakthrough occurs, πt = 1, meaning that the agent knows with certainty

that the risky arm is good. The sequence (πt)
∞
t=0 forms a martingale, meaning that

the conditional expectation E(πt|πt−1) equals πt−1 for all at ∈ [0, 1] and t ∈ N.

Let α = (αt)
∞
t=1 denote a feasible allocation plan such that each αt ∈ [0, 1] is

measurable with respect to the information available at the start of period t, and

the plan stops once a breakthrough occurs.

Using dynamic programming, the agent’s optimal allocation plan α satisfies

the Bellman equation for all t ∈ N:

V ∗(πt−1) = max
a∈[0,1]

V (a, πt−1) s.t. (1) (2)

where V : [0, 1]2 → [L,G] represents the agent’s expected conditional payoff:

V (a, πt−1) = (1− a)`+ δπt−1
(
1− e−λa

)
G+ δ(1− πt−1

(
1− e−λa

)
)V ∗(πt) (3)

The interpretation is straightforward: suppose the risky arm has yielded noth-

ing by period t − 1, and the agent’s past allocations imply a posterior belief πt−1.

If the agent allocates αt to the risky arm in period t, he receives an immediate

return (1 − αt)` from the safe arm. There is a probability πt−1
(
1− e−λαt

)
that a

breakthrough will occur, rewarding the agent with G. If no breakthrough occurs,

the agent updates his belief and continues to the next period.

We first take a look at the necessary conditions for an optimal allocation plan.

By standard arguments, V (a, π) is continuously differentiable in both arguments.

Therefore, for all a = αt at which (2) has an interior solution, the first-order condi-

tion must be satisfied:

∂

∂a
V (αt, πt−1) = −`+ δπt−1λe

−λαt [G− V (αt+1, πt)] (4)

+δ(1− πt−1
(
1− e−λαt

)
)
∂V (αt+1, πt)

∂πt

∂πt
∂a

(5)

= 0
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where we apply the envelope theorem for ∂V/∂πt, and

∂πt
∂a

= − (1− πt−1) πt−1
(1− πt−1 (1− e−λαt))2

λe−λαt < 0 (6)

The term in (5) captures the learning effect inherent in the bandit problem.

Since ∂V/∂πt ≥ 0 (holding any plan fixed, increasing πt increases the probability of

a breakthrough), this effect is negative. Myopic solutions, on the other hand, ignore

this learning effect and equate the marginal cost ` with the current-period marginal

benefit δπt−1λe−λαt [G− V (αt+1, πt)] . As a result, optimal allocations that account

for learning effects are generally lower than the myopic allocations.

3 The Two-States Approach

Program (2) suggests that in the search for an optimal solution, one may restrict

attention to pure stationary Markovian allocation plans, meaning that αt = α(πt−1)

for all t, where α is a time-invariant deterministic function of the posterior belief.

While this restriction is harmless in binary-action models (see Section 3.3), finding

the optimal function α(·) in the general case remains a challenging open question.

Rather than focusing solely on posterior beliefs, we treat both the allocation

and the posterior belief as state variables. This approach allows us to consider

the pair (αt, πt−1) as functions of the adjacent states, thereby offering a dynamic

view of the balance between exploration and exploitation in the optimal allocation

strategies. Additionally, this approach significantly simplifies the analysis.

By replacing V ∗(πt−1) with V (αt, πt−1), we transform the problem into a math-

ematically equivalent form to (2)-(3):

V (αt, πt−1)−G = max
a∈[0,1]

(V (a, πt−1)−G) s.t. (1)

where

V (a, πt−1)−G = (1− a)`− (1− δ)G+
(
1− πt−1(1− e−λa)

)
δ [V (αt+1, πt)−G] (7)
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To simplify notation, denote

ct = (1− δ)G− (1− αt)`

qt = πt−1(1− e−λαt)

Then, for a = αt, expanding (7) yields

V (αt, πt−1)−G = −ct + (1− qt) δ [V (αt+1, πt)−G] (8)

= −ct −
∞∑
s=1

δs

(
s−1∏
r=0

(1− qt+r)
)
ct+s (9)

Lemma 1 Suppose α is optimal. Then, ∀t ∈ N,

∂

∂a
V (a, πt−1) = −`+ δπt−1λe

−λaHt+1 (10)

where

Ht+1 = ct+1 + δe−λαt+1Ht+2 > 0 (11)

