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Abstract

We consider a principal-agent model with moral hazard, bilateral risk-neutrality,
and limited liability, where the principal knows only some of the agent’s feasible actions.
The principal evaluates contracts by their payoff guarantee over all possible sets of
feasible actions. We show that the guarantee from any randomization over contracts
can be weakly improved by randomizing over the same or smaller number of linear
contracts. Thus, random linear contracts are robustly optimal as a class. We derive the
optimal guarantee and characterize a maximizing sequence of random linear contracts
attaining it in the limit as the size of their support tends to infinity; these contracts
do not require commitment to randomization. The gain from randomization can be
arbitrarily large.

1 Introduction

Recent years have witnessed a surge in contract-theoretic research on the optimal design of
incentives when the designer does not know all the details of the contracting environment, or
is otherwise reluctant to commit to a single probabilistic model of the situation. For moral
hazard problems, an influential paper by  Carroll ( 2015 ) offers a model where the principal
is unaware of all the possible actions the agent can take and evaluates contracts based on
their guaranteed payoff over possible action sets. Assuming limited liability on the part of
the agent and risk neutrality of both, Carroll shows that the contract that maximizes the
principal’s guarantee is a linear one. This is an attractive result as it predicts a commonly
observed contract form without the need to resort to specific assumptions about how actions
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map to outputs and costs, or, indeed, without even specifying a complete model of the
situation. Subsequent work has extended the approach to other environments with moral
hazard and established the robust optimality of linear contracts therein. 
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A contract’s payoff guarantee is, however, a worst-case criterion, which means that ran-
domizing over contracts could allow the principal to secure a higher payoff. This was recently
confirmed by  Kambhampati ( 2023 ). He shows in the Carroll model that randomizing over
two linear contracts strictly improves the principal’s guarantee compared to the optimal de-
terministic contract whenever the latter is non-trivial (i.e., when the zero contract is not the
uniquely optimal deterministic contract). Kambhampati’s result leaves open the form of the
optimal random contract. Most concerningly, it raises the possibility that the linearity re-
sult, and the intuition about robust optimality of interest alignment it formalizes, are driven
by the restriction to deterministic contracts.

Motivated by this observation, this paper revisits the robust moral hazard problem al-
lowing for random contracts. Specifically, we assume that the principal can commit to any
(finitely-supported) randomization over which contract to give to the agent in an effort to
hedge against the Knightian uncertainty regarding the agent’s action set. Our main finding
is that linear contracts are still robustly optimal in the sense that any random contract is
weakly dominated by a randomization over the same number, or fewer, linear contracts.
This implies that random linear contracts are an optimal class of contracts given any upper
bound on the size of the support. (The result for deterministic contracts obtains by taking
the support to be a singleton.) We also derive the optimal guarantee over all random con-
tracts, and characterize a sequence of random linear contracts attaining it in the limit as the
size of their support tends to infinity. The principal is indifferent among all linear contracts
in the support of these contracts, and thus commitment to the randomization is not needed
in order to (asymptotically) attain the optimal guarantee.

To quantify the importance of allowing for random contracts, we define the gain from ran-
domization as the ratio of the optimal guarantee to the guarantee from the best deterministic
contract. An example demonstrates that this gain can be arbitrarily large.

A heuristic explanation for the optimality of random linear contracts is as follows. Our
proof shows that any random contract can be weakly improved by appropriately lineariz-
ing each contract in its support. The alignment of the principal’s and the agent’s interests
achieved by linear contracts thus provides a robustly optimal way to motivate the agent,
whether the contract is chosen randomly or not. In this sense, the intuition from the deter-

1These include common agency (  Marku, Ocampo Diaz, and Tondji  ,  2024 ), moral hazard in teams (  Dai
and Toikka ,  2022 ), contracting with an organization (  Walton and Carroll  ,  2022 ), and settings where the
principal is also subject to moral hazard (  Carroll and Bolte  ,  2023 ).
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ministic case carries over. The randomization then hedges against the uncertainty regarding
the agent’s set of feasible actions as it prevents Nature from targeting the action set to any
particular contract.

More formally, our proof is based on explicitly formulating a random contract’s guarantee
as a linear program for adversarial Nature. This problem is in general a multidimensional
mechanisms design problem, where the agent’s type is the realized contract. Nature designs
for each type an action subject to usual incentive compatibility constraints and a participa-
tion constraint stemming from the presence of actions known to the principal. Our proof
proceeds by using the dual to Nature’s problem to identify a random linear improvement
contract. Applied to the deterministic case in Section  3 , the approach yields a short proof
of  Carroll ’s ( 2015 ) result, with linear programming duality used in place of his separating
hyperplane argument.

That randomization may provide a hedge against Knightian uncertainty, or ambiguity,
was suggested by  Raiffa ( 1961 ) in response to  Ellsberg ( 1961 ). In the present context, the
question ultimately comes down to the principal’s attitude toward uncertainty; decision
theory provides axiomatizations for both extremes and even for intermediate cases (see, e.g.,

 Saito ,  2015 ;  Ke and Zhang ,  2020 ). If we adopt the interpretation that the environment
is chosen by adversarial Nature, then the issue can be phrased as a question of timing or
observability. Randomization has value if Nature can condition its choice on the random
contract, but not on its realization. If instead Nature can react to the realized contract,
then randomization has no value and the analysis reduces to that in  Carroll ( 2015 ).

In practice, if the uncertainty regards the realization of some physical process such as the
choice of agent or the determination of feasible production technologies, then it seems rea-
sonable to assume that the resolution of a lottery over contracts just prior to one is presented
to the agent should have no effect on these phenomena, and randomization should thus have
value. Interestingly, this is the position (implicitly) adopted in much of the recent literature
on robust mechanism design as it is common to allow for random mechanisms, which means
that the designer has access to lotteries that are resolved only after the environment has
been determined (see, e.g.,  Brooks and Du  ,  2024 , and the references therein). Allowing for
randomization in max-min problems is also standard in computer science.

This work is related to the literature seeking foundations for linear and other commonly
observed contracts following  Holmström and Milgrom ( 1987 ), who concluded their fully
Bayesian analysis of the optimality of linear intertemporal incentives by suggesting that the
reason for the popularity of linear schemes might be their great robustness, and that the
case for it could perhaps be made more effectively with a non-Bayesian model. We refer
the reader to  Carroll ( 2015 ) for a review of this literature. Of the more recent works on
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non-Bayesian models, most closely related are those by  Dai and Toikka  ( 2022 ),  Walton and
Carroll ( 2022 ),  Carroll and Bolte ( 2023 ), and  Marku, Ocampo Diaz, and Tondji ( 2024 ), who
show the optimality of deterministic linear contracts in different moral hazard environments.
Related models are studied also by  Antic ( 2021 ),  Antic and Georgiadis ( 2023 ),  Rosenthal 

( 2023 ),  Burkett and Rosenthal  ( 2023 ), and  Kambhampati ( 2024 ), who find worst-case opti-
mal deterministic contracts different from linear contracts. More broadly, our work belongs
to the literature on the design of worst-case optimal contracts; see  Carroll ( 2019 ) for a recent
survey.

After having presented early versions of this work at several seminars and conferences,
we learned of independent contemporaneous work by  Peng and Tang  ( 2024 ), who consider
the same problem. Our approaches are different. Peng and Tang conjecture the form of
the optimal contract in the space of all distributions over contracts, and then verify its
optimality. In contrast, we give an improvement argument showing that random linear
contracts are optimal even given any bound on the size of the contracts’ support. We then
derive the form of the optimal contract for any (sufficiently large) grid. Both papers give
the same formula for the optimal guarantee, and the limit of our maximizing sequence of
contracts in Proposition  7 corresponds to Peng and Tang’s optimal contract. Peng and
Tang’s proof is elegant, but it is difficult to distill an intuition from it as to why linearity is
optimal. As discussed above, our proof allows one to separate the role of the contract form
and that of the randomization.

The rest of this paper is organized as follows. Section 2 sets up the model. Section 3
revisits the deterministic case. Section 4 presents our main result on the optimality of random
linear contracts. Section 5 derives the optimal guarantee and the maximizing sequence.
Section 6 concludes. The Appendix contains four proofs omitted from the main text.

2 Model

We consider the problem of a principal designing a contract to motivate an agent subject to
moral hazard, with the principal facing non-quantifiable uncertainty over the agent’s set of
feasible actions.

Let Y := {y1, . . . , yn} ⊂ R+ be the finite set of possible output levels, labeled in increasing
order so that 0 ≡ y1 < · · · < yn. It will be convenient to view the possible output levels as
a vector y = (y1, . . . , yn) ∈ Rn

+ and introduce the index set I := {1, . . . , n}.
An (unobservable) action for the agent is a pair (π, c) ∈ ∆(Y ) × R+, where π =

(π1, . . . , πn) is the output distribution and c is the associated cost to the agent. 

2
 A technology

2As is standard, we denote the set of all probabilities on a finite set B by ∆(B). More generally, given
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is a nonempty finite set of actions A ⊂ ∆(Y ) × R+.
The agent is protected by limited liability, requiring payments to him to be non-negative.

A (deterministic) contract is thus a non-negative n-vector w = (w1, . . . , wn) ∈ Rn
+, where wi

is the payment from the principal to the agent if output yi is realized.
Both parties are assumed risk-neutral. Thus, if the agent plays the action (π, c) given

contract w, then the principal’s expected payoff is π(y − w) = ∑
i∈I πi(yi − wi), whereas the

agent gets πw − c = ∑
i∈I πiwi − c. 

3
 

The principal does not know the actual technology available to the agent. She is only
aware of some technology A0, referred to as the known technology, and views any technology
A ⊇ A0 as possible. Faced with this uncertainty, the principal evaluates contracts based on
their guaranteed performance over all technologies that contain the known one. To state this
formally, given a contract w and a technology A, denote the agent’s maximum payoff by

U(w|A) := max
(π,c)∈A

πw − c. (2.1)

In the special case of the known technology A0, we write

U0(w) := U(w|A0). (2.2)

We note for future reference that U0(w) is continuous in the contract w.
The corresponding payoff to the principal is

V (w|A) := min
(π,c)∈A

π(y − w) s.t. πw − c = U(w|A). (2.3)

Note, in particular, that if the agent has multiple maximizers, then ties are broken against
the principal. The principal’s guarantee from the contract w is then

V (w) := inf
A⊇A0

V (w|A). (2.4)

We assume that the principal can hedge against the uncertainty over the agent’s tech-
nology by randomizing over contracts. Formally, a random contract is a finitely supported
probability measure p on Rn

+. Let ∆(Rn
+) denote the space of all random contracts. Given

a random contract p, the agent observes the realized contract w before choosing an action.

any set B, we use ∆(B) to denote the set of all finitely-supported probability measures on B.
3Given two vectors v and u in Rd, we write uv :=

∑d
i=1 uivi for their usual inner product.
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We can thus extend the principal’s payoff in ( 2.3 ) to random contracts by setting

V (p|A) :=
∑

w∈supp(p)
p(w)V (w|A), (2.5)

where supp(p) is the support of p, a finite set. Similarly, we extend the guarantee ( 2.4 ) to
random contracts by setting

V (p) := inf
A⊇A0

V (p|A). (2.6)

The principal’s optimal guarantee is the supremum of the guarantee ( 2.6 ) over all ran-
dom contracts, or supp∈∆(Rn

+) V (p). A random contract is optimal if it attains this optimal
guarantee. In contrast, the optimal deterministic guarantee is the supremum of ( 2.4 ) over all
contracts, or equivalently, the supremum of ( 2.6 ) over all degenerate random contracts (i.e.,
contracts whose support is a singleton). A contract w is an optimal deterministic contract
if it attains the optimal deterministic guarantee.

We assume throughout that the known technology A0 contains a productive action, i.e.,
there exists (π, c) ∈ A0 such that πy − c > 0. This non-triviality assumption ensures that
the optimal guarantee is positive.

Some remarks are in order regarding the formulation of the problem:

1. Because we assume that the agent observes the realized contract before choosing an
action, the agent need not know the underlying random contract, or even be aware
that the contract was generated via randomization. Indeed, because of bilateral risk-
neutrality, giving the agent a random contract would not be useful: Given any action
(π, c), the principal’s and the agent’s payoffs from a randomized contract p would be
π(y −∑w∈supp(p) p(w)w) and π

∑
w∈supp(p) p(w)w−c, and thus we could equivalently use

the deterministic contract w̃ with w̃i = ∑
w∈supp(p) p(w)wi for all i ∈ I.

