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Abstract

The Middle East and North Africa (MENA) region is highly dependent on agriculture, making it

particularly susceptible to the effects of climate change. This study examines the impact of climate

change on agriculture in the MENA region, using a weather-panel approach across 20 countries

over the period 1991− 2018. Emphasizing the importance of accounting for spatial autocorrelation,

we estimate a Fixed Effects Spatial Error Model (FE-SEM) taking into account spillover effects

among neighboring countries. Our model improves the precision of estimates and reveals a non-

linear relationship between the agricultural production function and weather, with different short-

term marginal effects of temperature and precipitation across seasons. The simulation under the SSP5

8.5 scenario (2020− 2039) predicts predicts a negative impact on the MENA agricultural production

index, with an average of -29.1%.. These findings call on policymakers to prioritize adaptation

strategies, invest in sustainable resource management, and cooperate with international efforts to

comprehensively address the impacts of climate change on agriculture in the MENA region.

Keywords: Climate change; agriculture; MENA region; spatial panel econometrics; short term

adaptation.

JEL Codes: Q12, Q54, R12.

1



1 Introduction

"End hunger, achieve food security and improved nutrition and promote sustainable agriculture" is

the second of the 17 sustainable development goals adopted by all United Nations Member States in

2015 for the 2030 Agenda for Sustainable Development [FAO et al., 2017]. This objective requires

the widespread promotion of sustainable agriculture through equal access to land, technology, and

markets, while ensuring resilience to the challenges of climate change [FAO, 2015]. This is particularly

challenging in certain regions of the world, such as the Middle East and North Africa (MENA) region

where agriculture is the primary source of food and income, as well as the main employer in many

countries [OECD/FAO, 2018]. This dependency on agriculture makes the region even more vulnerable

to climate change.

The MENA region has witnessed a consistent rise in temperatures and reduction in precipitation

over the past century [IPCC, 2022]. Notably, the temperature increase has been pronounced, ranging

between 0.2°C per decade and 0.4°C per decade, particularly robust since the 1970s in North Africa

[Seneviratne et al., 2022]. Moreover, the Middle East is anticipated to experience the most significant

warming on extremely hot days, accompanied by heightened aridity of the land [Atlas, 2021]. As to

precipitation, there has been a reduction in mean annual precipitation across much of North Africa

during the period 1971–2000 [Donat et al., 2014; Hertig et al., 2015; Nicholson et al., 2018; Zittis and

Hadjinicolaou, 2017]. Simultaneously, in the Middle East, there is a discernible pattern of decreased

precipitation and increased evapotranspiration, contributing to drought conditions and a decline in

surface runoff [Ranasinghe et al., 2021]. More recently, Amouzay et al. [2023] identified a significant

structural breaks in temperature and precipitation time series from 1901 to 2012, and suggest that

climate change has indeed begun to occur in MENA Countries. Projections indicate that these trends

will continue in the coming decades [Almazroui, 2020; Bucchignani et al., 2018; Collins et al., 2013;

Driouech et al., 2020; ESCWA, 2017; Merlone et al., 2019; Ranasinghe et al., 2021].

The traditional nature of the sector, coupled with water scarcity and limited arable land, charac-

terized by a high percentage of arid and semi-arid lands with low agricultural productivity [IPCC,

2022], exacerbates the risks of climate change and its impact on the region [Evans, 2009; Ferrise et al.,

2013; Immerzeel et al., 2011; Marty et al., 2018; Nin-Pratt et al., 2017; Waha et al., 2017]. Further-

more, the rapid population growth in the region, from approximately 140 million in the early 1960s

to over 500 million in 2020 [UN, 2019], induce an increase in agricultural import dependency of these

countries, especially in a context increased climate change impacts [Le Mouël et al., 2023], would

weaken this region’ food security [Jobbins and Henley, 2015; Sadler and Magnan, 2011; Zolfaghari

and Jariani, 2021].

In this regard, the current study aims to examine the impacts of climate change on agriculture in

MENA countries using spatial panel data models [Anselin et al., 2008; Elhorst, 2014]. The objective
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is to demonstrate the importance of considering spatial autocorrelation and provide policy makers

with more accurate quantitative insights on the adaptation of agriculture in MENA countries.

In our analysis, we adopt the profit function approach first proposed by [Deschênes and Green-

stone, 2007], and consider spatial autocorrelation to control for the effect on agricultural activity in

MENA countries. This paper contributes to the existing literature by using a recent spatial panel

data model to examine the impact of climate change on agriculture in the MENA region, as well as

by conducting a comparative analysis between non-spatial and spatial panel models. This approach

is particularly appropriate for this study as our sample consists of countries that are geographically

close and have interdependent climates. Thus, we use a gridded meteorological data set collected

in the Climate Research Unit (CRU) database [Harris et al., 2020]. These data can be a source of

significant spatial correlations [Auffhammer et al., 2013]. Therefore, our model includes variables

that account for geographical disparities. Additionally, studies based on panel data can lead to bi-

ased inferences [Baylis et al., 2011; Fisher et al., 2012; Kumar, 2011], which can be misleading when

formulating national policy for MENA countries. Therefore, we use specific estimation procedures

that incorporate the effects of spatial autocorrelation and individual heterogeneity, following on the

studies by Chen et al. [2016] and Vaitkeviciute et al. [2019]. To the best of our knowledge, this is one

of the few empirical papers that use a spatial panel approach to study the impact of climate change

on agriculture in MENA countries. Furthermore, using the most recent meteorological and agricul-

tural production data (2018)1, this paper contributes to the existing literature providing evidence of

a significant contemporary relationship between climate change and agriculture in the MENA region,

and we also use future projections of climate change covering the period 2020 to 2039 to simulate

their projected impacts on the agricultural production index of MENA countries.

The literature review and the methodological framework is presented in the Sections 3 and 2.