Proof. The term in large brackets in (9) represents the conditional probability of

no breakthrough over the next s periods. This can be re-written as:

s−1∏
r=0

(1− qt+r) = 1− πt−1 + πt−1e
−λ

∑s−1
r=0 αt+r (12)

Define Ht+1 by

Ht+1 = ct+1 + δe−λαt+1Ht+2 ( = ct+1 +
∞∑
s=1

δse−λ
∑s
r=1 αt+rct+s). (13)

Substituting (12) and (13) into (9), and replacing αt with a, we get

V (a, πt−1) = δG+ (1− a)`− (1− πt−1)Ct+1 − πt−1e−λaδHt+1 (14)

where Ct+1 =

∞∑
s=1

δsct+s. Since both Ct+1 and Ht+1 are functions of planned actions

from period t+ 1 onward, the envelope theorem implies

∂

∂a
V (a, πt−1) = −`+ δπt−1λe

−λaHt+1
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as given in (10).

This lemma demonstrates that tracking future posteriors is unnecessary, and

that the first-order conditions are simplified as shown in (10). In comparison to

(4)-(5), we observe from (10) that the function Ht+1 captures the overall marginal

benefit, including learning effects, of investing time in the risky arm. The simplified

form of ∂V/∂at arises because Ht+1 does not depend directly on the sequence of

posterior beliefs {πt, πt+1, ...}, unlike V .

3.1 Basic properties of the optimal allocation plan

If exploring the risky arm is deemed unprofitable, the agent’s optimal payoff derives

entirely from the returns of the safe arm, such that V ≡ L. To avoid this trivial

case, we assume δλ (γ − 1) > 1− δ and set the prior belief π0 > πmin, where:

πmin =
1− δ

δλ (γ − 1)
(15)

Note that:
∂

∂a
V (0, πmin) = −`+ δπminλ(G− L) = 0

which implies that αt > 0 if and only if πt−1 > πmin.

We now introduce a "no stopping" result that sharply contrasts with existing

literature on exponential bandits under binary strategies.

Proposition 1 Suppose π0 ∈ (πmin, 1), and α is optimal. Then αt > 0 for all t ∈ N.

That is, experimentation with the risky arm never stops without a breakthrough.

Proof. It suffi ces to show that πt−1 > πmin implies πt > πmin for all t ∈ N. We

prove this by contradiction. Pick any t such that πt−1 > πmin, meaning αt > 0.

Suppose πt ≤ πmin. Then, αt+1 = 0, implying Ht+1 = G− L. From (10) in Lemma

1, αt, πt−1 and πt must satisfy the following conditions:

∂

∂a
V (αt, πt−1) = −`+ δπt−1λe

−λαt(G− L) ≥ 0

∂

∂a
V (0, πt) = −`+ δπtλ(G− L) ≤ 0
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where the second inequality comes from the assumption πt ≤ πmin. Cancelling terms,

these two conditions imply
πt−1
πt
≥ eλαt . (16)

However, by (1), for αt > 0, we have

πt−1
πt

= eλαt (1− πt−1) + πt−1 < eλαt (17)

The contradiction between (16) and (17) proves πt > πmin, and therefore αt > 0.

This confirms the proposition.

The general "no-stop" result in this proposition might seem surprising. The

proof highlights a key reason: for stopping to be optimal at any time t + 1, two

conditions must be met simultaneously. One condition, in (16), derives from the

first-order condition for optimality, while the other, in (17), derives from the Bayes

rule. Stopping in any period t leads to a conflict between these conditions, making

it impossible.

A natural question arising from Proposition 1 is: since the agent never stops

experimenting with the risky arm, does this mean the good arm will be discovered

with probability 1? In other words, if, in period 0, Nature assigns a probability

π0 for the risky arm to be good and 1 − π0 for it to be bad, and the risky arm is

indeed good (though the agent is unaware of the outcome, knowing only the ex-

ante probability π0), will the agent eventually discover the truth through persistent

trials?

Our next proposition addresses this question.

If the risky arm is good, the probability of no breakthrough by period T is

e−λ
∑T
t=1 αt . By Bayes’rule, the odds ratios of the posterior beliefs are updated as

follows:

πT
1− πT

= e−λαT
πT−1

1− πT−1
= e−λ

∑T
t=1 αt

π0
1− π0

(18)
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Proposition 2 Suppose π0 ∈ (πmin, 1) and α is optimal.

(i) πt → πmin and αt → 0 as t→∞.