2. Our contracting environment is the same as in  Carroll ( 2015 ), save for the following
minor differences. First, we take the set of outputs, Y , to be finite (rather than just
compact) to minimize technicalities. This is inessential for the economic logic of the
results, but it allows for simple duality-based proofs. (Any compact continuous output
set can of course be approximated with a finite grid.) Second, we also assume a
technology to be a finite set; this is only used to simplify the handling of a corner case
in the proofs of Propositions  6 and  7 . Third, we assume adversarial tie-breaking in
( 2.3 ), whereas Carroll broke ties in the principal’s favor. Adversarial tie-breaking could
be argued to better capture the spirit of the robustness exercise, and it simplifies the
analysis as the infimum in ( 2.6 ) becomes a minimum. However, both assumptions lead
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to the same optimal guarantee, and, as we will see, the existence of optimal contracts
is similarly unaffected by tie-breaking except for an uninteresting corner case.

3. We define a random contract as a finitely supported probability over deterministic
contracts. This assumption is without loss of generality in the sense that any random-
ization actually implementable on a computer would have to be finite.

3 The Deterministic Case

The duality approach we adopt to prove the optimality of random linear contracts also yields
a short proof of the optimality of linear contracts within the class of deterministic contracts.
It is instructive to see the argument first in this simpler case.

The basic idea is to formulate the guarantee ( 2.4 ) of a contract w as a linear program.
To this end, note that, given any technology A ⊇ A0, only the action chosen by the agent
matters for the principal’s payoff V (w|A) in ( 2.3 ). 

4
 It thus suffices to take the infimum in

( 2.4 ) over technologies that add at most one new action to the known technology A0. It
follows that the contract’s guarantee is characterized by the following linear program:

V (w) = min
π,c

π(y − w) (3.1)

s.t. πw − c ≥ U0(w), (3.2)
n∑

i=1
πi = 1, (3.3)

c, πi ≥ 0 ∀i ∈ I. (3.4)

That is, Nature designs an action (π, c) to minimize the principal’s profit, with constraint
( 3.2 ) ensuring that (π, c) is a best response for the agent since, by (  2.2 ), U0(w) is the agent’s
maximum payoff from the known technology A0. Problem ( 3.1 – 3.4 ) is feasible because taking
(π, c) to be an action in A0 that attains U0(w) satisfies all constraints.

A contract w is linear if w = αy for some slope α ∈ [0, 1]. With slight abuse of notation,
we will identify a linear contract with its slope α. We can now show that any contract can
be weakly improved upon by some linear contract.

Proposition 1. For every contract w, there is a linear contract α such that V (w) ≤ V (α).

Proof. Fix a contract w. The guarantee V (w) is clearly bounded from below by − maxi wi.
4I.e., if (π∗, c∗) attains the minimum in (  2.3 ) given w and A ⊇ A0, then V (w|A) = V (w|A0 ∪ {(π∗, c∗)}).
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By strong duality, the following dual to problem ( 3.1 – 3.4 ) is then feasible and bounded:

V (w) = max
λ,µ

λU0(w) + µ (3.5)

s.t. λwi + µ ≤ yi − wi ∀i ∈ I, (3.6)
λ ≥ 0. (3.7)

Let (λ∗, µ∗) be an optimal solution. Evaluating ( 3.6 ) at i = 1 gives µ∗ ≤ −(1+λ∗)w1 ≤ 0
as y1 = 0. Define a new contract w′ as follows. For each i, choose w′

i to satisfy ( 3.6 ) as an
equality, i.e., let

w′
i := yi − µ∗

λ∗ + 1 . (3.8)

By inspection, w′ is an affine function of output. As the original contract w also satisfies
( 3.6 ), we have w′ ≥ w ≥ 0, and thus w′ is a well-defined contract. Moreover, we have

V (w′) ≥ λ∗U0(w′) + µ∗ ≥ λ∗U0(w) + µ∗ = V (w), (3.9)

where the first inequality follows because (λ∗, µ∗) is by construction of w′ still feasible when w

is replaced with w′ in the dual, and the second inequality follows because w′ ≥ w and U0(w)
is weakly increasing in w by inspection of ( 2.2 ). We conclude that the original contract w is
weakly dominated by the affine contract w′.

To get a linear contract, we may drop the lump-sum payment −µ∗/(λ∗ + 1) ≥ 0 from w′

by letting w′′ := y/(λ∗ +1). This leaves the agent’s choice from every technology unchanged,
but weakly increases the principal’s payoff. Thus, V (w′′) ≥ V (w′) ≥ V (w).

A reader familiar with  Carroll ’s ( 2015 ) proof will see the parallels between the arguments,
with duality here replacing the separating hyperplane theorem. Given the equivalence of
linear programming duality and the separating hyperplane theorem, at a deeper level the
proofs are the same. However, adopting a linear programming perspective seems to allow a
somewhat more concise argument. 

5
 

5The proof of Proposition  1 extends mutatis mutandis to any compact set Y ⊂ R+ such that min Y = 0,
with a contract then defined to be a continuous function w : Y → R+. The primal problem ( 3.1 – 3.4 ) then
becomes one of choosing a regular nonnegative Borel measure π on Y and a cost c ∈ R to solve

V (w) = min
ˆ

Y

(y − w(y)) dπ(y) s.t.
ˆ

Y

w(y) dπ(y) − c ≥ U0(w),
ˆ

Y

1 dπ(y) = 1, and c ≥ 0.

The dual problem ( 3.5 – 3.7 ) in turn becomes one of choosing numbers λ ∈ R and µ ∈ R to

max λU0(w) + µ s.t. λw(y) + µ ≤ y − w(y) ∀y ∈ Y, and λ ≥ 0.

As the zero contract has V (0) ≥ 0, we may assume that V (w) > 0. By weak duality, this implies that the
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Proposition  1 implies that linear contracts are optimal, in the following sense:

Corollary 1. The optimal deterministic guarantee satisfies supw∈Rn
+

V (w) = supα∈[0,1] V (α).

Proof. Clearly v̄ := supw∈Rn
+

V (w) ≥ supα∈[0,1] V (α). For the converse, let wn be a sequence
such that V (wn) → v̄. By Proposition  1 , there is a sequence of linear contracts αn such that
V (wn) ≤ V (αn) ≤ supm≥n V (αm) for all n. Hence, v̄ ≤ lim supn V (αn) ≤ supα∈[0,1] V (α).

Having established the optimality of linear contracts as a class, it only remains to charac-
terize the optimal deterministic guarantee and the optimal linear contracts. The remaining
steps are specific to the deterministic case, and so we develop them here only to the ex-
tent needed for the subsequent analysis. They also serve to illustrate that adversarial and
principal-optimal tie-breaking yield essentially the same results.

To this end, consider Nature’s problem ( 3.1 – 3.4 ) given a linear contract with slope α:

V (α) = min
π,c

(1 − α)πy s.t. απy − c ≥ U0(α),
n∑

i=1
πi = 1, and c, πi ≥ 0 ∀i ∈ I.

It is clearly optimal to set c = 0 and choose π such that απy = U0(α)+, where our convention
is to write b+ = max{b, 0} for any b ∈ R. If α = 0, then it is optimal to put πy = U0(0)+ = 0,
and thus the guarantee from the zero contract is zero. (This is of course immediate given
adversarial tie-breaking.) On the other hand, the guarantee for any positive slope α > 0 is
V (α) = (1 − α)U0(α)+/α. Recalling the definition of U0 from ( 2.2 ), we thus have

V (α) =

0 if α = 0,

(1 − α) max(π,c)∈A0

(
πy − c

α

)+
if α ∈ (0, 1].

(3.10)

By Corollary  1 , the optimal deterministic guarantee is given by the supremum of the
function V : [0, 1] → R+ defined by ( 3.10 ). The non-triviality assumption implies that
V (α) > 0 for α sufficiently close to 1, and thus the optimal guarantee is positive. It can
also readily be verified to coincide with  Carroll ’s ( 2015 ) guarantee for principal-optimal tie-
breaking. 

6
 In what follows, we will use the fact that the optimal deterministic guarantee can

also be written as
sup

w∈Rn
+

V (w) = max
α∈[0,1]

1 − α

α
U0(α), (3.11)

dual is also bounded. Moreover, if we let λ′ = 1 and µ′ = min{y − 2w(y) : y ∈ Y } − 1, then (λ′, µ′) satisfies
all dual constraints as strict inequalities. Therefore, strong duality holds for this pair of semi-infinite linear
programs (see, e.g.,  Lai and Wu ,  1992 , Theorem 2.1). The rest of the argument now proceeds as above, with
the affine improvement contract constructed analogously to (  3.8 ) given some optimal dual solution.

6Principal-optimal tie-breaking leads in general to a weakly higher guarantee from the zero contract than
adversarial tie-breaking, but the guarantees are the same for any positive slope. As the guarantee under
principal-optimal tie-breaking is continuous in α, this implies that the optimal guarantees are the same.
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provided that (1−0)
0 U0(0) is taken to mean the limit as α → 0.

An optimal deterministic contract, which is linear, can be found by simply maximizing the
guarantee (  3.10 ). However, there is a small wrinkle as V , which is continuous on (0, 1], may
have a downward jump in the limit as α → 0. This leads to the following characterization. 
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Proposition 2. A linear contract α is an optimal deterministic contract if and only if it
maximizes the function V : [0, 1] → R+ defined by ( 3.10 ). If no such maximizer exists, then
there does not exist an optimal deterministic contract. In this case, the optimal deterministic
guarantee is attained in the limit of any sequence of linear contracts αn > 0 such that αn → 0.

Proof. The first claim characterizing optimal linear contracts follows by Corollary  1 and the
construction of V . That there is no optimal deterministic contract when there is no linear
optimal contract follows by Proposition  1 . Finally, the only possible point of discontinuity
of V is 0, and hence if a maximizer does not exist, then supα∈[0,1] V (α) = limα→0+ V (α).

While adversarial tie-breaking generates an existence problem relative to the case of
principal-optimal tie-breaking where an optimal (linear) contract always exists, the issue is
arguably minor: It only arises in the corner case where under principal-optimal tie-breaking,
the zero contract is the uniquely optimal linear contract. This case seems uninteresting from
the perspective of optimal incentive provision as none is required. It is incidentally also the
only case where randomization does not improve the principal’s payoff—see Corollary  3 . A
simple sufficient condition to rule it out and to ensure the existence of an optimal contract
is for any known action generating a positive surplus to have a non-zero cost.

4 Optimality of Random Linear Contracts

We now turn to our main contribution—showing that the class of random linear contracts
is optimal in the space of random contracts.

We say that a random contract p ∈ ∆(Rn
+) is linear, or a random linear contract, if every

contract in the support of p is linear, i.e., if for all w ∈ supp(p), there exists a slope α ∈ [0, 1]
such that w = αy. Whenever convenient, we identify each (deterministic) linear contract
with its slope, and then identify the set of all random linear contracts with ∆([0, 1]), the
space of finitely supported probability measures on the unit interval. With slight abuse of
notation, we continue to use V to denote the principal’s guarantee over any of these spaces.

The following results generalize Proposition  1 and Corollary  1 to random contracts.
7It is easy to show that all optimal deterministic contracts are linear under  Carroll ’s ( 2015 ) full support

condition by verifying that then certain inequalities in the proof of Proposition  1 are strict. As this argument
is similar to Carroll’s, we omit it in the interest of space.
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Proposition 3. For every random contract p, there is a random linear contract q such that

V (p) ≤ V (q) and |supp(p)| ≥ |supp(q)| .

Corollary 2. The optimal guarantee satisfies supp∈∆(Rn
+) V (p) = supp∈∆([0,1]) V (p).

Proof. Same as Corollary  1 , mutatis mutandis.

We note that because of the conclusion regarding supports, Proposition  3 nests Propo-
sition  1 as a special case by taking p to be a degenerate random contract. More generally,
Proposition  3 implies that random linear contracts remain optimal given any upper bound
on the size of a contract’s support (e.g., because of complexity considerations).

In order to establish Proposition  3 , the first step is to formulate the guarantee ( 2.6 ) as
a linear program. Let p be a random contract. Enumerate the contracts in the support of
p so that supp(p) = {w1, . . . , wk} and denote the index set by T := {1, . . . , k}. We will
write pt := p(wt) for the probability of contract t. In searching for the worst-case technology
against p, it suffices to consider technologies A ⊇ A0 that have at most k new actions, one for
each possible realized contract. 