Section 4 presents the data and variables used for this study, while Section 5 presents the results

describing the impact of climate change on agriculture. The last Section 6 distils the conclusions and

policy implications of the study.

2 Literature review

There is a substantial body of literature that examines the impact of climate change on agriculture

globally (see Ortiz-Bobea [2021] for a recent review of this literature). To understand the relationship

between climate and agriculture, Blanc and Reilly [2017] note that economists often use statistical

approaches, which are based on the actual experiences of farmers. In particular, the Ricardian

approach and the profit approach as the most frequently used methods in the empirical literature

1Previous MENA studies such as Drine [2011] and Alboghdady and El-Hendawy [2016] use data up to 2007 and 2009.
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[Auffhammer, 2018; Carter et al., 2018]. The Ricardian approach is a cross-sectional analysis of

land price per hectare regressed on climate variables, and it assumes that land price reflects the

future income stream that the farmer would receive from the best land allocation [Mendelsohn et al.,

1994]. The profit approach, on the other hand, is a panel analysis of agricultral profit (revenue or

production) as a function of weather, and is based on the annual behavior of producers to maximize

their revenues [Deschênes and Greenstone, 2007]. This approach is short-term, in which revenues in

the observed year are affected only by weather conditions in the same year [Dell et al., 2014]. This

approach is widely used in developing countries due to data availability [Blanc and Reilly, 2017].

2.1 Climate change impacts on agriculture studies in MENA region

The literature on the impact of climate change on agriculture is relatively new in this region, but it is

growing as the importance of the topic becomes increasingly clear. Studies have shown that climate

change leads to shifts in cropland and vegetation [Evans, 2009; Ferrise et al., 2013], as well as shorter

crop growing seasons [Ferrise et al., 2013; Gasmi et al., 2011; Mougou et al., 2011]. For example,

the MENA region is projected to experience a decrease of about two weeks in the wheat growing

season due to climate change. In addition, crop yields are also expected to be negatively impacted by

climate change, with a decrease of nearly 60% in agricultural yields resulting from a 3-4°C warming

[Al-Bakri et al., 2011; Alboghdady and El-Hendawy, 2016; Breisinger et al., 2011; Cline, 2007; Drine,

2011; Eyshi Rezaie and Bannayan, 2012; Gasmi et al., 2011; Giannakopoulos et al., 2009; Müller

et al., 2010; Verner, 2013]. Leguminous and maize crops are expected to be the most affected due

to the longer periods of drought projected during the summer period covering the period 2031-2060

[Giannakopoulos et al., 2009; Schilling et al., 2012]. On the other hand, IPCC WGI AR6 report,

highlight the dual impact of climate change on cash crop yields in North Africa, revealing both

positive and negative effects [IPCC, 2022]. Sugarcane yields, for instance, experienced an average

decline of 5.1% between 1974 and 2008, while sorghum yields increased by 0.7%, and cassava yields

saw an 18% rise during the same period due to climate change [Ray et al., 2019]. A meta-analysis of

56 studies predicts a 5% decline in economic welfare for the agriculture sector in North Africa under

2°C global warming and a more substantial 20% decline under 3°C global warming compared to the

1995–2005 period, indicating a more pessimistic outlook than previous economic estimates [Moore

et al., 2017]. In the Middle East, specifically in Saudi Arabia and Yemen, the anticipated severe

impact of increasing water scarcity, driven by rising temperatures, is expected to adversely affect

agriculture and food production, posing a threat to food security [Al-Zahrani et al., 2019; Baig et al.,

2019].

However, to the best of our knowledge, only two studies have considered the profit function

approach [Alboghdady and El-Hendawy, 2016; Drine, 2011], which is widely used in relation to
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developing countries due to data availability. These studies suggest that decreased precipitation,

increased heat waves and drought are the main causes of decreased agricultural productivity in the

region, excluding the temperature effect which is not significant. They also confirm that the nonlinear

effect of climate variables is significant on agricultural production in the MENA region.

In a study by Drine [2011], balanced panel data regarding the production function was used

to analyze the impact of climate variability on agriculture in 11 countries in the MENA region

over the period of 1980-2007. The findings suggest that decreased precipitation, increased heat

waves and drought have a negative impact on agricultural productivity, while temperature had no

significant impact. Another study by Alboghdady and El-Hendawy [2016] used a production function

model to examine the impact of climate change on agricultural production in 20 MENA countries

between 1961 and 2009. The results showed that a 1% increase in winter temperature led to a 1.12%

decrease in agricultural production, and a 1% increase in temperature variability in winter and

spring resulted in a 0.09% and 0.14% decrease in agricultural production, respectively. Additionally,

increased precipitation in winter and fall, as well as variability in precipitation in winter and summer,

had negative impacts on agricultural production. These findings indicate that climate variables have

a non-linear impact on agricultural production in the MENA region.

2.2 Panel spatial models in climate change impacts on agriculture

studies

In recent years, may studies dealing with the impact of climate change on agriculture have begun

to incorporate spatial autocorrelation into their analysis [Chatzopoulos and Lippert, 2016; Polsky,

2004; Schlenker et al., 2006; Schmidtner et al., 2015]. According to Fisher et al. [2012], one limitation

of the production function approach proposed by [Deschênes and Greenstone, 2007] is the biased

standard error term due to the absence of spatial correlation. To address this limitation, an analysis

using spatial econometric models is recommended as they allow for the consideration of spatial

autocorrelation effects caused by agricultural and weather variables. Previous research Elhorst [2014]

has identified three types of spillover effects, those caused by global spillover effects captured by

the Spatial AutoRegressive (SAR) model or the Spatial Durbin Model (SDM) [Chatzopoulos and

Lippert, 2015; Dall’Erba and Domínguez, 2016; Ortiz-Bobea, 2015; Polsky, 2004], and those caused

by local spillover effects captured by the Spatial Lag on explanatory variables (SLX) model [Dall’Erba

and Domínguez, 2016]. Additionally, a fourth case of spatial spillover effects caused by the global

autocorrelation of spatial errors and captured by the Spatial Error Model (SEM) has also been

estimated in this literature [Chen et al., 2016; Lippert et al., 2009; Schlenker et al., 2006; Vaitkeviciute

et al., 2019].