(ii) The agent’s breakthrough probability is

Pr(Breakthrough) =
π0 − πmin
1− πmin

(19)

As a result, given that the risky arm is good, the conditional probability is:

Pr(Breakthrough |Risky arm good) =
π0 − πmin

π0 (1− πmin)
(20)

(iii) Both probabilities above are increasing functions of π0, δ, λ, and γ.

Proof. (i) The sequence of no-breakthrough posteriors (πt)
∞
t=0 forms a decreasing

sequence, bounded below by πmin. Thus, by the Monotone Convergence Theorem,

πt tends to a limit π∞ ≥ πmin. Taking the limit as T →∞ in (18) yields

π∞
1− π∞

= e−λ
∑∞
t=1 αt

π0
1− π0

(21)

This implies limt→∞ αt = 0 because the sum
∑∞

t=1 αt is finite. Consequently, taking

the limit in (11), we obtain

lim
t→∞

Ht+1 = g − (1− lim
t→∞

αt+1)`+ δ lim
t→∞

e−λαt+1 lim
t→∞

Ht+2

= g − `+ δ lim
t→∞

Ht+2

Solving this gives

lim
t→∞

Ht+1 =
g − `
1− δ =

γ − 1

1− δ `

By Lemma 1, for all t such that αt ∈ (0, 1), we have

∂

∂a
V (αt, πt−1) = −`+ δπt−1λe

−λαtHt+1 = 0

Thus, as t→∞, we obtain

−`+ δπ∞λ
γ − 1

1− δ ` = 0 =⇒ π∞ = πmin

Thus, the proof of (i) is complete.
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(ii) Given that the risky arm is good, the agent’s breakthrough probability can

now be computed from (21), substituting πmin for π∞ :

1− e−λ
∑∞
t=1 αt = 1− πmin

1− πmin
1− π0
π0

=
π0 − πmin

π0 (1− πmin)
which gives (20). Multiplying both sides by π0 (the probability that the risky arm

is good) gives (19).

(iii) The result is straightforward to verify, noting that πmin is a decreasing

function of δ, λ, and γ.

In this proposition, the conditional breakthrough probability given by (20)

shows that, as long as the agent has imprecise information (π0 < 1) regarding the

true, good state of the risky arm there is always a positive probability of making

mistakes. Although the agent never stops experimenting, the time allocated to the

risky arm becomes infinitesimally small over time. As a result, the total probability

of achieving a breakthrough is strictly less than 1 even when the risky arm is good.

Naturally, this probability approaches 1 as π0 approaches 1, illustrating the value of

precise information in this bandit problem. Proposition 2 also formally establishes a

necessary condition for α to be optimal: (αt, πt−1) must tend to (0, πmin) as t→∞.

Part (iii) of Proposition 2 focuses on the comparative statics of the break-

through probabilities with respect to π0, λ, δ, and γ. Before interpreting these

results, we will first examine the comparative statics of the total maximum time

allocated to the risky arm.

Proposition 3 Define the maximum time to be allocated to the risky arm by A =∑∞
t=1 αt.

(i) A is an increasing function of (π0, δ, γ).

(ii) Fix any (π0, δ, γ) and consider A as a function of λ. There exists a unique

λ∗ that maximizes A such that A′(λ) > 0 for λ < λ∗ and A′(λ) < 0 for λ > λ∗.

Proof. By (20), we have

A =
1

λ
ln

(
π0

(1− π0)
1− πmin
πmin

)
13



(i) The right-hand side increases in π0 and decreases in πmin. Given that πmin is a

decreasing function of δ and γ, A is an increasing function of (π0, δ, γ).

(ii) Substituting (15), we get

A′(λ) = −1

λ

(
A− δ (γ − 1)

δ − λδ + λγδ − 1

)
Therefore, A′ = 0 implies

A =
δ (γ − 1)

δ − λδ + λγδ − 1

and A′′ = −1

λ

(
A′ − ∂

∂λ

δ (γ − 1)

δ − λδ + λγδ − 1

)
= −1

λ
A2 < 0

The statement (ii) is thus confirmed.

Since A is related to the breakthrough probabilities given in (19)-(20), the

comparative statics results in Proposition 3(i) Proposition 2(iii) can be interpreted

as follows. In (19), increasing π0 has two effects: a direct effect that the risky arm

has a higher probability of being good, and an indirect effect that encourages the

agent to commit a higher level of total time A to the exploration of the arm. Both

effects are positive, contributing to a higher probability of breakthrough. In (20),

only the indirect effect is present, but it still contributes to a higher breakthrough

probability. Likewise, increasing δ or γ makes the exploration more attractive,

resulting in a positive, indirect effect on the breakthrough probability through a

higher level of A.