8
 The guarantee V (p) is thus characterized by the following

finite linear program, which we refer to as the primal problem:

V (p) = min
{(πt,ct)}

∑
t∈T

ptπ
t(y − wt) (4.1)

s.t. πtwt − ct ≥ πswt − cs ∀t, s ∈ T : t ̸= s, (κts) (4.2)
πtwt − ct ≥ U0(wt) ∀t ∈ T, (λt) (4.3)∑

i∈I

πt
i = 1 ∀t ∈ T, (µt) (4.4)

ct, πt
i ≥ 0 ∀i ∈ I, t ∈ T. (4.5)

That is, Nature designs, for each contract wt in the support of p, an action (πt, ct)
the agent will take if contract wt is realized. This problem can be interpreted as a multi-
dimensional quasilinear mechanism design problem where the agent’s type t corresponds to
a contract wt ∈ Rn

+, the allocation is an output distribution π ∈ ∆(Y ), and the transfer is a
8To see this, given any technology A ⊇ A0, let at := (πt, ct) denote the action the agent chooses from A

if contract wt is realized. (That is, at attains V (wt|A).) It is straightforward to verify that, for all t ∈ T , we
have V (wt|A) = V (wt|A0 ∪ {a1, . . . , ak}). This implies that

V (p|A) =
∑
t∈T

ptV (wt|A) =
∑
t∈T

ptV (wt|A0 ∪ {a1, . . . , ak}) = V (p|A0 ∪ {a1, . . . , ak}).

Therefore, for any A ⊇ A0, there exists a technology A′ ⊇ A0 with
∣∣A′ \ A0

∣∣ ≤ k such that V (p|A′) = V (p|A).
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cost c, constrained to be nonnegative. The constraint (  4.3 ) is a participation constraint that
ensures that each type t prefers its own action (πt, ct) to any of the known actions in A0. (Note
that the utility from this outside option depends on the type t.) The new constraint ( 4.2 ),
absent from Nature’s problem studied in the deterministic case, is an incentive compatibility
constraint that ensures that each type t prefers its own action (πt, ct) to the action (πs, cs)
of every other type s.

Problem ( 4.1 – 4.5 ) is feasible because taking each (πt, ct) to be an action in A0 that attains
U0(wt) satisfies all constraints. (Put differently, Nature can always just give the agent the
known technology A0.) Moreover, its value is clearly bounded from below by − maxi,t wt

i ,
and thus an optimal solution exists.

As in the deterministic case, we will study the dual to Nature’s problem. Strong duality
implies that the following dual is feasible and bounded, with V (p) the optimal value:

V (p) = max
κ,λ,µ

∑
t∈T

λtU
0(wt)+

∑
t∈T

µt (4.6)

s.t. λtw
t
i + µt +

∑
s̸=t

κtsw
t
i −

∑
s ̸=t

κstw
s
i ≤ pt(yi − wt

i) ∀i ∈ I, t ∈ T, (πt
i) (4.7)

λt +
∑
s ̸=t

κts −
∑
s ̸=t

κst ≥ 0 ∀t ∈ T, (ct) (4.8)

κts, λt ≥ 0 ∀t, s ∈ T : t ̸= s. (4.9)

We will use dual solution to refer to any vector (κ, λ, µ) ∈ RT (T −1) × RT × RT satisfying
constraints (  4.8 ) and (  4.9 ), and use the qualifiers feasible or optimal to indicate, respectively,
that the dual solution is feasible or optimal in ( 4.6 – 4.9 ) for a given random contract p.

In order to make duality between problems ( 4.1 – 4.5 ) and (  4.6 – 4.9 ) easier to verify, each
non-trivial primal constraint in ( 4.1 – 4.5 ) has the associated dual variable displayed next to it
in parenthesis. Similarly, the associated primal variable is displayed next to each non-trivial
dual constraint in ( 4.6 – 4.9 ). It may also be instructive to compare the above dual problem
to the dual ( 3.5 – 3.7 ) from the deterministic case; by inspection, the problems coincide if the
random contract p is degenerate so that T is a singleton.

The general idea in the proof of Proposition  3 is analogous to the proof of Proposition  1 

in the deterministic case: Given a random contract p, we take an optimal dual solution
(κ∗, λ∗, µ∗) and use constraint ( 4.7 ) to construct, for each contract wt in the support of p,
an affine contract that dominates it from above. It will then be shown that a randomization
over these affine contracts improves on p, and that a further improvement is obtained by a
random linear contract.

We will need a preliminary result about the structure of optimal dual solutions. Given

12



a dual solution (κ, λ, µ), let G(κ) be a directed graph with vertex set T = {1, . . . , k} and
an arc directed from t to s whenever κts > 0. Note that if (κ, λ, µ) is an optimal solution
to ( 4.6 – 4.9 ), then by complementary slackness, each arc in G(κ) corresponds to a binding
incentive compatibility constraint in ( 4.2 ) in the primal problem.

Lemma 1. There is an optimal dual solution (κ∗, λ∗, µ∗) for which the graph G(κ∗) is acyclic.

The proof of Lemma  1 is lengthy, so we only sketch the proof for a special case to illustrate
the idea and relegate the full argument to the Appendix.

Proof of Lemma  1 for two equi-probable contracts. Suppose supp(p) = {w1, w2} and p1 =
p2 = 1/2. Consider a perturbed version of the primal problem ( 4.1 – 4.5 ) where the incentive
constraints in ( 4.2 ) are relaxed by some ε > 0:

π1w1 − c1 ≥ π2w1 − c2 − ε and π2w2 − c2 ≥ π1w2 − c1 − ε. (4.10)

As ε only enters the right-hand sides of these constraints, the perturbed dual is otherwise
identical to (  4.6 – 4.9 ) but the objective in (  4.6 ) has the additional term −(κ12 + κ21)ε.

Suppose toward contradiction that (κ∗, λ∗, µ∗) is an optimal solution to the perturbed
dual and G(κ∗) has a cycle. That is, κ∗

12 > 0 and κ∗
21 > 0. By complementary slackness,

both constraints in ( 4.10 ) hold as equalities at an optimal solution {(π1, c1), (π2, c2)} to
the perturbed primal. We observe that then type 1 strictly prefers (π2, c2) to (π1, c1), and
conversely for type 2.

Construct a new primal solution by swapping the actions, i.e., let (π̂1, ĉ1) := (π2, c2) and
(π̂2, ĉ2) := (π1, c1). This new solution is clearly feasible: It trivially satisfies the probability
and non-negativity constraints ( 4.4 ) and ( 4.5 ). And because each type is now strictly better
off, {(π̂1, ĉ1), (π̂2, ĉ2)} satisfies both the incentive compatibility constraints ( 4.10 ) and the
participation constraints ( 4.3 ). Moreover, the new solution attains a strictly lower primal
objective value as total surplus is unchanged, but more of it now goes to the agent:

0.5[π̂1(y − w1) + π̂2(y − w2)] = 0.5[π2(y − w1) + π1(y − w2)]
= 0.5[π2y − π1w1 − c2 + c1 − ε + π1y − p2w2 − c1 + c2 − ε]
= 0.5[π1(y − w1) + π2(y − w2)] − ε,

where the second equality follows because the old solution {(π1, c1), (π2, c2)} satisfies (  4.10 )
with equality. Thus, the old solution is in fact not optimal, a contradiction.

By the above argument, every optimal solution to the perturbed dual has an acyclic
graph. Upper hemi-continuity of optimal dual solutions in the perturbation ε then allows us
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to establish the existence of an optimal solution with an acyclic graph to the unperturbed
dual via a limit argument. See the Appendix for the details and the general case.

The reason we resort to the perturbation argument to show Lemma  1 is that in the original
problem, the incentive compatibility constraints that hold with equality at the optimum may
well form a cycle. For example, this is the case if contracts 1 and 2 are pooled to the same
action. In contrast, such a cycle is impossible in the perturbed problem as illustrated by the
above proof sketch. By complementary slackness, the graph G(κ∗) is thus always acyclic in
the perturbed problem. As we send the perturbation parameter ε to zero, we uncover the
existence of an acyclic graph for the original problem as well. In the case where the optimal
primal solution pools contracts 1 and 2 to the same action, this implies that even if both
incentive compatibility constraints then hold with equality, there is an optimal dual solution
where at most one of them has a positive shadow price.

The next two lemmas establish the existence of affine contracts that dominate the con-
tracts in the support of p. In showing this, we will view the dual constraint ( 4.7 ) as a system
of linear inequalities in the contracts {w1, . . . , wk}, in the following sense.

Definition 1. Given a dual solution (κ, λ, µ) and probabilities (p1, . . . , pk) ∈ [0, 1]k, the
w-system is the system of linear inequalities in (w1, . . . , wk) ∈ Rkn

+ defined by (  4.7 ).

Given a dual solution (κ, λ, µ), define the set of in-neighbors of t ∈ T in the graph G(κ)
as N(t) := {s ∈ T : κst > 0}, and the set of out-neighbors as O(t) := {s ∈ T : κts > 0}. We
say that contract w ∈ Rn

+ is positive affine if wi = αyi + β for all i ∈ I for some α ∈ (0, 1]
and β ≥ 0 independent of i. (Because y1 = 0, every affine contract has β ≥ 0, so being
positive affine is a restriction on α.)

Lemma 2. Let (w1, . . . , wk) ∈ Rkn
+ be feasible in the w-system given (κ, λ, µ) and (p1, . . . , pk).

If all in-neighbors of a contract t ∈ T are positive affine, i.e., if the contract ws in (w1, . . . , wk)
is positive affine for all s ∈ N(t), then there is a positive affine contract xt satisfying the
following properties:

1. xt ≥ wt,

2. (xt, w−t) is feasible in the w-system. 

9
 

Proof. Let t ∈ T be a contract whose every in-neighbor s ∈ N(t) is a positive affine contract.
The (i, t)-instance of constraint ( 4.7 ) then takes the form

λtw
t
i + µt +

∑
s∈O(t)

κtsw
t
i −

∑
s∈N(t)

κst(αsyi + βs) ≤ pt(yi − wt
i),

9We use the standard shorthand (xt, w−t) := (w1, . . . , wt−1, xt, wt+1, . . . , wk).
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or, equivalently,

wt
i ≤

pt +∑
s∈N(t) κstαs

λt + pt +∑
s∈O(t) κts

yi +
∑

s∈N(t) κstβs − µt

λt + pt +∑
s∈O(t) κts

=: xt
i. (4.11)

As i ranges over I, the right-hand side defines a vector xt. By construction, xt ≥ wt ≥ 0,
and thus xt is a contract. It is affine by inspection. To verify that xt is positive affine, note
that

0 <
pt +∑

s∈N(t) κstαs

λt + pt +∑
s∈O(t) κts

≤
pt +∑

s∈N(t) κst

λt + pt +∑
s∈O(t) κts

≤ pt

pt

= 1,

where the first inequality follows because pt, αs > 0 and κts, κst, λt ≥ 0, the second follows
because αs ≤ 1 as every in-neighbor s is positive affine, and the third inequality follows
because the dual solution (κ, λ, µ) satisfies (  4.8 ) by definition.

For property 2, note that (xt, w−t) satisfies the (i, t)-instance of ( 4.7 ) with equality for all
i ∈ I by construction of xt. Moreover, because xt ≥ wt and κst ≥ 0 for all s ̸= t, replacing
wt with xt weakly relaxes all other instances of ( 4.7 ).

Lemma 3. Let (w1, . . . , wk) ∈ Rkn
+ be feasible in the w-system given (κ, λ, µ) and (p1, . . . , pk).

If the graph G(κ) is acyclic, then there exists a vector of positive affine contracts (x1, . . . , xk)
that is feasible in the w-system and satisfies xt ≥ wt for every t ∈ T .

Proof. Let (w1, . . . , wk) ∈ Rkn
+ be feasible in the w-system and suppose G(κ) is acyclic.

Partition T recursively as follows:

• Let L0 := {t ∈ T : N(t) = ∅}.

• For ℓ ≥ 1, let Lℓ := {t ∈ T \ ∪m<ℓLm : N(t) ⊆ ⋃
m<ℓ Lm}.

That is, the zero layer L0 consists of all contracts that have no in-neighbors in the graph
G(κ). For ℓ > 0, the ℓ-th layer Lℓ consists of all contracts not contained in any of the lower
layers Lm, m < ℓ, but whose in-neighbors are in these layers. Because G(κ) is acyclic, it is
straightforward to verify that there exists ℓ̄ ∈ N0 such that Lℓ is nonempty if and only if
0 ≤ ℓ ≤ ℓ̄, and that {L1, . . . , Lℓ̄} is a partition of T .

By relabeling if necessary, we can assume without loss of generality that the contracts
(w1, . . . , wk) are labeled monotonically so that contracts with higher indices are in higher
layers, in the following sense: If t < t′, t ∈ Lℓ, and t′ ∈ Lℓ′ , then ℓ ≤ ℓ′.