The recent development of spatial econometrics applied to panel data allows for the consideration
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of not only individual heterogeneity, but also spatial dependencies between regions [Anselin et al.,

2008; Baltagi et al., 2003; Piras, 2014]. Kumar [2011] discusses different spatial models used in an

income approach of the study of Indian agriculture, and Baylis et al. [2011] proposed an extension

to the study by Schlenker et al. [2006], based on the inclusion of a formal spatial panel framework.

They applied spatial lag and spatial error models, using both fixed and random effects.

Other studies have delved into explanations for spatial interactions related to the spatial correla-

tion of errors. Auffhammer and Schlenker [2014] have highlighted that this correlation could result

from unaccounted variations in climatic variables, such as wind speed, solar radiation, and other

factors. Meanwhile, Miao et al. [2016] suggest that agricultural yields in different countries could

be spatially correlated due to similarities in their soil or geographical characteristics. Additionally,

Auffhammer et al. [2013] demonstrated that this spatial correlation results from the underlying data

generation process and the extrapolation methods used to create gridded meteorological data sets. In

this regard, Harari and Ferrara [2018] propose that the use of gridded meteorological data can lead

to significant repercussions among neighboring countries through prices, trade markets, or conflicts.

In our case study, the data consists of aggregated variables at the country level for the MENA

region. Therefore, we choose to use a Panel SEM, as suggested by Chen et al. [2016] and Vaitkeviciute

et al. [2019]. This model is the most appropriate for this type of aggregated data, as the SAR

model and SLX model are not suitable for this case since the SAR model is interesting in the

context of individual (farm)-level data, while the SLX model is excluded due to collinearity issues

[Dall’Erba and Domínguez, 2016]. The SEM model captures global spatial autocorrelation, which

can be caused by measurement errors, omitted variables, or unobserved shocks that follow a spatial

pattern. Additionally, spatial autocorrelation can be a result of the different scales of the data and

the aggregation process [Vaitkeviciute et al., 2019].

3 Methodology

In what follows, we begin firstly by examining in Section 3.1 the empirical model specification adopted

in our case study, secondly, we specify the economic hypotheses presented in Section 3.2 that we

empirically verify with the help of the developed model.

3.1 Empirical Model specification

The literature review indicates that the production function approach is dominant in many studies

done for developing countries because of data availability. Indeed, Ricardian models are rarely ap-

propriate for these countries, since they are based on land values for which data are not available

due to lack of information on private land ownership [Mendelsohn and Dinar, 2009]. Thus, doubts

6



about Ricardian analysis’ inability to account for omitted variables [Deschênes and Greenstone, 2007;

Ortiz-Bobea, 2020] have led more recent studies to use panel econometrics [Blanc and Reilly, 2017].

Because our case study is made up of developing countries, we use the same specification as works

of Barrios et al. [2008], Lee et al. [2012] and Belloumi [2014]. These studies analyze the link between

agricultural production and annual weather fluctuations at different levels (countries, regions, etc.),

using fixed-effects models which seem to be appropriate for assessing short-term relationships and

should be preferred in the production function approach. Drawing on Barrios et al. [2008], we esti-

mate the aggregate agricultural production function in the MENA countries while accounting for the

effects of key weather variables on production changes.

As a baseline specification, we estimate the following individual and time fixed-effect panel model:

ln (Yit) = β0 + β1ln (Lit) + β2ln (Lstit) + β3ln (Irrgit) + β4ln (labit)+

β5 (Tit) + β6
(
T 2
it

)
+ β7 (Pit) + β8

(
P 2
it

)
+ µi + νt + εit,

(1)

Where Yit is the of aggregate agricultural output for the i country in year t. The variables Lit, Lstit,

Irrgit and labit are measures of land, livestock, irrigation and labor inputs respectively. For the

weather variables, both the linear and quadratic terms are included in the model in order to capture

the non-linear relationship between the agricultural production and the weather variables. Therefore,

we include temperature and precipitation and their squares (Tit, Pit, T
2
it, P

2
it) as climatic factors that

can affect agricultural production. Additionally, the time varying effects νt, common to all countries,

proxies by a set of time dummies and intended to capture unobserved factors (such as soil quality,

labor skills, technological progress. . . etc.), which can influence agricultural production. As of µi, it

is intended to capture any unobserved country specific and time invariant effects as , that may be

correlated with the other regressors and hence bias our estimates by using a fixed effects estimator.

Finally, the term εit is the idiosyncratic error term and the βk (k = 0, ..., 8) are the coefficients to be

estimated.

The studies by Baylis et al. [2011]; Dall’Erba and Domínguez [2016]; Massetti and Mendelsohn

[2011]; Ortiz-Bobea [2015] underscores the impact of agricultural practices and climatic conditions

in adjacent regions on agricultural production, resulting in spillover effects that elude capture by

conventional non-spatial panel models or ex-post adjustments for spatial error correlation. Conse-

quently, incorporating these effects and spatial autocorrelation within the error terms yields more

precise estimations of climate change’s influence on agriculture. Chen et al. [2016] exemplify this ap-

proach by employing a panel Spatial Error Model (SEM) with diverse spatial weight matrices. This

model effectively addresses the endogeneity of socioeconomic variables, estimates spatial correlation,

and accounts for heteroscedasticity and autocorrelation within the error terms. The rationale for

selecting the SEM model lies in its capacity to model individual and temporal heterogeneity through

fixed effects, and its suitability for aggregated data, such as meteorological data, often characterized
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by spatial autocorrelation in the residuals [Auffhammer et al., 2013; Chen et al., 2016; Vaitkeviciute

et al., 2019; Ward et al., 2014].