Regarding the hazard rate, increasing λ has a direct positive effect on the

breakthrough probability but may or may not encourage more intensive exploration

of the risky arm (see Figure 1). Interestingly, Proposition 3(ii) introduces a new

observation: A(λ) follows the Goldilocks principle, meaning that optimal allocation

increases with λ when the task is diffi cult (low λ) but decreases when the task is easy

(high λ). The intuition is that when there is high confidence that a breakthrough

will occur as long as the risky arm is good, a higher λ makes breakthroughs easier,

14



reducing the agent’s need to allocate additional time due to opportunity cost. How-

ever, when the task is suffi ciently diffi cult, increasing λ makes it more achievable,

prompting the agent to invest more time in reaching a breakthrough.

0 1 2 3 4 5
0

1

2

3

4

5

6

π=0.5

π=0.4

π=0.3

π=0.2

π=0.1

A

λ

Figure 1: Goldilocks principle: the agent allocates the maximum total time to the

experiment when the job is neither too diffi cult (low λ) nor too easy (high λ). The

figure depicts the behavior of the planned total exploration time from the current

period onward, A, as a function of λ and the (updated) belief π, for δ = 0.95 and

γ = 2.

This finding contrasts with Malueg and Tsutsui (1997), who predicted that

optimal allocation should always increase with λ. In the binary-choice literature,

Choi (1997) was the first (and only) to find indeterminate comparative statics pre-

dictions regarding the effect of λ. Choi attributed this to hazard rate uncertainty,

showing that increasing λ could extend the experiment’s stopping time when the

prior π0 is low, but shorten it when the prior is high. In contrast, our study offers

clearer insights, showing that A peaks at a unique λ∗ ∈ (0,∞), which is a function

of all the exogenous variables.
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3.2 Optimal allocation plan

Let us partition the bandit environment into two complementary scenarios:

Scenario I. δπ0
(
e−λ (1 + λγ)− 1

)
≤ (1− δ) .

Scenario II. δπ0
(
e−λ (1 + λγ)− 1

)
> (1− δ) .

Proposition 4 Given any π0 ∈ (πmin, 1), there exists a unique optimal allocation

plan α. (i) Under Scenario I, the sequence of the joint states {(αt, πt−1)}∞t=1 sat-

isfies the backward recursive relation

αt =
1

λ
ln

(
1 + δλ (γ − 1 + αt+1)−

1− δ
πt

)
∈ (0, 1) (22)

πt−1 =
πt

πt + e−λαt(1− πt)
∈ (πmin, π0) (23)

for all t ∈ N. (ii) Under Scenario II, there is a unique switching period τ ∈ {0}∪N

such that αt = 1 for t ≤ τ 1 and {(αt, πt−1)}∞t=τ+1 satisfies (22)-(23).

Proof. See Appendix.

Proposition 4 demonstrates that, in any period t, the pair of optimal allocation

and belief (αt, πt−1) is uniquely determined by the subsequent states. Therefore, αt

and πt−1 are functions of the subsequent period allocation and belief (αt+1, πt).

The mapping provided in (22)-(23) is time-invariant, offering a remarkably simple

algorithm for determining the optimal allocation plan (see Figure 2).

As seen in the proof of this proposition, we introduce a novel approach featur-

ing a form of backward recursion to derive the mapping (22)-(23). This approach

consists of three steps:

1. Initial Assumption: We begin by considering an arbitrarily large but finite T ,

assuming the experiment stops after period T . In this context, the posterior

belief in the last period is πT−1 = (1 + εT )πmin. Crucially, we treat πT−1 as a

free variable rather than a function of the prior belief and the history of the

past allocations.

1If τ = 0, without any consequence we define α0 = 1.
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2. Backward Optimization:. Using backward induction while ensuring consistency

with Bayes’rule for posteriors, we derive an optimal sequence (αt, πt−1|εT )Tt=1

parameterized by εT .

3. Existence and Uniqueness: We show the existence of a unique ε∗T such that the

sequence (αt, πt−1|ε∗T )Tt=1 has the initial prior equal to π0. Finally, by taking

the limit as T → ∞ and applying the transversality condition (αT , πT−1) →

(0, πmin), we establish the existence and uniqueness of the optimal allocation

plan.

Since the mapping (22)-(23) is bijective, the functional relationship between

any two adjacent pairs of states can also be expressed by a forward-moving law

of motion, given the optimal (α1, π0). Our next proposition explores this forward-

moving approach.