We now construct the positive affine contracts (x1, . . . , xk) ∈ Rkn
+ by induction on t.

Base case: Because the contracts are labeled monotonically, we have 1 ∈ L0 and thus
contract 1 has no in-neighbors. Moreover, (w1, . . . , wk) is feasible in the w-system given
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(κ, λ, µ) and (p1, . . . , pk) by assumption. Thus, by Lemma  2 , there is a positive affine contract
x1 ≥ w1 such that (x1, w2, . . . , wk) is feasible in the w-system.

Induction step: Let 1 < t ≤ k. Suppose there exist positive affine contracts x1, . . . , xt−1

with xs ≥ ws for all 1 ≤ s ≤ t − 1, and (x1, . . . , xt−1, wt, . . . , wk) is feasible in the w-system.
Let Lℓ be the layer containing contract t. By definition of Lℓ, we have N(t) ⊆ ∪m<ℓLm. The
induction hypothesis and monotonicity of labeling imply that t’s in-neighbors are positive
affine. (Note that this subsumes the special case ℓ = 0, in which case N(t) ⊆ ∪m<0Lm = ∅
and the conclusion holds vacuously.) Thus, Lemma  2 again gives us a positive affine contract
xt ≥ wt such that (x1, . . . , xt, wt+1, . . . , wk) is feasible in the w-system.

With the above results in hand, we are now ready to prove Proposition  3 .

Proof of Proposition  3 . Let p be a random contract with supp(p) = {w1, . . . , wk} and let
(κ∗, λ∗, µ∗) be an optimal solution to the dual ( 4.6 – 4.9 ) such that G(κ∗) is acyclic, the
existence of which is ensured by Lemma  1 .

Because G(κ∗) is acyclic and (w1, . . . , wk) is obviously feasible in the w-system given
(κ∗, λ∗, µ∗) and (p1, . . . , pk), Lemma  3 gives us a vector of positive affine contracts (x1, . . . , xk)
that is feasible in the w-system and satisfies xt ≥ wt for all t ∈ T .

Consider now the dual ( 4.6 – 4.9 ) where we replace the contracts (w1, . . . , wk) with the
positive affine contracts (x1, . . . , xk) while keeping the probabilities (p1, . . . , pk) unchanged:

V (p1, . . . , pk; x1, . . . , xk) := max
κ,λ,µ

∑
t∈T

λtU
0(xt)+

∑
t∈T

µt

s.t. λtx
t
i + µt +

∑
s ̸=t

κtsx
t
i −

∑
s ̸=t

κstx
s
i ≤ pt(yi − xt

i) ∀i ∈ I, t ∈ T,

λt +
∑
s ̸=t

κts −
∑
s ̸=t

κst ≥ 0 ∀t ∈ T,

κts, λt ≥ 0 ∀t, s ∈ T : t ̸= s.

Because (x1, . . . , xk) is feasible in the w-system given (κ∗, λ∗, µ∗) and (p1, . . . , pk), the dual
solution (κ∗, λ∗, µ∗) is feasible in the above problem. Therefore,

V (p1, . . . , pk; x1, . . . , xk) ≥
∑
t∈T

λ∗
t U

0(xt) +
∑
t∈T

µ∗
t ≥

∑
t∈T

λ∗
t U

0(wt) +
∑
t∈T

µ∗
t = V (p), (4.12)

where the second inequality follows because xt ≥ wt for all t and U0 is weakly increasing in
the contract (in the pointwise order) by inspection of ( 2.2 ).

Moreover, strong duality implies that V (p1, . . . , pk; x1, . . . , xk) is the optimal value of the
primal problem ( 4.1 – 4.5 ), which using the positive affine form xt

i = αtyi + βt (i ∈ I) of each
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contract t now becomes

V (p1, . . . , pk; x1 . . . , xk) = min
{(πt,ct)}

∑
t∈T

pt(1 − αt)πty −
∑
t∈T

ptβt (4.13)

s.t. αtπ
ty − ct ≥ αtπ

sy − cs ∀t, s ∈ T : t ̸= s, (4.14)
αtπ

ty − ct ≥ U0(αt) ∀t ∈ T, (4.15)∑
i∈I

πt
i = 1 ∀t ∈ T, (4.16)

ct, πt
i ≥ 0 ∀i ∈ I, t ∈ T. (4.17)

Note that the feasible set is independent of the constants βt ≥ 0, t ∈ T . (They enter
both sides of the incentive compatibility and participation constraints (  4.14 ) and ( 4.15 ), and
cancel out.) By inspection of ( 4.13 – 4.17 ), replacing each xt with the linear contract αt gives

V (p1, . . . , pk; α1, . . . , αk) = V (p1, . . . , pk; x1, . . . , xk) +
∑
t∈T

ptβt ≥ V (p1, . . . , pk; x1, . . . , xk),

which together with (  4.12 ) implies V (p1, . . . , pk; α1, . . . , αk) ≥ V (p).
To conclude the proof, define the random linear contract q by setting q(α) = ∑

t:αt=α pt for
all α ∈ [0, 1], with the sum over the empty set equal to zero, as usual. 

10
 It is then immediate

that |supp(q)| ≤ |supp(p)|. Furthermore, V (q) is the optimal value of the problem ( 4.13 –
 4.17 ) with βt ≡ 0 for all t and with the additional constraint that (πt, ct) = (πs, cs) for all
s, t ∈ T such that αs = αt. Therefore, V (q) ≥ V (p1, . . . , pk; α1, . . . , αk) ≥ V (p).

Proposition  3 shows that every random contract p is weakly dominated by a random
linear contract. The proof shows, essentially, that p can be weakly improved by linearizing
each contract in its support while keeping the probabilities fixed, thus generalizing the proof
of Proposition  1 from the deterministic case. The new challenge in the random case is the
presence of the incentive compatibility constraints ( 4.2 ), which create interlinkages between
contracts as the action (πt, ct) Nature targets to contract wt will be available to the agent
also when any other contract is realized. (This is why randomization is useful in the first
place.) Because the primal ( 4.1 – 4.5 ) is a multi-dimensional screening problem, the structure
of binding incentive compatibility constraints (i.e., those with a positive shadow price) is not
clear a priori. Our proof deals with this by showing that there nevertheless is an optimal
solution under which the binding constraints do not form a cycle. This is enough to then
use the dual to Nature’s problem to construct the improvement contract.

10If the list α1, . . . , αk includes multiple copies of some slope, then the tuple (p1 . . . , pk; α1, . . . , αk) is itself
not a random linear contract according to our definition as it is not a finitely supported probability on [0, 1].

17



5 Optimal Randomization

Having established the optimality of random linear contracts as a class, we now characterize
optimal random linear contracts by means of a maximizing sequence of such contracts that
attains the optimal guarantee. In the process, we obtain a formula for the optimal guarantee.
We also show that the maximizing sequence converges to a distribution over linear contracts
that puts positive density on an interval of slopes. While it is obviously impossible to exactly
implement this limiting “continuous random linear contract” in practice, it nevertheless
provides a concise way to summarize the maximizing sequence.

5.1 Guarantee of a Random Linear Contract

We start by specializing Nature’s problem to random linear contracts. This brings about a
considerable simplification as it renders the mechanism design problem one-dimensional.

We passed through Nature’s problem against a randomization over linear contracts in
the proof of Proposition  3 . Specifically, setting βt ≡ 0 for all t ∈ T in problem ( 4.13 – 4.17 )
gives the primal problem for a random linear contract p with supp(p) = {α1, . . . , αk}. By
inspection, the problem depends on each output distribution πt only via the expected output
et := πty ∈ [0, yn]. With this change of variables, we can write the primal problem as follows:

V (p) = min
{(et,ct)}

∑
t∈T

pt(1 − αt)et (5.1)

s.t. αtet − ct ≥ αtes − cs ∀t, s ∈ T : t ̸= s, (5.2)
αtet − ct ≥ U0(αt) ∀t ∈ T, (5.3)

et ≤ yn ∀t ∈ T, (5.4)
et, ct ≥ 0 ∀t ∈ T. (5.5)

The agent’s type is now a slope α, the allocation is an expected output e ∈ [0, yn], the
“transfer” is a cost c ≥ 0, and the outside option in ( 5.3 ) is still type-dependent.

It is a standard observation that problem ( 5.1 – 5.5 ) is valid even if supp(p) ⊊ {α1, . . . , αk}
so that pt = 0 for some t. This is because Nature can satisfy constraints ( 5.2 – 5.5 ) for any
type αt /∈ supp(p) without any impact on the objective ( 5.1 ) by simply setting

(et, ct) ∈ arg max{αte − c : (e, c) ∈ A0 ∪ {(es, cs)}s : αs∈ supp(p)}.

The next result allows for this possibility in anticipation of the analysis that follows.

Lemma 4. Let p be a random linear contract such that supp(p) ⊆ {α1, . . . , αk} for some
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α1 < · · · < αk. Write pt = p(αt) for all t ∈ T = {1, . . . , k} and α0 ≡ 0. Then the guarantee
V (p) is the optimal value of the following program:

min
{et}

∑
t∈T

pt(1 − αt)et (5.6)

s.t.
t∑

s=1
(αs − αs−1)es ≥ U0(αt) ∀t ∈ T, (λt) (5.7)

et+1 − et ≥ 0 ∀t ∈ T \ {k}, (θt) (5.8)
et ≥ 0 ∀t ∈ T. (5.9)

The proof consists of variations of standard constraint-simplification arguments, so we
relegate it to the appendix. Substantively, the key step is noting that upward adjacent
incentive constraints in ( 5.2 ) can be taken to hold with equality without loss of optimality,
i.e., αtet − ct = αtet+1 − ct+1 for all t < k. This allows us to recursively eliminate the costs
from the problem up to c1, which can then be set to zero without loss of optimality.

Lemma  4 has the following dual characterization, which will play an important role.

Lemma 5. Let p be a random contract satisfying the assumptions of Lemma  4 . Then

V (p) = max
λ,θ

∑
t∈T

λtU
0(αt) (5.10)

s.t.
k∑

s=t

λs(αt − αt−1) + θt−1 − θt ≤ pt(1 − αt) ∀t ∈ T, (et) (5.11)

λt ≥ 0 ∀t ∈ T, (5.12)
θt ≥ 0 ∀t ∈ T \ {k}, (5.13)

where α0 ≡ 0, θ0 ≡ 0, and θk ≡ 0.

Proof. Program ( 5.10 – 5.13 ) is the dual of ( 5.6 – 5.9 ), so the claim follows by strong duality.

5.2 Grid-Based Contracts

A natural and tractable class of random linear contracts consists of those restricted to using
slopes from a fixed, finite grid. Formally, we define a grid to be a set Γ ⊂ [0, 1] of the form
Γ = {α1, . . . , αk} for some number k ∈ N>0 and slopes 0 < α1 < · · · < αk ≡ 1 defined
by αt := t/k for t = 0, . . . , k. (Thus, αt+1 − αt = k−1.) Note that the grid is uniquely
determined by its size |Γ| = k.
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We denote the set of random linear contracts based on the grid Γ by

∆(Γ) := {p ∈ ∆([0, 1]) : supp(p) ⊆ Γ}.

We then define the maximal guarantee from Γ-based contracts as

V (Γ) := max
p∈∆(Γ)

V (p).

(We shall see later that the maximum exists.) Note that V (Γ) ≤ V (Γ′) whenever Γ ⊂ Γ′.
The following result verifies that, as one would expect, the guarantee of any random

linear contract can be approximated arbitrarily well with grid-based contracts.

Lemma 6. Let p be a random linear contract and let ε > 0. Then there exists a grid size
k̄ ∈ N such that V (Γ) ≥ V (p) − ε whenever |Γ| ≥ k̄.

See the appendix for the proof, which relies on continuity properties of linear programs.
The above approximation lemma implies that we can obtain a maximizing sequence of

random linear contracts by considering optimal grid-based contracts for ever-increasing grids.

Proposition 4. Let Γ1, Γ2, . . . be a sequence of grids such that |Γm| → ∞ as m → ∞. Then

lim
m→∞

V (Γm) = sup
p∈∆(Rn

+)
V (p).

Proof. By Corollary  2 , we may take the supremum on the right over random linear contracts.
Moreover, we clearly have lim supm→∞ V (Γm) ≤ supp∈∆([0,1]) V (p), and thus it suffices to show
that lim infm→∞ V (Γm) ≥ supp∈∆([0,1]) V (p).