In order to investigate spatial autocorrelation and to model spillover effects among MENA coun-

tries, we estimate the model (1) incorporating a spatially correlated error term. Specifically, we

estimate the following specification of panel SEM with individual and time fixed effects:

εit = ρ

N∑
k=1

ωikηik + ϵit (2)

The term ϵit corresponds to the residual which is composed of the spatially autocorrelated error term,

ωik is the generic element of a non negative spatial-weight matrix WN (N×N) in which neighborhood

relationships between countries are defined, ρ is the spatial autocorrelation coefficient that captures

a correlated effect of unobservable characteristics, ηik is the spatially correlated error term.

We then examine the total marginal values of aggregate agricultural output in order to evaluate the

weather change marginal impacts on the MENA countries agriculture. The marginal values appraised

at the mean are calculated as derivatives of equation (1) according to a weather variable and can be

written as:

∂Y

∂T
= (β5 + 2β6T )× Y,

∂Y

∂P
= (β7 + 2β8P )× Y,

(3)

where β5, β6, β7 and β8 are coefficients of weather variables and dependent on the estimated model

specifications, T and P are sets of explanatory weather variables (temperature and precipitations for

four seasons) and their squares and Y is the of aggregate agricultural output.

Finally, we compare the near-future impacts of climate change on the overall agricultural production

of MENA countries based on Shared Socioeconomic Pathways (SSPs) scenarios developed by the

research community [Riahi et al., 2017]. These are part of a new scenario framework developed by the

climate change research community with the aim of facilitating integrated analysis of future climate

impacts, vulnerabilities, adaptation, and mitigation [Riahi et al., 2017]. Based on five narratives

describing alternative socio-economic evolutions, including sustainable development, regional rivalry,

inequality, fossil-fuel-driven development and intermediate development, these trajectories enable

their future use and integration into new assessments and research projects [O’Neill et al., 2017].
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3.2 Research hypotheses

In this case study, we test the following research hypotheses that provide a framework for investigating

the intricate relationship between weather change and agricultural dynamics in the MENA region,

facilitating a comprehensive evaluation of the marginal impacts on the agricultural sector:

• H1: The SEM fixed-effects model would be the most appropriate for estimating the short-term

relationship between weather and the agricultural production function in MENA countries.

Despite the clear evidence that neighboring countries share geographical and environmental similar-

ities impacting agriculture (such as climate, soil type, and pest presence), Ricardian studies have

often overlooked or inadequately addressed spatial autocorrelation [Chen et al., 2016]. This regional

similarity contributes to spatial error correlation and creates spillover effects. These effects can man-

ifest through frequent contact between neighboring farmers leading to similar agricultural practices

[Polsky, 2004], public spending on agricultural R&D that benefits neighboring countries [McCunn

and Huffman, 2000], or shared resources like irrigation water and the evapotranspiration-rain cy-

cle [Dominguez et al., 2009]. Consequently, omitting spatially correlated explanatory variables can

induce spatial correlation in the error terms, as highlighted by [Chen et al., 2016]. Ultimately, ne-

glecting these spatial factors can bias estimations of climate change’s impact on crop agricultural

production.

To test this hypothesis H1 and select the most appropriate specification for our data, we perform

spatial specification tests. We start by estimating the model with no spatial autocorrelation, and

implement the classic and robust Lagrange multiplier (LM) tests. These tests allow us to choose be-

tween the model whose dependent variable is spatially lagged, the model whose error term is spatially

autocorrelated and the model with no spatial autocorrelation.

• H2: The spatial panel specification would be more accurate than the classical panel specification

in a production function model to capture the short-term effect of weather changes on MENA

agriculture.

Indeed, Schlenker et al. [2006] emphasized the importance of incorporating spatial characteristics for

accurate estimations. Ricardian models often exhibited high t-statistic values, indicating potential

spatial error correlation due to the neglect of spatial heterogeneity. To address this, Schlenker et al.

[2006] analyzed land value sensitivity while correcting for spatially correlated errors. Similarly, Seoa

and Mendelsohnb [2008] demonstrated that spatial models, which integrate spatial correlation, offer

more precise impact estimations than traditional a-spatial models. Furthermore, Baylis et al. [2011]

provided strong evidence of spatial effects in estimations, demonstrating the influence of integrating

spatial panel methods on results. Ortiz-Bobea [2015] addressed the vulnerability of the Hedonic

approach to omitted spatially dependent variables, such as the option value of agricultural land.
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By comparing three spatial and a-spatial models, Ortiz-Bobea [2015] demonstrated that traditional

panel models overestimate the potential damages of climate change by amplifying biases related to

unaccounted factors, such as development pressure on agricultural land. The use of the more robust

spatial model reveals that the actual impact of climate change on the US agricultural sector is likely

less significant than previously estimated, even statistically insignificant [Ortiz-Bobea, 2015].

To test this hypothesis H2, we estimate the following econometric models of non-spatial and spatial

panel data: model with individual and time-fixed effects without spatial error autocorrelation (cf.

equation 1), and model with individual and time-fixed effects with spatial error autocorrelation (cf.

equation 2). We then carry out a comparative analysis between these models, testing the significance

of the spatial error autocorrelation coefficient, which captures the effect of unobservable factors,

suggesting the possibility of a strong diffusion effect between neighboring countries.

• H3: The weather variables could have a nonlinear relationship with respect to the agricultural

production index in MENA countries.

Indeed, the analysis of the relationship between meteorological variables and crop yields is often

limited by the use of simplified measures, such as monthly averages of temperature and precipitation.