Proposition 5 There is a unique optimal no-breakthrough allocation plan α asso-

ciated with a unique switching time τ ∈ {0} ∪ N such that αt = 1 for all t ≤ τ , and

the sequence of the joint states {(αt, πt−1)}∞t=τ+1 obeys the law of motion

αt+1 =
1

δλ

(
eλαt +

1− δ
πt
− 1

)
− (γ − 1) ∈ (0, 1) (24)

πt =
πt−1e

−λαt

1− πt−1(1− e−λαt)
∈ (πmin, π0) (25)

Proof. This is a straightforward corollary of Proposition 4, given the equivalence

between (22)-(23) and (24)-(25).

Compared with Proposition 4, the forward motion described in Proposition 5

has the advantage of being more familiar and easier to implement. is more familiar

and easier to implement. The agent may begin by allocating full time to explor-

ing the risky arm. As time passes without a breakthrough, the agent will, at a

certain time τ , switch to a strategy with an allocation less than 1. Unlike the bang-

bang strategy, where the allocation drops from 1 to 0 at a specific cutoff posterior
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Figure 2: Both figures assume δ = 0.9, γ = 2, starting with π0 = 0.95. They differ

only in λ.

level, Proposition 5 predicts more moderate downward adjustments in response to

no breakthroughs. At the switching time, the initial condition (ατ+1, πτ ) must be

optimal; otherwise, the motion law described in (24)-(25) lacks an optimality foun-

dation. Fortunately, (ατ+1, πτ ) can be derived or estimated with arbitrary precision

using the backward recursion algorithm from Proposition 4.

Figure 2 depicts the dynamics of the joint states (πt−1, αt) for Scenario I (left)

and Scenario II (right). Consistent with the Goldilocks principle, when λ is relatively

high (λ = 1.5), expecting an easy breakthrough the agent does not allocate full

time to the risky arm. But after a few periods of failure, the posterior quickly

drops toward πmin indicating that the risky arm is most likely bad. As a result,

αt quickly drops toward 0. When λ is reasonably encouraging but not suffi ciently

low (λ = 0.5), the agent allocates full time to the risky arm, switching to a more

moderate allocation strategy after some periods of failure.
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3.3 Optimal vs. binary strategies

Replacing a ∈ [0, 1] in (2) with a ∈ {0, 1}, we arrive at the exponential bandit

problem under binary strategies (see, e.g., Heidhues et al. (2015)). For the single-

agent case, the binary optimal plan is relatively straightforward to derive.

In each period, the agent’s decision is to compare which choice– a = 0 or

a = 1– yields the higher expected payoff for that period. Let π∗ represent the cutoff

belief that the risky arm is good, where the agent is indifferent between choosing 0

and 1. Then, from (2)-(3),

V (1, π∗)− L = δ
{
π∗(1− e−λ) (G− L) + L

}
− L = 0

implies, recalling that G/L = γ, the cutoff belief π∗ is given by

π∗ =
(1− δ)

δ(1− e−λ) (γ − 1)
(26)

The optimal action plan is a pure stationary Markovian plan, defined as follows:2

β(π) :=

 1 if π ≥ π∗

0 if π < π∗
(27)

If π0 < π∗, the agent will not explore the risky arm at all. If π0 ≥ π∗, the

agent starts with α1 = 1 and continues this until either a breakthrough occurs or

period T is reached without a breakthrough. Therefore, the maximum scheduled

time for exploring the risky arm is given by:

T = min{t ∈ N : πt+1 =
π0e

−λt

1− π0(1− e−λt)
< π∗}

If the risky arm is good, the probability of no breakthrough until period T is

e−λT . Since πT ≥ π∗, from (18) we derive

e−λT =
1− π0
π0

πT
1− πT

≥ 1− π0
π0

π∗

1− π∗ (28)

2When the agent is indifferent between 0 and 1, we assume he chooses 1 so that any choice of

0 implies the same choice indefinately afterward.
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which implies

T =
1

λ
ln

(
π0

1− π0
1− πT
πT

)
≤ 1

λ
ln

(
π0

1− π0
1− π∗
π∗

)
(29)

Now we let α = (αt)
∞
t=1, the optimal allocation plan presented in Propositions

4-5, be referred to as Plan A, and let the binary plan β, as described in (27), be

referred to as Plan B. Let VA and VB denote the expected payoffs under Plan A and

Plan B, respectively. The values of VA and VB can be expressed recursively according

to (8), and by Proposition 4 and (27), these values can be computed using inputs

of the corresponding allocation plans:

VA(αt, π
A
t−1) = δG+ (1− αt)`+

(
1− πAt−1(1− e−λαt)

)
δ
[
VA(αt+1, π

A
t )−G

]
VB(βt, π

B
t−1) = δG+ (1− βt)`+

(
1− πBt−1(1− e−λβt)

)
δ
[
VB(βt+1, π

B
t )−G

]
Here, {πAt−1} and {πBt−1} are the sequences of the (no breakthrough) posteriors under

Plan A and Plan B, and VA satisfies the transversality condition limt→∞ VA(αt, π
A
t−1) =

L. For t > T, βt ≡ 0 so that VB(βt, π
B
t−1) ≡ L.

Proposition 6 Suppose π0 ∈ (πmin, 1).

(i) Plan A provides a stronger incentive to begin exploring the risky arm com-

pared to Plan B, as πmin < π∗.

(ii) Plan A involves a greater total time commitment to exploring the risky

arm than Plan B, i.e., A > T.

(iii) As a result, the probability of discovering a good risky arm is higher under

Plan A than under Plan B, as 1− e−λA > 1− e−λT .

(iv) In any period t preceded by no breakthrough, the expected payoff under

Plan A is strictly higher than under Plan B, i.e., VA(αt, π
A
t−1) > VB(βt, π

B
t−1) for all

t ∈ N.

Proof. (i) Since e−λ > 1− λ, then

π∗ =
(1− δ)

δ(1− e−λ) (γ − 1)
>

1− δ
δλ (γ − 1)

= πmin
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The conclusions in (ii) and (iii) hold because

A =
1

λ
ln

(
π0

(1− π0)
1− πmin
πmin

)
>

1

λ
ln

(
π0

(1− π0)
1− π∗
π∗

)
by (i)

≥ T by (29)

(iv) Plan B is the solution of (2)-(3) under the constraint a ∈ {0, 1}, whereas

Plan A is not bound by this constraint. Moreover, for t suffi ciently large (i.e.,

> τ), Plan A involves always the interior solutions, i.e., αt ∈ (0, 1) for t > τ .

This fact implies that Plan B is strictly suboptimal in that even given the same

posterior at the start of any period t, VA(αt, π) > VB(βt, π). Moreover, 1 = βt ≥ αt

for all t ≤ T implies πAt−1 ≥ πBt−1, and V (a, π) strictly decreases in π. Therefore

VA(αt, π
A
t−1) > VB(βt, π

B
t−1) for all t ∈ N.

Part (i) of this proposition implies that when π0 ∈ (πmin, π
∗), the risky arm

will be considered unprofitable under Plan B. However, this is not the case under

Plan A. In this regard, Plan A offers stronger incentives to engage in risky arm

exploration. Parts (ii) and (iii) of the proposition demonstrate that even when the

prior belief is suffi ciently high for the agent to invest full time exploring the risky

arm under the binary constraint, the total time devoted to exploration is still lower

than under the optimal allocation policy. As a result, the probability of achieving

a breakthrough is strictly lower with the binary constraint. Table 1 illustrates a

numerical example of conclusion (iv) of the proposition.
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Period t αt πA
t­1 VA βt πB

t­1 VB

20 0.000666334 0.074148148 10.00066648 0 0.064089558 10
19 0.001497119 0.074302462 10.00209935 0 0.064089558 10
18 0.004101149 0.074726697 10.00601196 0 0.064089558 10
17 0.011452222 0.075923163 10.0170383 0 0.064089558 10
16 0.031471594 0.079302198 10.04817894 0 0.064089558 10
15 0.08235546 0.088803474 10.13576379 0 0.064089558 10
14 0.192669699 0.115135149 10.37866229 0 0.064089558 10
13 0.369854021 0.184741567 11.02174453 0 0.064089558 10
12 0.557589366 0.343403576 12.49154383 0 0.064089558 10
11 0.689155649 0.595215881 14.83230322 0 0.064089558 10
10 0.756919538 0.820678269 16.93479695 1 0.234829613 10.64188839
9 0.78576814 0.937003143 18.01739151 1 0.57902243 13.36626138
8 0.796768769 0.980057438 18.39830904 1 0.86041747 16.02042038
7 0.800699624 0.993914876 18.46497373 1 0.965066868 17.10363236
6 0.80204805 0.998165004 18.36640486 1 0.991987929 17.40213455
5 0.802498059 0.999448669 18.15711593 1 0.998201068 17.47503653
4 0.802645313 0.999834536 17.91903891 1 0.999598042 17.49223443
3 0.802692793 0.999950358 17.73445812 1 0.999910283 17.49624037
2 0.802707928 0.999985108 17.62491116 1 0.99997998 17.4971671
1 0.802712709 0.999995533 17.57045789 1 0.999995533 17.49738043

Table 1: The expected payoff under Plan A is strictly higher than under Plan B.