Fix ε > 0. Take a sequence of random linear contracts pn ∈ ∆([0, 1]) such that V (pn) →
supp∈∆([0,1]) V (p). By Lemma  6 , for every n, there exists mn such that

V (pn) − ε

n
≤ inf

m≥mn

V (Γm).

By redefining the cutoffs recursively via m̂1 := m1 and m̂n := max{m̂1, . . . , m̂n−1} + 1
for n > 1 if necessary, we may assume that m1 < m2 < · · · . Then infm≥mn V (Γm) is
nondecreasing in n and thus it converges to lim infm V (Γm) as n → ∞. Hence,

sup
p∈∆([0,1])

V (p) = lim
n→∞

(
V (pn) − ε

n

)
≤ lim

n→∞
inf

m≥mn

V (Γm) = lim inf
m→∞

V (Γm).

Motivated by Proposition  4 , we characterize optimal grid-based contracts. In order to
rule out pathological cases, we say that a grid Γ is eligible if there exists α ∈ Γ such that
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α < 1 and U0(α) > 0. By assumption, the known technology A0 is non-trivial and thus it
contains an action (π, c) such that U0(1) = πy − c > 0. Because U0(α) is continuous in α,
it follows that every sufficiently large grid is eligible.

Proposition 5. Suppose Γ is an eligible grid of size k. Let

t∗ ∈ arg max
t∈T

U0( t
k
)∑t

s=1
1

k−s

. (5.14)

Then t∗ < k and the maximal guarantee from Γ-based contracts is

V (Γ) =
U0( t∗

k
)∑t∗

s=1
1

k−s

> 0, (5.15)

and it is attained by the random linear contract p ∈ ∆(Γ) defined by

pt = p( t
k
) =


1

k−t

(∑t∗

s=1
1

k−s

)−1
if 1 ≤ t ≤ t∗,

0 if t∗ < t ≤ k.
(5.16)

Proof. The definition of V (Γ) and Lemma  5 imply that

V (Γ) = max
p∈∆(Γ)

V (p) = max
p∈∆(Γ)

max
λ,θ

{∑
t∈T

λtU
0(αt) s.t. (  5.11 – 5.13 )

}
. (5.17)

Writing the max-max problem on the right-hand side as a single maximization problem and
using the facts that αt = t

k
and αt − αt−1 = k−1 for all t gives the following program:

V (Γ) = max
p,λ,θ

∑
t∈T

λtU
0( t

k
) (5.18)

s.t. k−1
k∑

s=t

λs + θt−1 − θt − pt(1 − t
k
) ≤ 0 ∀t ∈ T, (et) (5.19)

∑
t∈T

pt = 1, (δ) (5.20)

pt, λt, θt ≥ 0 ∀t ∈ T, (5.21)

where θ0 ≡ 0 and θk ≡ 0.
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By strong duality, V (Γ) is also the value to the following dual:

V (Γ) = min
{et},δ

δ (5.22)

s.t. δ − (1 − t
k
)et ≥ 0 ∀t ∈ T, (pt) (5.23)

k−1
t∑

s=1
es ≥ U0( t

k
) ∀t ∈ T, (λt) (5.24)

et+1 − et ≥ 0 ∀t ∈ T \ {k}, (θt) (5.25)
et ≥ 0 ∀t ∈ T. (5.26)

Define t∗ as in ( 5.14 ). Because the grid Γ is eligible, we have t∗ < k and the expression on
the right-hand side of (  5.15 ) is strictly positive. 

11
 We will show that the following constitute

optimal solutions to programs (  5.22 – 5.26 ) and ( 5.18 – 5.21 ):

δ =
U0( t∗

k
)∑t∗

s=1
1

k−s

, et = δ(1 − t
k
)−1 ∀t ∈ T \ {k}, ek = max{ek−1, yn}, (5.27)

and

θt = 0 ∀t ∈ T \ {k}, λt =


(∑t∗

s=1
1

k−s

)−1
if t = t∗,

0 if t ̸= t∗,
pt =


λt∗
k−t

if 1 ≤ t ≤ t∗,

0 if t∗ < t ≤ k.
(5.28)

We first check that the objectives ( 5.18 ) and ( 5.22 ) coincide under the above solutions:

δ =
U0( t∗

k
)∑t∗

s=1
1

k−s

= λt∗U0( t∗

k
) =

∑
t∈T

λtU
0( t

k
).

Therefore, the solutions are optimal by weak duality, if we show them to be feasible.
Note that ( 5.27 ) and ( 5.28 ) clearly satisfy the non-negativity constraints ( 5.21 ) and ( 5.26 )

as well as the monotonicity constraint ( 5.25 ). We verify the other constraints in turn.
Consider first constraint ( 5.19 ). If 1 ≤ t ≤ t∗, we have

k−1
k∑

s=t

λt + θt−1 − θt − pt(1 − t
k
) = λt∗

k
− λt∗

k − t

k − t

k
= 0.

If t∗ < t ≤ k, then k−1∑k
s=t λt + θt−1 − θt − pt(1 − t

k
) = 0. Thus, ( 5.19 ) holds for all t ∈ T .

11To see this, adopt the usual conventions a/∞ = 0 for a ≥ 0 and a/0 = ∞ for a > 0. Evaluating the
objective in ( 5.14 ) at t = k then gives U0(1)/∞ = 0, whereas eligibility implies that the objective is positive
for some t < k.
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We then verify ( 5.20 ):

δ

[∑
t∈T

pt − 1
]

= δ

[
t∗∑

t=1

λt∗

k − t
− 1

]
= δ

∑t∗

t=1
1

k−t∑t∗
s=1

1
k−s

− 1
 = 0.

Moving to the dual, consider ( 5.23 ). We have δ − (1 − t
k
)et = 0 for all t < k, whereas for

t = k, we get δ − (1 − k
k
)ek = δ > 0 verifying the constraint.

Consider then (  5.24 ). Observe that for all t < k, the left-hand side is

1
k

t∑
s=1

es = 1
k

t∑
s=1

δ

1 − s
k

= δ
t∑

s=1

1
k − s

=
U0( t∗

k
)∑t∗

s=1
1

k−s

t∑
s=1

1
k − s

≥ U0( t
k
),

where the inequality follows by definition of t∗ in ( 5.14 ). Thus, the constraint holds for all
t < k, with equality for t = t∗. It remains to verify the constraint for t = k. We have

1
k

k∑
s=1

es ≥ 1
k

(
k−1∑
s=1

δ

1 − s
k

+ yn

)
≥ U0(k−1

k
) + yn

k
≥ U0(k

k
),

where the last inequality follows because—letting (e0
k, c0

k) denote the optimal choice of type
k from A0—we have

U0(k
k
) − U0(k−1

k
) ≤ e0

k − c0
k −

(
k − 1

k
e0

k − c0
k

)
=
(

1 − k − 1
k

)
e0

k ≤ yn

k
.

We conclude that (  5.24 ) holds for t = k as well.
Therefore, the solutions ( 5.27 ) and ( 5.28 ) are feasible and hence optimal. The maximal

guarantee ( 5.15 ) now follows from ( 5.27 ) because V (Γ) = δ > 0 by ( 5.22 ). The contract p

defined by (  5.16 ) attains it by the optimality of ( 5.28 ).

It is worth noting that the principal is indifferent among all linear contracts in the
support of the random linear contract p in ( 5.16 ). To see this, note that ( 5.27 ) implies that
(1 − t

k
)et = δ for all 1 ≤ t ≤ t∗, because t∗ < k. Importantly, this means that implementing

p does not require the principal to be able to commit to the randomization.

5.3 The Optimal Guarantee and the Gain from Randomization

We are now in position to characterize the optimal guarantee over all random contracts.
Notice that the quotient

U0(α)
− ln(1 − α)
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is well-defined and continuous in α on (0, 1). By convention, we extend it to all of [0, 1] by
its left and right limits at the end points. 

12
 This simplifies notation as the quotient is then

essentially a continuous function on [0, 1], with the possible exception that it may take on
the value −∞ at α = 0. In particular, it attains its maximum on [0, 1], and this maximum
is the optimal guarantee.

Proposition 6. The optimal guarantee is

sup
p∈∆(Rn

+)
V (p) = max

α∈[0,1]

U0(α)
− ln(1 − α) .

Proof. Let v̄ := supp∈∆(Rn
+) V (p). Because A0 is non-trivial, the optimal deterministic guar-

antee is positive, and thus v̄ > 0 a fortiori.
Denote the grid of size k by Γk. Throughout the proof, we assume without loss of

generality that k is large enough so that Γk is eligible. Then Propositions  4 and  5 imply that

0 < v̄ = lim
k→∞

V (Γk) = lim
k→∞

U0( t∗
k

k
)∑t∗

k
s=1

1
k−s

, (5.29)

where we have labeled the maximizer t∗
k by k to highlight its dependence on the grid size.

In particular, the limit on the right exists.
Let α∗

k := t∗
k/k. Because 1 ≤ t∗

k < k, we have α∗
k ∈ (0, 1). By extracting a subsequence if

necessary, we may assume that α∗
k converges to some α∗ ∈ [0, 1] as k → ∞.

The numerator on the right-hand side of ( 5.29 ) is continuous by continuity of U0(α) in
α. To evaluate the denominator, we prove the following result in the appendix.

Lemma 7. Let (tk) be a sequence in N such that 1 ≤ tk < k for all k and tk

k
→ α ∈ [0, 1].

Then

lim
k→∞

tk∑
s=1

1
k − s

=

− ln(1 − α) if α ∈ [0, 1),

+∞ if α = 1.

We can now show that α∗ ∈ [0, 1). Suppose to the contrary that α∗ = 1. Then using
12That is, let

U0(0)
− ln(1 − 0)

:= lim
α→0+

U0(α)
− ln(1 − α) ∈ [−∞, ∞) and U0(1)

− ln(1 − 1)
:= lim

α→1−

U0(α)
− ln(1 − α) = 0,

where the first limit is bounded from above because U0(0) ≤ 0. However, it may be positive. For example,
if A0 = {(π, 0)} and πy > 0, then U0(0)

− ln(1−0) = limα→0+
απy

− ln(1−α) = πy > 0.
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continuity of U0 and Lemma  7 (with tk = t∗
k and α∗ = 1) yields a contradiction in ( 5.29 ):

0 < v̄ = lim
k→∞

U0( t∗
k

k
)∑t∗

k
s=1

1
k−s

(
= U0(1)

+∞

)
= 0.

We will then show that v̄ ≥ maxα∈[0,1]
U0(α)

− ln(1−α) . Let α ∈ (0, 1) and take a sequence (tk)
in N such that 1 ≤ tk < k and αk := tk/k → α. By definition of t∗

k as a maximizer in ( 5.14 ),
we have for all (sufficiently large) k the following inequality:

U0( tk

k
)∑tk

s=1
1

k−s

≤
U0( t∗

k

k
)∑t∗

k
s=1

1
k−s

.

Taking the limit k → ∞ on both sides, using continuity of U0 and Lemma  7 on the left and
( 5.29 ) on the right, gives

U0(α)
− ln(1 − α) = lim

k→∞

U0( tk

k
)∑tk

s=1
1

k−s

≤ lim
k→∞

U0( t∗
k

k
)∑t∗

k
s=1

1
k−s

= v̄. (5.30)

The inequality extends from α ∈ (0, 1) to all α ∈ [0, 1] by taking left and right limits.
It remains to show that v̄ ≤ maxα∈[0,1]

U0(α)
− ln(1−α) . If α∗ ∈ (0, 1), then this is immediate

from ( 5.30 ) because in this case the limit on the right equals U0(α∗)
− ln(1−α∗) by continuity of U0

and Lemma  7 .
To complete the proof, let α∗ = 0. Then U0( t∗

k

k
) → U0(0) ≤ 0 and (∑t∗

k
s=1

1
k−s

)−1 → 0 by
Lemma  7 . Because the limit of their ratio is v̄ > 0 by ( 5.29 ), we must have U0(0) = 0. This
implies that A0 contains a zero cost action. Furthermore, for any α > 0 small enough, the
agent must choose a zero cost action as A0 is finite. Thus, for any α > 0 small enough,

U0(α) = α max
(π,c)∈A0: c=0

πy, and V (α|A0) = (1 − α) max
(π,c)∈A0: c=0

πy.