This approach ignores the distribution of weather events around these averages and the non-linear

nature of plant growth in response to temperature [Schlenker and Roberts, 2009]. This omission

is important in light of the agronomic literature that describes plant growth as a highly non-linear

function of temperature. If temperatures are averaged over time or space, and the true underlying

relationship is non-linear (e.g., increasing then decreasing as a function of temperature), standard

regression techniques dilute the true underlying curvature of the relationship [Schlenker and Roberts,

2009]. The use of averages "flattens" the actual relationship, masking the negative impact of extreme

temperatures. Additionally, including data from multiple months in models creates multicollinearity,

making results unstable and unreliable. These statistical limitations obscure the true complexity

of the relationship between climate and agricultural yields. These problems are exacerbated when

squared averages are included in regressions to try to capture the possible non-linearities described

in the previous paragraph [Schlenker and Roberts, 2009].

To test this hypothesis H3, we check the statistical significance of the coefficients of the squared

weather variables in the model that include individual and temporal effects with spatial autocorre-

lation of the errors (cf. equation 2). The quadratic term of the weather variables represents the

non-linear relationship and captures the second-order effect of these variables on agricultural produc-

tion in MENA countries.
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4 Data and exploratory analyses

This study uses panel data from a sample that covers 20 countries within the MENA region (Algeria,

Djibouti, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman,

Palestine, Qatar, Saudi Arabia, Syria, Tunisia, United Arab Emirates, and Yemen), for the period

1991-2018 (for study area Map see Figure 1 below). Our choice of indicators and countries was

limited by the availability of consistent data on both climate and agriculture. In this section we first

specify the variables and their data sources (Section 4.1), and then present an exploratory analysis

of the dependent variable in order to highlight the existence of spatial dependence between MENA

countries (Section 4.2).

Figure 1: Perimeter of study
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4.1 Weather and agriculture variables

Weather Data: Country-level weather data (monthly mean temperature, monthly total precip-

itation) were collected from the Global Climate Monitor (GCMon) Web Viewer database wich is a
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data model and a geovisualization tool that provides access to global climate data [Camarillo-Naranjo

et al., 2019]. The data currently available correspond to the CRU TS3.21 version of the Climate Re-

search Unit (University of East Anglia) database –a product that provides data at a spatial resolution

of half of a degree in latitude and longitude, spanning January 1901 to December 2012, on a monthly

basis [Harris et al., 2014, 2020]. Since January 2013, the datasets feeding the system have been the

GHCN–CAMS temperature dataset [Ziese et al., 2011], the Global Precipitation Climatology Cen-

tre (GPCC) and First Guess precipitation dataset [Fan and Van den Dool, 2008]. These monthly

data were then used to aggregate the weather variables–average temperature and total accumulated

precipitation–in order to account for the effects of weather fluctuations in the particular periods of

the year when climate is critical to the growth of the region’s crops. For this reason, and because

we do not have county–level information on agricultural planting and harvest dates per year, we

calculated weather variables for the four seasons (see Figures frome 19 to 26 in Appendix 9). In-

deed, Massetti et al. [2016] study the US case using cross-sectional data. They found that while the

growing season degree-day indicator is a more compact alternative to the seasonal temperature and

precipitation traditionally used to quantify farmland values, the four-season model is more accurate.

Massetti et al. [2016] add that climate effects outside the growing season are also significant. Their

cross-sectional evidence suggests that seasonal temperature and precipitation are very important in

the United States. These aspects may be even more important in the case of the MENA region

because of the importance of Autumn and winter crops. According to OECD/FAO [2018], between

1961 and 2016, the MENA region’s harvested area was predominantly devoted to cereals, which cover

about 60% of the total harvested area, with wheat remaining the main crop [OECD/FAO, 2018].

Agricultural Data: Our source of agricultural data is the AGROSTAT system of the statistical

division FAOSTAT [2022]. As a dependent variable in the weighted equation (1), and to address

the problem of unavailability of accurate data, we use the FAO agricultural production index, where

net production quantities of each commodity are weighted by the 2014-2016 average international

commodity prices and summed for each year, and the aggregate for a given year, measured as interna-

tional United States dollars (US$ ), is divided by the average aggregate for the base period 2014-2016.

FAO explains that the international commodity prices, expressed in “international dollars”, are used

in order to avoid the use of exchange rates for obtaining continental and world aggregates, and also

to improve and facilitate international comparative analysis of productivity at the national level2.

The level of this indicator shows significant variations over time and greatly across countries (see

Figure 12 in Appendix 9), as shown in Figure 2, above. In order to proxy the capital factor in

2FAO using a Geary-Khamis formula for derive the international prices for the agricultural sector. This method assigns
a single price to each commodity. For example, one metric ton of wheat has the same price regardless of the country where
it was produced.
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Figure 2: Observed Agricultural Production Index (API) in the MENA countries from 1991 to 2018
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the production function we use the livestock, land and Irrigation area inputs as it is done in many

other studies [Antle, 1983; Barrios et al., 2008; Belloumi, 2014; Frisvold and Ingram, 1995; Lee et al.,

2012]. Indeed, the capital requirements of traditional agriculture are low [Belcaid and El Ghini,

2019] and MENA agriculture relies mainly on animal traction. Therefore, mechanization is also not

considered, and we use FAO’s the total head count of cattle, sheep, and goats as a proxy indicator of

livestock input. Land supply is represented by the FAO’s measure of total agricultural area, which

includes arable land and the area used for permanent crops and permanent pastures and is given

in 1000’s of hectars. In addition, Irrigation can be crucial for production under drought conditions,

so it is important to account for changes in the proportion of land irrigated over time when esti-

mating our production function (Ward et al. [2014]). Agricultural labor is also a key determinant

of the agricultural production function. We exploit the labor data for MENA countries available in

the International Labor Organization’s [ILOSTAT, 2022] database, so that this factor can be taken

into account in our production function specifications. The Table 1, below, presents the descriptive

statistics of our economic data.