Both plans start from π0 = 0.99999, assuming δ = 0.9, λ = 1.5, ` = 1, γ = 2 and

G = 20.

4 Concluding Remarks

This study offers a first-of-its-kind analysis of Breakthrough-or-Nothing (BorN) ban-

dit problems, where allocation strategies can be perfectly divided between the safe

and risky arms. The study makes a significant theoretical contribution to the under-

standing of discrete-time bandits by showing that the problem’s complexity can be

reduced by expanding the state space and transforming the problem. This approach

facilitates clear analytical solutions and comparative statics results. Specifically,

we demonstrate that when decision variables are continuous, the optimal allocation

strategy diverges from binary approaches, increasing the incentive to explore the

risky arm and the expected payoff, and rendering cessation after a finite number of

unsuccessful trials suboptimal. These findings go beyond merely complementing the

existing literature– they substantially enhance it.
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Although our analysis focuses on the exponential setting, we argue that, under

certain conditions, the results can be extended to more general probability functions.

The analytical framework we develop is flexible and adaptable to various scenarios

involving multiple agents and strategic interactions, which we expect will lead to new

insights. A compelling direction for future research is exploring how this transfor-

mation or re-formulation of BorN bandits can simplify the analysis of other problem

types.

5 Appendix

Proof of Proposition 4. (i) Consider Scenario I. Let 1 < T <∞ be arbitrarily

large, and assume that exploration stops in period T + 1, so that HT+1 = G − L.

Denote the expected payoff under this early stopping constraint by V (a, π|T ). For

convenience, we simplify the notation by omitting a subscript t from V.

Let πT−1 = (1 + εT )πmin represent the belief in period T , where 0 < εT < ε̄ :=

π0
πmin
− 1. In light of Proposition 2(i), εT tends to 0 as T approaches infinity.

The method we adopt follows a form of backward recursion. We start by

treating πT−1 (or εT ) as a free variable, rather than a function of the prior belief

and the history of the past allocations. Using backward induction, while ensuring

the posteriors remain consistent with Bayes’ rule, we derive an optimal sequence

(αt, πt−1|εT )Tt=1 parameterized by εT .

Next, we determine a unique εT such that π0|εT equals the initial belief π0.

Finally, we employ a limit argument to establish the existence and uniqueness of the

optimal plan (αt)
∞
t=1. For notational convenience, we will suppress the parameter εT

in the following derivations until it is needed.

First, consider the problem maxa∈[0,1] V (a, πT−1|T ). Given Proposition 2(i),

for a suffi ciently large T , we assume αT ∈ (0, 1). By Lemma 1,

∂

∂a
V (αT , π1|T ) = −`+ δπT−1λe

−λαT (G− L) = 0
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yields

αT =
1

λ
ln
πT−1
πmin

=
1

λ
ln(1 + εT ) = arg max

a∈[0,1]
V (a, πT−1|T ) (30)

where we used (15) and the fact that G − L = (γ−1
1−δ )`, as well as the concavity of

V (a, π|T ) in a.

Now, for any t < T , assume (αt+1, πt) ∈ (0, 1)× (πmin, π0), such that

αt+1 = arg max
a∈[0,1]

V (a, πt|T )

By (10), αt+1 ∈ (0, 1) implies

∂

∂a
V (αt+1, πt|T ) = −`+ δπtλe

−λαt+1Ht+2 = 0

or equivalently,

Ht+2 =
`

δπtλe−λαt+1
(31)

Using (11) and, we derive

∂

∂a
V (αt, πt−1|T ) = −`+ δπt−1λe

−λαt
(
ct+1 + δe−λαt+1Ht+2

)
Substituting Ht+2 from (31), we get

∂

∂a
V (αt, πt−1|T ) = −`+ δπt−1λe

−λαt
(
ct+1 +

`

πtλ

)
(32)

By substituting (1) and using ct = (1− δ)G− (1−αt)` = (γ − (1− αt)) `, and after

rearranging terms, we obtain

∂

∂a
V (αt, πt−1|T ) = [δπt−1M(αt, αt+1)− (1− δ)] ` (33)

where M(αt, αt+1) = e−λαt (1 + λ (γ − 1 + αt+1)))− 1.