Let e0 denote the expected output of an action attaining the above maxima. Recall from
( 5.16 ) that α∗

k = t∗
k/k is the largest slope to receive positive weight under the optimal random

linear contract pk for the grid Γk. Because α∗
k → 0, for all k large enough, the agent will

choose an action with expected output e0 if the true technology is the known technology A0,
regardless of which contract in the support of pk is realized. Hence, for all k large enough,

V (Γk) = V (pk) ≤ V (pk|A0) =
t∗∑

t=1
pk

t V ( t
k
|A0) =

t∗∑
t=1

pk
t (1 − t

k
)e0 ≤ e0.
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By (  5.29 ) this implies that v̄ ≤ e0. On the other hand, for any α > 0 small enough,

U0(α)
− ln(1 − α) = αe0

− ln(1 − α) → e0 as α → 0.

We conclude that if α∗ = 0, then v̄ ≤ e0 = U0(0)
− ln(1−0) ≤ maxα∈[0,1]

U0(α)
− ln(1−α) ≤ v̄.

The gain from randomization is the ratio between the optimal guarantee and the optimal
deterministic guarantee, or supp∈∆(Rn

+) V (p)/ supw∈Rn
+

V (w). We say that the gain is positive
if the ratio is greater than 1. By Proposition  6 and (  3.11 ), the two guarantees are

sup
p∈∆(Rn

+)
V (p) = max

α∈[0,1]

U0(α)
− ln(1 − α) and sup

w∈Rn
+

V (w) = max
α∈[0,1]

1 − α

α
U0(α).

It is then straightforward to compute the gain from randomization for any given known
technology A0 (which has to be specified in order to compute U0(α)).

 Kambhampati ( 2023 ) showed that the gain from randomization is positive under principal-
optimal tie-breaking, provided there is an optimal deterministic contract different from the
zero contract. We can replicate his result for adversarial tie-breaking as follows.

Corollary 3. If there exists an optimal deterministic contract (which is then necessarily
different from the zero contract), then the gain from randomization is positive.

Proof. Suppose there exists an optimal deterministic contract. Then some linear contract
α∗

D > 0 is optimal by Proposition  2 . Note that α∗
D < 1 and U0(α∗

D) > 0 because the
non-triviality of A0 implies that the optimal deterministic guarantee is positive. Hence,

max
α∈[0,1]

U0(α)
− ln(1 − α) − max

α∈[0,1]

1 − α

α
U0(α) ≥

(
1

− ln(1 − α∗
D) − 1 − α∗

D

α∗
D

)
U0(α∗

D) > 0,

where the last inequality is because the expression in the parentheses is positive on (0, 1).

Corollary  3 gives a sufficient condition for the gain from randomization to be positive
in terms of ( 3.11 ): The gain is positive if the maximum on the right is attained by some
α∗

D > 0. As noted in Section 3, a simple sufficient condition for this is that every action in
A0 with positive expected output has a positive cost.

We can give a tight characterization in terms of our formula for the optimal guarantee.

Corollary 4. The gain from randomization is positive if and only if

U0(0)
− ln(1 − 0) < max

α∈[0,1]

U0(α)
− ln(1 − α) .
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Proof. Let v̄ be the maximum on the right-hand side of the above inequality (i.e., v̄ is the
optimal guarantee). Suppose first that the inequality is not satisfied. Then

v̄ = U0(0)
− ln(1 − 0) = lim

α→0+

U0(α)
− ln(1 − α)

(
= U0(0)

0

)
.

As in the proof of Proposition  6 , we deduce that we must have U0(0) = 0 and the known
technology A0 must thus contain a zero cost action. Moreover, for any α > 0 small enough,
the agent’s choice from A0 must be a zero cost action that has the maximum expected output
among zero cost actions in A0. Letting e0 denote this maximum expected output, we have

v̄ = lim
α→0+

U0(α)
− ln(1 − α) = lim

α→0+

αe0

− ln(1 − α) = e0.

On the other hand, the optimal deterministic guarantee is then also at least e0, because

lim
α→0+

1 − α

α
U0(α) = lim

α→0+

1 − α

α
αe0 = e0.

We conclude that there is no gain from randomization.
Suppose then that the inequality is satisfied. If there exists an optimal deterministic

contract, then the gain from randomization is positive by Corollary  3 . So suppose this is not
the case. Letting v̄D denote the optimal deterministic guarantee, we then have

0 < v̄D = lim
α→0+

1 − α

α
U0(α)

(
= U0(0)

0

)
,

and thus U0(0) = 0, which in turn implies that U0(α) ≥ 0 for all α. Therefore,

v̄D = lim
α→0+

1 − α

α
U0(α) ≤ lim

α→0+

U0(α)
− ln(1 − α) = U0(0)

− ln(1 − 0) < v̄,

where the first inequality follows because (1 − α)/α < −1/ ln(1 − α) for all α ∈ (0, 1).

The following example shows that the gain from randomization can be arbitrarily large.

Example 1. Suppose the known technology A0 consists of a single action (π, c), whose
expected output πy is normalized to 1 and c < 1. Then U0(α) = α − c. A straightforward
calculation using ( 3.11 ) gives the optimal deterministic guarantee maxα∈[0,1]

1−α
α

(α − c) =
(1 −

√
c)2. On the other hand, Proposition  6 implies that the optimal guarantee is

max
α∈[0,1]

α − c

− ln(1 − α) .
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The first-order condition to this problem is − ln(1 − α) − (1 − α)−1(α − c) = 0, which
can readily be verified to have a unique solution, α∗(c), which is a continuous increasing
function of c, with limc→0 α∗(c) = 0 and limc→1 α∗(c) = 1. The Implicit Function Theorem
implies that its derivative on (0, 1) is (α∗)′(c) = −1/ ln(1 − α∗(c)). Substituting back into
the objective then gives the optimal guarantee 1 − α∗(c). The gain from randomization is
thus

g(c) :=
supp∈∆(Rn

+) V (p)
supw∈Rn

+
V (w) = 1 − α∗(c)

(1 −
√

c)2 .

From the properties of α∗(c) it follows that the gain g(c) is a continuous function of c with
g(0) = 1. Using l’Hôpital’s rule twice shows that limc→1 g(c) = ∞. This example thus
exhibits the entire range of possibilities as c varies.

5.4 The Limit “Contract”

Propositions  4 and  5 imply that the random linear contract defined by (  5.16 ) approximates
the optimal guarantee arbitrarily well as the grid size k grows without a bound. The following
result confirms that such a maximizing sequence of contracts is in a sense the strongest result
we can hope for as the optimal guarantee is not attained by any finite grid.

Corollary 5. The optimal guarantee is only attained asymptotically: V (Γ) < supp∈∆(Rn
+) V (p)

for every grid Γ.

Proof. For each k ∈ N>0, let Γk be a grid of size k. Then V (Γk) converges to the optimal
guarantee as k → ∞ by Proposition  4 . We prove the corollary by showing that this sequence
has a strictly increasing subsequence.

Fix k̂ large enough for the grid Γ2mk̂ to be eligible for all m ∈ N. We claim that
V (Γ2mk̂) < V (Γ2m+1k̂) for all m. To see this, fix m. Let k := 2mk̂ so that 2m+1k̂ = 2k. Define
t∗ for the grid Γk as in ( 5.14 ). Then ( 5.15 ) implies that

V (G2k) − V (Gk) ≥
U0(2t∗

2k
)∑2t∗

s=1
1

2k−s

−
U0( t∗

k
)∑t∗

s=1
1

k−s

=
(

1∑2t∗
s=1

1
2k−s

− 1∑t∗
s=1

1
k−s

)
U0( t∗

k
).

By Proposition  5 , U0( t∗

k
) > 0. It thus suffices to show that ∑t∗

s=1
1

k−s
>
∑2t∗

s=1
1

2k−s
. We have

t∗∑
s=1

1
k − s

=
t∗∑

s=1

2
2k − 2s

>
t∗∑

s=1

(
1

2k − (2s − 1) + 1
2k − 2s

)

= 1
2k − 1 + 1

2k − 2 + · · · + 1
2k − (2t∗ − 1) + 1

2k − 2t∗ =
2t∗∑
s=1

1
2k − s

.
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We note that for any eligible grid Γ, the amount by which V (Γ) falls short of the optimal
guarantee can be calculated directly as the difference (or ratio) between ( 5.15 ) and the
formula for the optimal guarantee in Proposition  6 .

Given the above result, it becomes of interest to understand the limiting behavior of our
maximizing sequence. We show next that whenever the gain from randomization is positive,
it has a weakly convergent subsequence (which is, of course, itself also a maximizing sequence)
whose limit is a particular continuous distribution on the unit interval.

Proposition 7. Fix k̄ such that every grid of size k ≥ k̄ is eligible. For all k ≥ k̄, let Fk be
the distribution function for the random linear contract ( 5.16 ) and let t∗

k be the corresponding
choice in ( 5.14 ). If the gain from randomization is positive, then the sequence (Fk)k≥k̄ has a
subsequence that converges weakly to the distribution function F defined by

F (α) := ln(1 − α)
ln(1 − α∗) ∀α ∈ [0, α∗],

where α∗ ∈ (0, 1) is the limit of t∗
k

k
along the subsequence, and it satisfies

α∗ ∈ arg max
α∈[0,1]

U0(α)
− ln(1 − α) .

Proof. Suppose the gain from randomization is positive. By extracting a subsequence if
necessary, we may assume that t∗

k

k
∈ (0, 1) converges to some α∗ ∈ [0, 1]. It was shown in the

proof of Proposition  6 that α∗ < 1, and that it attains the maximum of U0(α)
− ln(1−α) on [0, 1].

In particular, if α∗ = 0, then U0(0)
− ln(1−0) = maxα∈[0,1]

U0(α)
− ln(1−α) , which contradicts the gain from

randomization being positive by Corollary  4 . Thus, α∗ ∈ (0, 1).
By (  5.16 ), each distribution function Fk : [0, 1] → R+ satisfies

Fk(α) =


0 if α ∈ [0, 1

k
),∑t

u=1
1

k−u
/
∑t∗

k
s=1

1
k−s

if α ∈ [ t
k
, t+1

k
) and 1 ≤ t ≤ t∗

k,

1 if α ∈ [ t∗
k+1
k

, 1].

The three different cases can equivalently be expressed as (i) αk ∈ [0, 1), (ii) αk ∈ [t, t + 1)
and 1 ≤ t ≤ t∗

k, and (iii) αk ∈ [t∗
k + 1, k]. Using the floor function, we have

Fk(α) =


0 if ⌊αk⌋ = 0,∑⌊αk⌋

u=1
1

k−u
/
∑t∗

k
s=1

1
k−s

if 1 ≤ ⌊αk⌋ ≤ t∗
k,

1 if ⌊αk⌋ > t∗
k.
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We want to show that Fk(α) → F (α) for all α ∈ [0, 1]. Note first that if α = 0, then
Fk(0) = 0 = F (0) for all k. Suppose then that α > α∗ = lim t∗

k

k
= lim t∗

k+1
k

. Then, for all
k large enough, we have α ≥ t∗

k+1
k

, or αk ≥ t∗
k + 1. Because t∗

k ∈ N, we then also have
⌊αk⌋ ≥ t∗

k + 1 for all k large enough. This implies that, eventually, Fk(α) = 1 = F (α).
Consider now α ∈ (0, α∗). Define the sequence (tk)k≥k̄ in N by tk := ⌊αk⌋. We observe

that for k large enough, 1 ≤ tk < k. Moreover, we have tk

k
→ α, because

α ≥ tk

k
≥ αk − 1

k
→ α as k → ∞.

From lim tk

k
= α < α∗ = lim t∗

k

k
it follows that, eventually, ⌊αk⌋ = tk ≤ t∗

k, i.e., we are in the
second case of Fk. Thus, applying Lemma  7 to the numerator and the denominator gives

lim
k→∞

Fk(α) = lim
k→∞

∑⌊αk⌋
u=1

1
k−u∑t∗

k
s=1

1
k−s

= − ln(1 − α)
− ln(1 − α∗) = F (α). (5.31)

It remains to consider the case α = α∗. By extracting a subsequence, we may assume
that t∗

k

k
converges monotonically to α∗. If it converges from below, then α∗ ≥ t∗

k

k
, and thus

⌊α∗k⌋ ≥ t∗
k, implying that Fk(α∗) = 1 = F (α∗). If instead convergence is from above, then

⌊α∗k⌋ ≤ α∗k ≤ t∗
k, and the limit follows by setting α = α∗ in ( 5.31 ).

The limiting distribution function F in Proposition  7 puts positive density to the non-
degenerate interval [0, α∗]. It can thus be interpreted as a “continuous random linear con-
tract.” Even if there is no way to exactly implement such a continuous distribution in
practice, it provides an approximation (in the topology of convergence in distribution) to
the approximately optimal random linear contracts from Proposition  5 for k large.