Table 1: Descriptive statistics

Variable Units Mean S.D. Source Time period

agricultural production index US$ 85.75 25.88 FAOSTAT 1991-2018

Winter Temperature °C 18.63 4.757 CRU TS 1991-2018
Spring Temperature °C 14.52 5.038 CRU TS 1991-2018
Summer Temperature °C 28.40 4.332 CRU TS 1991-2018
Autumn Temperature °C 23.58 4.913 CRU TS 1991-2018
Winter Precipitation mm 124.50 123.71 CRU TS 1991-2018
Spring Precipitation mm 150.23 143.302 CRU TS 1991-2018
Summer Precipitation mm 23.57 40.681 CRU TS 1991-2018
Autumn Precipitation mm 55.60 61.769 CRU TS 1991-2018

Labor % of total labor force 20.253 16.721 LABORSTA 1991-2018
Irrigation Area 1000 hectares 1076.3 1997.006 FAOSTAT 1991-2018
Land 1000 hectares 20543.3 37025.34 FAOSTAT 1991-2018
Livestock head 11379437 16277361 FAOSTAT 1991-2018

4.2 Exploratory analysis of dependent variable

The study of spatial autocorrelation is an essential step before considering any specification of spatial

interactions in an appropriate model. The spatial dimension of the geographical location of the

agricultural production index can be studied in more detail using the global spatial autocorrelation

indices and tests : Moran’s I statistic and Geary’s C statistic (see Appendix 7 for more details).

These tests are exploratory statistical tools that may highlight the existence of a spatial dependence
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between the values of the agricultural production index in the MENA countries and to test the

significance of the identified spatial structure. Table 2, below, shows the results of the autocorrelation

test, its standard deviation (Sd) and its p-value. Concerning the weight matrices, and inspired by

Le Gallo and Ndiaye [2021], we build simple spatial matrices commonly used in spatial econometrics,

namely the contiguity matrix based on Gabriel’s neighbors, denoted W_contGW (Figure 14 in

Appendix 9), a matrix of k closest with k = 5: wij = 1 if j is one of i′s five nearest neighbors

of i and 0 otherwise. denoted W_nn5 (Figure 15 in Appendix 9) and an inverse distance matrix,

denoted W_dinverse (Figure 16 in Appendix 9). We see in Table 2, below, that the different spatial

autocorrelation matrices are positive and significant. Since the analytical approach to the global

spatial autocorrelation indices analysis may be sensitive to irregularly distributed polygons, a safer

approach to hypothesis testing is to run an Monte-Carlo (MC) simulation. Thise last confirmed the

availability of a global spatial autocorrelation (see the Table 3 below), this means that the index

of agricultural production in the MENA region is positively correlated spatially. In other words,

neighboring countries with high production surround countries that also have high production. This

correlation may have several explanations such as the quality of the land and its suitability for

specific types of production, common climatic characteristics with neighboring countries, appropriate

organisation of farmers and economies of scale.

Table 2: Global spatial correlation test

Matrix W Moran’s I statistic Sd(I) p-value Geary’s C statistic Sd(C) p-value

W_contGW 0.356∗∗ 2.139 0.016 0.605∗ 2.047 0.053
W_nn5 0.224 ∗∗∗ 2.478 0.006 0.744∗∗ 2.165 0.015
W_dinverse 0.082∗∗ 2.266 0.011 0.870∗∗ 2.012 0.022

Table 3: Monte-Carlo Simulation of Moran and Geary Tests

Matrix W MC of Moran I p-value MC of Geary C p-value

W_contGW 0.356∗∗ 0.01 0.605∗∗ 0.02
W_nn5 0.224∗ 0.06 0.744∗∗ 0.02
W_dinverse 0.082∗ 0.06 0.870∗∗ 0.04
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5 Empirical estimation results and discussions

This section delves into the empirical estimation results and subsequent discussions, commencing with

a benchmark analyses to determine the most suitable model for assessing the impact of climate change

on agricultural production within the MENA region (Section 5.1). We then proceed to examine Short-

term change impacts of weather fluctuations on agricultural output, taking into account spatial

autocorrelation and individual and temporal heterogeneities (Section 5.2). Finally, utilizing the

preceding results, we conduct simulations to evaluate the potential impacts of short-term climate

change on agricultural production in the MENA region, providing valuable insights for the planning

and implementation of adaptation and mitigation strategies (Section 5.3).

5.1 Benchmark analyses

The first research hypothesis of this study aims to verify if the SEM fixed-effects model is the most

appropriate for estimating the short-term relationship between weather and agricultural production

function in the MENA region. We estimate the classical four-season model to test this hypothesis. In

order to determine which model is best suited to the data, this article begins by conducting an analysis

of the non-spatial panel model, then examines whether there is spatial correlation between spatial

units. To check the robustness of our results, we first examine two estimators for the non-spatial

Model presented in Table 5: Column (1) presents the results of the Fixed-Effects model estimation

(FE-OLS (1)) that ignores spatial autocorrelation but considers individual heterogeneity (FEi-OLS),

while the results of the FE-OLS model estimation, which ignores spatial autocorrelation but considers

temporal heterogeneity (FEt-OLS), are presented in column (2). Following the same logic, we also

consider two estimators for the spatial model: The results 3 of the Fixed-Effects spatial error model

estimation (FE-SEM (2)) that considers spatial autocorrelation and individual heterogeneity (FEi-

SEM)), as well as those of the FE-SEM model that considers spatial autocorrelation and temporal

heterogeneity (FEt-SEM), are presented in columns (3) and (4) of Table 5, respectively. To confirm

our model choice, we conducted specification tests. First, to select the most appropriate specification,

we start with the model without spatial autocorrelation and implement the Lagrange Multiplier (LM)

tests. The results of these tests are presented in Table 4. The results of these tests lead us to choose a

SEM specification. Indeed, classical and robust LM tests are performed to study spatial dependency

[Anselin et al., 2008; Elhorst, 2003]. The conventional LM tests show that the null hypothesis of

no spatially lagged dependent variable and the null hypothesis of no spatially auto-correlated error

3Given the presence of a country (Djibouti) that has no common border with other countries in our sample, we adopt
the Gabriel neighbor-based contiguity matrix in our analysis. This is done to avoid a block-diagonal structure in the weight
matrix on one hand and to ensure a connection between the countries in the MENA region on the other hand.
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Table 4: Specification tests

Hypotheses Model (??)