If αt = 1, then

0 ≤ ∂

∂a
V (1, πt−1|T ) = [δπt−1M(1, αt+1)− (1− δ)] ` < [δπ0M(1, 1)− (1− δ)] `

which implies

δπ0
(
e−λ (1 + λγ)− 1

)
> 1− δ
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However, this inequality is ruled out under Scenario I. Thus, we must have

αt ∈ (0, 1), and by induction, all period allocations are in (0, 1). This, combined

with (32), implies

∂

∂a
V (αt, πt−1|T ) = −`+ δπt−1λe

−λαt
(
ct+1 +

`

πtλ

)
= 0 (34)

for all t ≤ T. The Bayes rule now gives

πt−1(αt, πt) =
πt

πt + e−λαt(1− πt)
(35)

Substituting (35) into (34), and solving for αt, we obtain

αt =
1

λ
ln

(
1 + δλ (γ − 1 + αt+1)−

1− δ
πt

)
(36)

= arg max
a∈[0,1]

Vt(a, πt−1|T )

Thus, by induction, we have derived a sequence (αt, πt−1|εT )Tt=1 that maximizes

V under an initial prior π0|εT . We now show that a unique εT exists such that

π0|εT = π0, consistent with the given prior. From (35)-(36), it is clear that πt−1

has positive partial derivatives with respect to αt and πt, and αt has positive partial

derivatives with respect to αt+1 and πt. Thus, both αt and πt−1 are continuous,

increasing functions of (αt+1, πt). By induction, (αt, πt−1|εT ) can be regarded as a

pair of continuous and increasing functions of εT on [0, ε̄] for all t ≤ T.

In particular, π0|εT is a continuous and increasing function of εT .When εT = ε̄,

Bayes’rule implies π0|ε̄ > πT−1 = π0. When εT = 0, we have πT−1 = πmin and by

(35), this implies πT−2 = πmin, and so on. By backward induction, we conclude that

π0|0 = πmin < π0.

Therefore, by the Intermediate Value Theorem and monotonicity of π0|·, there

exists a unique ε∗T ∈ (0, ε̄) such that π0|ε∗T = π0. Consequently, we arrive at a

unique sequence (αt, πt−1|ε∗T )Tt=1 that solves the program in (2)-(3), satisfying (22)-

(23), given any prior π0 ∈ (πmin, 1) and stopping time T + 1.

Next, consider T → ∞. By Proposition 2, we have ε∗T → 0 so that, by conti-

nuity, for each t < T

lim
T→∞

(αt, πt−1|ε∗T ) = lim
εT→0

(αt, πt−1|ε∗T ) = (αt, πt−1|0) .
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This allows us to define (αt, πt−1)
∞
t=1 = (αt, πt−1|0)∞t=1. By continuity, it is straight-

forward to see that the equations in (22)-(23) hold for each t as T →∞.

Finally, let V (T ) denote the optimal value of the agent’s expected payoffunder

the constraint that the experiment must stop after T . Let V ∗ denote the optimal

unconstrained value. Since L ≤ V ∗ ≤ G,

0 ≤ V ∗ − V (T ) ≤ δT+1(G− L)

Thus limT→∞ V (T ) = V ∗.

(ii) Consider now Scenario II. Define

πs =
(1− δ)

δ (e−λ (1 + λγ)− 1)

Take any t ≥ 1, and we will show that αt+1 = 1 implies αt = 1. From part (i),

αt+1 = 1 implies πt−1 > πs, and

∂

∂a
V (1, πt) = −`+ δπtλe

−λHt+2 ≥ 0

which implies

Ht+2 ≥
`

δπtλe−λ
. (37)

Similar to the derivation of (33), now using (37) we get

∂

∂a
V (1, πt−1) ≥ [δπt−1M(1, 1)− (1− δ)] `

=
[
δπt−1

(
e−λ (1 + λγ)− 1

)
− (1− δ)

]
`

> 0

where the last inequality holds because πt−1 > πs. Thus, αt = 1, and by induction,

α1 = ... = αt+1 = 1.

If α1 ∈ (0, 1), then τ = 0. If α1 = 1, then there exists a unique τ = max{t ∈ N :

αt = 1} such that αt ∈ (0, 1) for all t > τ . Part (i) of the proposition then implies

that {(αt, πt−1)}∞t=τ+1 satisfies (22)-(23).
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