6 Concluding Remarks

We have shown that linear contracts remain robustly optimal when randomization over con-
tracts is allowed, in that random linear contracts can (weakly) outperform all other contracts.
The gain from randomization is positive, except for a corner case, and can be arbitrarily large.
Whenever the gain is positive, the principal’s optimal payoff guarantee can be approximated
and asymptotically achieved by the simple grid-based random linear contracts from Proposi-
tion  5 , which are in turn well-approximated by the continuous distribution in Proposition  7 

when the grid is large. As the principal is indifferent among contracts in the support, these
contracts do not require commitment to randomization.

We conclude by commenting briefly on possible extensions and on the role of tie-breaking.
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6.1 Extensions

We have deliberately kept the model streamlined to allow for a simple and transparent
analysis of the merits of linear contracts under randomization. A detailed account of possible
extensions is beyond the scope of this paper, but we note here some that are immediate.

The simplest way to impose a participation constraint is to assume that the known
technology A0 contains an action that results in zero output at no cost to the agent—this is
subsumed by our general analysis. If instead we assume that any contract has to deliver the
agent an expected payoff (net of cost) of at least ū > 0, then this can be handled by replacing
U0(w) with max{U0(w), ū} on the right-hand side of (  4.3 ). Because each affine contract xt

constructed in the proof of Proposition  3 dominates the corresponding original contract wt

pointwise, it satisfies the so-modified participation constraint ( 4.3 ). It then follows that for
every random contract, there exists a random affine contract that (weakly) outperforms it,
and thus random affine contracts are optimal as a class.

Similarly, it is straightforward to allow for multi-dimensional output y from an arbitrary
finite set Y , with the payoff to the principal being v(y) for some function v : Y → R+.
Modifying the primal problem ( 4.1 – 4.5 ) in the obvious way, the same argument gives an
improvement from moving to a random contract that is linear in v(y). 

13
 

It also follows from our results that if we restrict attention to linear contracts in any
eligible grid Γ, then randomizing over menus of linear contracts cannot increase the princi-
pal’s guarantee. This is because the proof of Proposition  5 constructs a saddle-point (p, A)
for the max-min problem ( 5.17 ). The guarantee of any randomization over menus of linear
contracts is no better than its performance against this particular technology A. Moreover,
against A, the randomization over menus reduces to a randomization over the contracts the
agent chooses from each menu given A. The resulting payoff is thus no higher than V (p),
because p is an optimal randomization over linear contracts against A. Combining this ob-
servation with Lemma  6 and Proposition  3 suggests that randomizing over menus cannot
help in general.

6.2 Role of Tie-breaking

As noted in Section  3 , the optimal deterministic guarantee is the same under adversarial
and principal-optimal tie-breaking. To sketch the argument for why the same is true of the
optimal guarantee, notice that we can ensure strict incentives for the agent by adding a
small ε > 0 to the right-hand sides of constraints ( 4.2 ) and ( 4.3 ). As the value of program

13Specifically, replace each yi with v(yi) in the primal objective (  4.1 ) and on the right-hand side of the
dual constraint ( 4.7 ). The rest of the argument then goes through with obvious modifications.
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( 4.1 – 4.5 ) is continuous in the right-hand sides, it is then immediate that the guarantee of
any random contract p for which the program is feasible for some ε > 0 is unaffected by
the tie-breaking assumption. Contracts that violate feasibility for all ε > 0—most notably,
contracts whose support contains the zero contract—have to be handled by approximation,
but the conclusion is the same; we omit the details in the interest of space. 

14
 

Appendix

A.1 Proof of Lemma  1 

We first prove a stronger result for an ε-perturbation of the problem and then establish
Lemma  1 via taking the limit ε → 0.

Given ε ≥ 0, we introduce a relaxation of the incentive compatibility constraint ( 4.2 ):

πtwt − ct ≥ πswt − cs − ε ∀t, s ∈ T : t ̸= s. (A.1)

The ε-perturbed primal problem consists of solving (  4.1 ) subject to ( A.1 ), ( 4.3 ), ( 4.4 ), and
( 4.5 ). It is feasible for all ε ≥ 0, because it is a relaxation of the feasible primal problem
( 4.1 – 4.5 ). Let V (p; ε) denote the value of the ε-perturbed primal problem. We clearly have
V (p; ε) ≥ − maxi,t wt

i , and hence an optimal solution exists.
Because the perturbation ε only enters the right-hand sides of some primal constraints,

in the dual it only enters the objective. The ε-perturbed dual problem consists of solving

V (p; ε) = max
κ,λ,µ

∑
t∈T

λtU(wt) +
∑
t∈T

µt − ε
∑
t∈T

∑
s ̸=t

κst (A.2)

subject to ( 4.7 – 4.9 ).

Lemma A.1. Let ε > 0. If (κ∗, λ∗, µ∗) is an optimal solution to the ε-perturbed dual problem,
then G(κ∗) is acyclic.

Proof. Let ε > 0 and let (κ∗, λ∗, µ∗) be an optimal solution to the ε-perturbed dual. Suppose
toward contradiction that G(κ∗) contains a cycle. By relabeling if necessary, we can assume
without loss of generality that the cycle involves vertices C := {1, . . . , m} for 2 ≤ m ≤ k,

14This perturbation argument also explains why an existence problem arises in the deterministic case under
adversarial tie-breaking only when the zero contract would be uniquely optimal under principal-optimal tie-
breaking. Given any other (optimal) contract, constraint (  3.2 ) in the program for the deterministic guarantee
can be perturbed to ensure strict incentives. However, if w is the zero contract and U0(0) = 0, then it is not
feasible to satisfy (  3.2 ) as a strict inequality and thus adversarial tie-breaking can lead to a strictly lower
value to the program, necessitating the approximation of the zero contract with a sequence of positive slopes.
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with κ∗
t,t+1 > 0 for all t ∈ C, where m + 1 = 1 by convention. Similarly, we can assume

without loss of generality that p1 = mint∈C pt.
By complementary slackness, the incentive compatibility constraints in ( A.1 ) correspond-

ing to κ∗
t,t+1 for t ∈ C hold with equality. Letting {(πt, ct)}t∈T denote an optimal solution to

the ε-perturbed primal, we thus have

πtwt − ct − πt+1wt + ct+1 = −ε ∀t ∈ C. (A.3)

Summing the equalities over t ∈ C and recalling that m + 1 = 1 gives

∑
t∈C

(πt − πt+1)wt = −mε. (A.4)

We will show that it is then possible to strictly lower the value of the ε-perturbed primal,
contradicting optimality.

Construct a new solution for the ε-perturbed primal as follows. Let (π̂t, ĉt) := (πt, ct) for
all t /∈ C. For each t ∈ C, let

(π̂t, ĉt) := (1 − δt)(πt, ct) + δt(πt+1, ct+1),

where δt := p1/pt ∈ (0, 1]. As the action assigned to each contract t /∈ C is the same as
before, their contribution to the objective is unchanged. But the contracts in C now yield

∑
t∈C

ptπ̂
t(y − wt) =

∑
t∈C

pt[(1 − δt)πt + δtπ
t+1](y − wt)

=
∑
t∈C

[(pt − p1)πt + p1π
t+1](y − wt)

=
∑
t∈C

ptπ
t(y − wt) + p1

∑
t∈C

(πt − πt+1)(wt − y)

=
∑
t∈C

ptπ
t(y − wt) − p1mε,

where the last equality follows by ( A.4 ) and the fact that ∑t∈C(πt − πt+1)y = 0 because the
sum is cyclical. Therefore, the new solution {(π̂t, ĉt)}t∈T is a strict improvement over the
supposed optimal solution {(πt, ct)}t∈T , provided we show that it is feasible.

To show feasibility, we note first that each (π̂t, ĉt) satisfies the probability and non-
negativity constraints ( 4.4 ) and (  4.5 ). For t /∈ C this is trivial as (π̂t, ĉt) = (πt, ct). For
t ∈ C this follows because (π̂t, ĉt) is by definition a convex combination of two actions, each
of which satisfies ( 4.4 ) and ( 4.5 ).

Note then that, given any contract wt, the agent’s payoff from the new action (π̂t, ĉt) is
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weakly higher than from the old action (πt, ct) by construction:

π̂twt − ĉt =

πtwt − ct + δt(πt+1wt − ct+1 − πtwt + ct) = πtwt − ct + δtε if t ∈ C,

πtwt − ct if t /∈ C,

where the first case follows by the definition of (π̂t, ĉt) and equation ( A.3 ). This implies that
the new solution satisfies the participation constraint ( 4.3 ) for all t, since

π̂twt − ĉt ≥ πtwt − ct ≥ U0(wt).

It remains to verify the incentive compatibility constraint (  A.1 ). Fix contracts t and s ̸= t.
Observe that by construction of (π̂s, ĉs), we have (π̂s, ĉs) = (1 − β)(πs, cs) + β(πs+1, cs+1) for
β ∈ (0, 1] (if s ∈ C) or for β = 0 (if s /∈ C). Therefore,

π̂twt − ĉt ≥ πtwt − ct ≥ (1 − β)(πswt − cs − ε) + β(πs+1wt − cs+1 − ε) = π̂swt − ĉs − ε,

where the second inequality follows because {(πt, ct)}t∈T satisfies (  A.1 ) by assumption.
We conclude that the new solution {(π̂t, ĉt)}t∈T is feasible, a contradiction.

To prove Lemma  1 , for each n ∈ N, let (κ∗
n, λ∗

n, µ∗
n) be an optimal extreme point solution

to the 1/n-perturbed dual. 

15
 The feasible set is independent of the perturbation parameter

and it contains only finitely many extreme points. Hence, one of them appears infinitely often
as n → ∞. Thus, by extracting a subsequence if necessary, we may assume that the sequence
is constant. That is, there is an extreme point (κ∗, λ∗, µ∗) such that (κ∗

n, λ∗
n, µ∗

n) = (κ∗, λ∗, µ∗)
for all n. By Lemma  A.1 , the associated graph G(κ∗) is acyclic.

We claim that (κ∗, λ∗, µ∗) is optimal in the 0-perturbed dual ( 4.6 – 4.9 ). To see this, note
that the perturbed dual objective f(κ, λ, µ, ε) := ∑

t∈T λtU(wt) + ∑
t∈T µt − ε

∑
t∈T

∑
s̸=t κst

is jointly continuous in (κ, λ, µ, ε). Therefore, given any feasible solution (κ, λ, µ), we have

f(κ, λ, µ, 0) = lim
n

f(κ, λ, µ, 1/n) ≤ lim
n

f(κ∗, λ∗, µ∗, 1/n) = f(κ∗, λ∗, µ∗, 0),

where the inequality is because (κ∗, λ∗, µ∗) is optimal for all n by construction. We conclude
that (κ∗, λ∗, µ∗) is an optimal solution to ( 4.6 – 4.9 ) such that G(κ∗) is acyclic.

15To see that the feasible set of the ε-perturbed dual has an extreme point (and thus an extreme point that
is optimal, because the optimal value is finite) even though there are free variables, let µ′

t := mini∈I pt(yi−wt
i)

for all t ∈ T . Then (κ, λ, µ) = (0, 0, µ′) is an extreme point.
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A.2 Proof of Lemma  4 

Let v be the optimal value of problem ( 5.6 – 5.9 ).
Step 1: v ≥ V (p). Let {et} be an optimal solution to (  5.6 – 5.9 ). We show first that we

may assume without loss of optimality that et ≤ yn for all t ∈ T . Suppose to the contrary
that et > yn if and only if t > t̄ for some cutoff type t̄ ∈ T . Consider reducing et to yn for all
t > t̄. This lowers the value of the objective ( 5.6 ) at least weakly (and strictly if pt(1−αt) > 0
for any t > t̄). Because et̄ ≤ yn, the new solution satisfies the monotonicity constraint ( 5.8 ).
It also satisfies the participation constraint ( 5.7 ): For any t > t̄, the left-hand side is now

t̄∑
s=1

(αs − αs−1)es +
t∑

s=t̄+1
(αs − αs−1)yn =

t̄∑
s=1

(αs − αs−1)es + (αt − αt̄)yn

≥ U0(αt̄) + (αt − αt̄)yn

≥ U0(αt̄) + U0(αt) − U0(αt̄) = U0(αt),

where the first inequality follows by the t̄-instance of ( 5.7 ), and the second inequality follows
because—letting (e0

t , c0
t ) denote the optimal choice of type t from A0—we have

U0(αt) − U0(αt̄) ≤ αte
0
t − c0

t − (αt̄e
0
t − c0

t ) = (αt − αt̄)e0
t ≤ (αt − αt̄)yn.