LM spatial lag:

lml H0 : λ = 0 103.32∗∗∗

H1 : λ ̸= 0 (p< 2.2e−16)

LM spatial error:

lme H0 : ρ = 0 54.599∗∗∗

H1 : ρ ̸= 0 (p= 1.478e−13)

Robust LM spatial lag:

rlml H0 : λ = 0 88.007∗∗∗

H1 : λ ̸= 0 (p< 2.2e−16)

Robust LM spatial error:

rlme H0 : ρ = 0 39.29∗∗∗

H1 : ρ ̸= 0 (p= 3.654e−10)

Spatial Hausman test (SHT)

H0 : SEM-RE is efficient 33.403∗∗

H1 : One model is inconsistent (p= 0.030)

term are strongly rejected at the 1% significance level. With the robust LM tests4, both hypotheses

are also rejected at the 1% significance level. Furthermore, since the value of robust RLMlag tests

is higher than that of robust RLMerr tests, the SEM model appears to be the most suitable for our

study. This result is in line with the existing literature [Chen et al., 2016; Kumar, 2011; Schlenker

et al., 2006; Vaitkeviciute et al., 2019]. This supports the choice of a model that considers both

spatial autocorrelation of errors and individual heterogeneity (FE-SEM (2)) to measure the impact

of weather variables on the agricultural production index in the MENA region.

4To check the robustness of our results. Spatial AutoRegressive (SAR) model was also estimated (see the equation (4)
in Appendix 7 for SAR model specification and Table 8 in Appendix 8 for its estimation results).
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5.2 Short-term weather change impacts

While many papers have examined the relationship between weather and agricultural production

function, few have considered the effects of spatial autocorrelation. In order to achieve better ad-

justment effects, a comparative analysis between the FE-SEM model and the FE-OLS model of

non-spatial panel data is conducted. By comparing these two specifications, improvements in the

values, significance, and sign of the estimated coefficients are observed in the case of the spatial

model. These results are consistent with existing findings in other regions of the world [Chen et al.,

2016; Kumar, 2011; Lippert et al., 2009; Schlenker et al., 2006; Ward et al., 2014]. Schlenker et al.

[2006] suggest that neglecting the spatial correlation of error terms can lead to an underestimation

of the true variance-covariance matrix and consequently overestimate the t-values, as it is incorrectly

assumed that error terms are independent. Moreover, Dall’Erba and Domínguez [2016] demonstrate

that this difference is primarily attributed to the omission of the spatial diffusion effect of the data.

The choice of an FEi-SEM model (Column (3) of Table 5) could be considered since it has the lowest

AIC (1580.003). This model shows a positive and statistically highly significant spatial correlation

between the unobserved error terms. Indeed, the spatial correlation coefficient (ρ) is positive and

highly significant in any regression, supporting the argument that there are unobservable factors that

are spatially correlated, even after controlling for elements such as weather conditions and agricul-

tural inputs. Unobservable factors for us, such as technology, agricultural policies or regulations,

and the use of the same production practices, are potentially included in these spatially correlated

error terms, suggesting the possibility of a strong diffusion effect among neighboring countries. These

results have allowed us to confirm the second hypothesis of this study. namely that the specification

of spatial panel data is more accurate than the conventional panel in a production function model to

capture the short-term effect of climate change on agriculture in the MENA region.

Weather change impacts: By examining the coefficients of weather variables in the FEi-SEM

model, we observe a more significant impact of on the agricultural production index in MENA

countries. Indeed, the FEi-SEM model shows a statistically significant impact at the 5% level for

the coefficients of the "temperature" variables in the spring and autumn seasons, respectively, while

the coefficients for the winter and summer seasons are not significant. These coefficients have a

positive sign for autumn and a negative sign for spring. The positive sign indicates that an increase

of one unit in temperature during the autumn generates, ceteris paribus, a 10% increase in the

agricultural production index in the MENA region. This result can be explained by the fact that

higher temperatures could have a positive effect on the growth of some crops [Hatfield and Prueger,

2015]. Indeed, the surface temperature has increased in the past century all over MENA region,

resulted in an increasing trend of growing-season length [IPCC, 2022]. Thus, Hatfield et al. [2011]

show higher temperatures at the reproductive stage will impact the ability of pollen to thrive, the
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Table 5: Estimation results of a-spatial and spatial panel model with fixed effects

Dependent variable: log(InPrd)
Non-Spatial model: OLS (1) Spatial model: SEM(2)

FEi_OLS FEt_OLS FEi_SEM FEt_SEM

Winter Temperature 0.006 0.028 0.007 0.022
(0.029) (0.024) (0.028) (0.023)

Spring Temperature −0.051∗∗ −0.083∗∗∗ −0.040∗∗ −0.080∗∗∗

(0.020) (0.018) (0.018) (0.017)
Summer Temperature −0.002 0.316∗∗∗ −0.062 0.304∗∗∗

(0.072) (0.070) (0.067) (0.066)
Autumn Temperature 0.081 −0.019 0.100∗∗ −0.019

(0.049) (0.052) (0.046) (0.048)
Winter Temperature.square −0.0003 −0.0001 −0.0003 0.0001

(0.001) (0.001) (0.0006) (0.0006)
Spring Temperature.square 0.002∗∗∗ 0.002∗∗∗ 0.001∗∗ 0.001∗∗∗

(0.001) (0.001) (0.0006) (0.0006)
Summer Temperature.square 0.0003 −0.005∗∗∗ 0.001 −0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)
Autumn Temperature.square −0.002 0.001 −0.002∗∗ 0.0007

(0.001) (0.001) (0.001) (0.001)
Winter Precipitations 0.0001 0.0004 0.00005 0.0004