We conclude that the new solution is optimal and it has et ≤ yn for all t, as desired.
Define the costs {ct} recursively by setting c1 = 0 and ct+1 = αt(et+1 − et) + ct for

t = 1, . . . , k − 1. We will show that the solution {(et, ct)} so constructed is feasible in
( 5.1 – 5.5 ), which implies that v = ∑

t pt(1 − αt)et ≥ V (p).
Because et ≤ yn for all t, constraints ( 5.8 – 5.9 ) and the construction of ct imply constraints

( 5.4 – 5.5 ). Similarly, a straightforward calculation shows that ( 5.7 ) and the construction
of ct imply ( 5.3 ). Finally, {(et, ct)} satisfies all upward adjacent incentive compatibility
constraints in ( 5.2 ) with equality by construction, i.e., αtet − ct = αtet+1 − ct+1 for all
t < k. This and the monotonicity constraint ( 5.8 ) imply the downward adjacent constraints
αt+1et+1 − ct+1 ≥ αt+1et − ct for all t < k. 

16
 Together the upward and downward adjacent

constraints then imply all the remaining constrains in ( 5.2 ). 

17
 We conclude that {(et, ct)} is

16This standard result follows from αt+1(et+1 − et) ≥ αt(et+1 − et) = ct+1 − ct, where the inequality uses
monotonicity (and αt+1 > αt) and the equality uses the equality in the upward adjacent constraint.

17This standard result follows from  Milgrom and Shannon ’s ( 1994 ) Monotone Selection Theorem. To
sketch a direct proof for the current setting, note that the constraints between any two adjacent types αt

and αt−1 imply that the allocation is monotone: et ≥ et−1. Therefore, for any s ≥ t, we have

0 ≤ αtet − ct − (αtet−1 − ct−1) ≤ αset − ct − (αset−1 − ct−1),

where the first equality follows by the downward adjacent constraint for type t, and the second is because
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feasible in ( 5.1 – 5.5 ) as we wanted to show.
Step 2: v ≤ V (p). The argument has two parts. We show first that problem ( 5.1 – 5.5 )

has an optimal solution {(et, ct)} that satisfies all upward adjacent incentive constraints in
( 5.2 ) with equality. Then we show that the allocations {et} are feasible in ( 5.6 – 5.9 ), which
implies that v ≤ ∑

t pt(1 − αt)et = V (p).
For the first part, let {(et, ct)} be the optimal solution to ( 5.1 – 5.5 ) that has the smallest

number of upward adjacent incentive constraints hold with strict inequality. Suppose toward
contradiction that this number is greater than zero. Then there is a type s − 1 ∈ T with

αs−1es−1 − cs−1 > αs−1es − cs. (A.5)

We construct a new solution {(êt, ĉt)} where (êt, ĉt) = (et, ct) for every type t ̸= s, but where
type s gets a new bundle (ês, ĉs) defined as the unique solution to

αses − cs = αsês − ĉs and αs−1es−1 − cs−1 = αs−1ês − ĉs. (A.6)

(That is, (ês, ĉs) is the unique intersection of type s − 1’s and type s’s indifference lines
through their old bundles.) Note that {(êt, ĉt)} satisfies type s−1’s upward adjacent incentive
constraint as an equality, and thus it has one less slack upward adjacent constraint than
{(et, ct)}. Moreover, we have ês < es, because subtracting the second equality in ( A.6 ) from
the first one gives

(αs − αs−1)ês = αses − cs − (αs−1es−1 − cs−1) < αses − cs − (αs−1es − cs) = (αs − αs−1)es,

where the inequality follows by ( A.5 ). Therefore, {(êt, ĉt)} attains at least weakly lower
value of the objective ( 5.1 ) than {(et, ct)} (and a strictly lower value if ps(1 − αs) > 0). This
means that we have a contradiction to {(et, ct)} being the optimal solution with the smallest
number of slack upward adjacent incentive constraints, if we show that {(êt, ĉt)} is feasible.

To show feasibility, note first that the participation constraint ( 5.3 ) is satisfied because
only type s’s bundle was changed, but type s is indifferent between (es, cs) and (ês, ĉs) by
construction. As for the incentive constraints in ( 5.2 ), it suffices to verify all upward and
downward adjacent constraints (see footnote  17 ). The only affected types are then s − 1, s,
and s + 1. Type s − 1’s upward constraint holds with equality by construction. Type s’s
upward and downward constraints continue to hold because type s is indifferent between its
old and new bundles. To see that type s+1’s downward adjacent constraint is satisfied, note

et ≥ et−1 and αs ≥ αt. Stringing together inequalities as t varies gives αses − cs ≥ αses−1 − cs−1 ≥ · · · ≥
αse1 − c1, thus establishing all downward constraints for type s. Upward constraints are shown analogously.
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that type s’s indifference gives 0 = αs(es − ês) − (cs − ĉs) < αs+1(es − ês) − (cs − ĉs), where
the inequality follows because αs+1 > αs and ês < es. Thus, type s + 1 views type s’s new
bundle to be worse than type s’s old bundle, which in turn is weakly worse than type s + 1’s
own bundle (which hasn’t changed). Finally, note that the adjacent incentive constraints
between types s − 1 and s imply that ês ≥ es−1 ≥ 0 and ĉs ≥ cs−1 ≥ 0, and above we argued
that ês < es ≤ yn. Thus {(êt, ĉt)} also satisfies (  5.4 ) and ( 5.5 ), and it is therefore feasible,
a contradiction. We conclude that there is an optimal solution to ( 5.1 – 5.5 ) that satisfies all
upward adjacent constraints in ( 5.2 ) with equality.

To complete step 2, we verify that if {(et, ct)} is an optimal solution to ( 5.1 – 5.5 ) that
satisfies all upward adjacent incentive constraints with equality, then {et} is feasible in ( 5.6 –

 5.9 ). The incentive constraints ( 5.2 ) imply the monotonicity constraint (  5.8 ), as usual. The
non-negativity constraint ( 5.9 ) is immediate from ( 5.5 ). Finally, using the binding upward
adjacent incentive constraints to solve for ct for t > 1 gives αtet −ct = ∑t

s=1(αs −αs−1)es −c1.
Then ( 5.7 ) follows from ( 5.3 ), because c1 ≥ 0 by ( 5.5 ).

A.3 Proof of Lemma  6 

Fix a random linear contract p with supp(p) = {α1, . . . , αk}, and label the slopes such that
0 ≡ α0 ≤ α1 < · · · < αk. Suppose the guarantee V (p) is positive (otherwise the claim is
trivial). Note that V (p) is weakly less than the best guarantee obtained by optimizing the
probabilities of the contracts in the support of p, i.e.,

V (p) ≤ v := max{V (p) : p ∈ ∆(Rn
+) and supp(p) ⊂ {α1, . . . , αk}}.

Following the beginning of the proof of Proposition  5 without the substitutions αt = t
k

and
αt−αt−1 = k−1 (which do not apply to our “irregular grid”) shows that v is the optimal value
to the following dual pair of linear programs, which differ from their analogs ( 5.18 – 5.21 ) and
( 5.22 – 5.26 ) only in that we have imposed an upper bound on et; we will see momentarily
that this bound is without loss of optimality. Writing θ0 = θk ≡ 0, the programs are:
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Primal (P)

max
p,λ,θ,φ

∑
t∈T

λtU
0(αt) + yn

∑
t∈T

φt (A.7)

s.t.
k∑

s=t

λs(αt − αt−1) − θt + θt+1 − φt − pt(1 − αt) ≤ 0 ∀t ∈ T, (et) (A.8)
∑
t∈T

pt = 1, (δ) (A.9)

pt, λt, φt ≥ 0 ∀t ∈ T. (A.10)

Dual (D)

min
{et},δ

δ (A.11)

s.t. δ − (1 − αt)et ≥ 0 ∀t ∈ T, (pt) (A.12)
t∑

s=1
(αs − αs−1)es ≥ U0(αt) ∀t ∈ T, (λt) (A.13)

et+1 − et ≥ 0 ∀t ∈ T \ {k}, (θt) (A.14)
−et ≥ −yn ∀t ∈ T, (φt) (A.15)

et ≥ 0 ∀t ∈ T. (A.16)

We observe first that if α1 = 0, then there is an optimal solution with p1 = 0. To see
this, note that setting e1 = 0 is without loss of optimality in (D): This relaxes (  A.12 ) and
( A.14 ), and it does not affect ( A.13 ) because (α1 − α0)e1 = 0e1 = 0 for any e1 ≥ 0. Because
δ = V (p) > 0, constraint ( A.12 ) and complementary slackness then implies that p1 = 0. We
may thus assume in what follows that α1 > 0.

We argue then that the shadow prices on the monotonicity constraints ( A.14 ) and the
upper bounds ( A.15 ) are zero. Ignore ( A.15 ) momentarily. Fixing δ at its optimal value,
we can without loss of optimality set et to satisfy ( A.12 ) at equality:  

18
 This relaxes ( A.13 )

and satisfies ( A.14 ) with strict inequality. A straightforward but tedious calculation then
verifies that this solution can be further modified by setting et = max{δ(1 − αt)−1, yn} for
all t without affecting the objective. 

19
 We conclude that θt = 0 and φt = 0 for all t.

The upshot is that the (nonempty) sets of optimal solutions to the above dual programs
are bounded. For (D) this is obvious because et is bounded by feasibility and δ is unique
by optimality. For (P), note that pt is bounded by feasibility and above we argued that

18If αk = 1, then this is impossible for t = k, but instead we may set ek = max{ek−1 + 1, yn + 1}.
19See the beginning of the proof of Lemma  4 for an analogous argument.
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θt = φt = 0 for all t. Then ( A.8 ) bounds λt ≥ 0 from above for all t (because α1 > 0).
Because the sets of optimal solutions to (P) and (D) are nonempty and bounded, it

follows from Theorem 1 in  Robinson ( 1977 ) that the optimal value v is continuous in the
slopes αt in some open neighborhood of (α1, . . . , αk). It is then clear that given any ε > 0,
any sufficiently fine grid Γ satisfies v(Γ) ≥ v − ε ≥ V (p) − ε as desired.

A.4 Proof of Lemma  7 

Fix a sequence (tk) as in the statement of the lemma. Let αk := tk/k. Then

tk∑
s=1

1
k − s

=
αkk∑
s=1

1
k − s

=
k−1∑

n=(1−αk)k

1
n

=
k−1∑
n=1

1
n

−
(1−αk)k−1∑

n=1

1
n

= Hk−1 − H(1−αk)k−1,

where Hℓ is a harmonic number, i.e., the sum of the first ℓ terms of the harmonic series. It can
be approximated using the Euler-Maclaurin formula Hℓ = ln(ℓ) + γ + εℓ, where γ ≈ 0.57772
is the Euler-Mascheroni constant and εℓ is an error term that converges to zero as ℓ → ∞.
This implies that, for some error term ε̃k convergent to zero as k → ∞, we have

tk∑
s=1

1
k − s

= ln
(

k − 1
(1 − αk)k − 1

)
+ ε̃k. (A.17)

Suppose first that lim αk = lim tk

k
= α < 1. Fix η > 0 small enough so that α + η < 1.

Note that for any k large enough so that αk ∈ (α − η, α + η), we have

k − 1
(1 − α + η)k − 1 ≤ k − 1

(1 − αk)k − 1 ≤ k − 1
(1 − α − η)k − 1 .

Applying Stolz-Cesàro theorem to the bounds (which are ratios of monotone divergent se-
quences) squeezes the expression in the middle to the interval [(1 − α + η)−1, (1 − α − η)−1]
as k → ∞. As η > 0 was arbitrary, this shows that the argument of ln(·) in ( A.17 ) converges
to (1 − α)−1 as k → ∞. Sending k → ∞ on both sides of ( A.17 ) then shows that the sum
on the left converges to − ln(1 − α) by continuity of ln(·).

Suppose then that lim αk = lim tk

k
= α = 1. By moving to a subsequence if necessary, we

may assume that (αk) is monotone. Then, for any fixed k̄ and any k ≥ k̄, we have

k − 1
(1 − αk)k − 1 ≥ k − 1

(1 − αk̄)k − 1 .
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Therefore,

lim inf
k→∞

k − 1
(1 − αk)k − 1 ≥ lim inf

k→∞

k − 1
(1 − αk̄)k − 1 = 1

1 − αk̄

→ ∞ as k̄ → ∞,

where the equality is by the Stolz-Cesàro theorem. We conclude that the right-hand side of
( A.17 ) diverges to ∞, and so does the sum on the left.
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