(0.0003) (0.0003) (0.0002) (0.0003)
Spring Precipitations 0.00000 0.001∗∗∗ −0.00005 0.0008∗∗∗

(0.0003) (0.0003) (0.0002) (0.0002)
Summer Precipitations −0.001∗ −0.001∗ −0.001∗∗ −0.001∗

(0.001) (0.001) (0.0006) (0.0005)
Autumn Precipitations −0.0004 −0.001 −0.0003 −0.0008

(0.001) (0.001) (0.0005) (0.0005)
Winter Precipitations.square −2.056e−08 −6.403e−07 −3.021e−08 −6.620e−07

(5.156e−08) (6.066e−07) (4.948e−07) (5.773e−07)
Spring Precipitations.square 1.922e−07 −9.286e−07∗∗ 1.979e−07 −9.845e−07∗∗

(3.782e−07) (4.027e−07) (3.591e−07) (3.833e−07)
Summer Precipitations.square 5.092e−06∗∗ 6.196e−06∗∗∗ 5.897e−06∗∗∗ 5.895e−06∗∗∗

(2.288e−06) (2.390e−06) (2.173e−06) ( 2.280e−06)
Autumn Precipitations.square 1.692e−06 3.643e−06 1.540e−06 3.693e−06∗

(2.096e−06) (2.274e−06) (1.973e−06) (2.153e−06)
log(Irrigation) 0.229∗∗∗ 0.020∗∗ 0.193∗∗∗ 0.192∗∗

(0.029) (0.009) (0.027) (0.008)
log(labor) −0.289∗∗∗ 0.099∗∗∗ −0.247∗∗∗ 0.102∗∗∗

(0.040) (0.016) (0.040) (0.015)
log(Land) 0.450∗∗∗ −0.019∗∗ 0.541∗∗∗ −0.020∗∗

(0.095) (0.009) (0.092) (0.008)
log(Livestock) 0.157∗∗∗ 0.003 0.146∗∗∗ 0.004

(0.022) (0.013) (0.020) (0.012)
ρ 0.191∗∗∗ 0.077∗

(0.044) (0.045)

Observations 560 560 560 560
AIC 1580.003 1771.94
Adjusted R2 0.489 0.296

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0119



fertilization process, and the development of grains or fruits. This result is similar to that of Verner

and Breisinger [2013], who argue that some countries could benefit from higher temperatures, which

would extend the growing season and increase crop productivity. The negative sign of the coefficients

for the "temperature" variable in spring is not surprising and means that high temperatures during

this time of the year have negative effects on agriculture in the MENA region. Indeed, for every

increase of one unit in the "temperature" variable during spring, the model predicts a −4% decrease

in the agricultural production index ceteris paribus. This decline in agricultural production in the

MENA region could be attributed to several reasons. Firstly, the increase in temperature during

spring may promote water evaporation, leading to increased drought [Hare et al., 2011; IPCC, 2019].

Secondly, when temperatures exceed a certain threshold, it can damage plant tissues and reduce

plant growth, increasing thermal stress on crops [Waha et al., 2017]. Finally, high temperatures

can also contribute to soil degradation, reducing fertility and increasing salinity, compromising the

soil’s ability to support crop growth [Bucchignani et al., 2018; Iglesias et al., 2011; IPCC, 2019;

Namdar et al., 2021]. As for the variable precipitation we observe that the coefficient for the summer

season is significant at the 5% level. While the coefficient for precipitation in the winter, spring, and

autumn seasons is not significant. The lack of significance in the coefficients of other seasons could

be explained by the significant warming trends that the MENA region has experienced in recent

decades [Almazroui, 2020; Driouech et al., 2020; Merlone et al., 2019]. This warming trend may

intensify the evaporation phenomenon, subsequently nullifying the effect of precipitation. Thus, the

irregularity and seasonality of precipitation in this region could be a determining factor. Indeed,

according to Amouzay et al. [2023], precipitation in MENA countries is uneven throughout the year,

varying from seasonality to extreme seasonality with a long dry season. The sign of the precipitation

variable for summer is negative, resulting in a −0.2% decrease in the agricultural production index,

ceteris paribus, for each increase of one unit of precipitation. Indeed, excessive precipitation during

this season can lead to floods, damaging crops and agricultural infrastructure. These trends have

already been observed in Oman, Saudi Arabia, and Yemen Verner and Breisinger [2013]. Furthermore,

increased precipitation during the summer can elevate the risk of soil salinization for irrigated crops,

as rainfall can dissolve salts in the soil and bring them to the surface [Namdar et al., 2021].

Nonlinear weather variables impacts: In practical terms, the coefficients of the quadratic

terms of meteorological variables reflect the second-order effect of these variables on the agricultural

production index [Mendelsohn et al., 1994]. Thus, over the entire period, the quadratic coefficients for

temperature in the spring and autumn seasons are significant at the 5% level, respectively. However,

the quadratic coefficients for the winter and summer seasons are not significant. The significant coef-

ficient for temperature during the spring season has a positive sign, predicting a convex relationship

between the temperature variable and the agricultural production index. In contrast, the negative
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sign of the coefficient for the autumn season predicts that this index is a concave function of tem-

perature. Ceteris paribus, higher temperatures during autumn would be detrimental to agricultural

production, while the same increase would be beneficial during spring. These results are consistent

with those of Giannakopoulos et al. [2009], who showed that crops cultivated during the autumn and

winter seasons (legumes and corn) are expected to be most affected in the Western Maghreb and

some parts of the Mashreq. Furthermore, the coefficients of the quadratic terms for precipitation

variables reflect the second-order effect of these variables on the agricultural production index. Thus,

the quadratic coefficient for precipitation in the summer season is significant at the 1% level, but

those for the winter, spring, and autumn seasons are not significant. The significant coefficient for

precipitation during the summer season has a positive sign, predicting a convex relationship between

the precipitation variable and the agricultural production index. Ceteris paribus, an increase in pre-

cipitation during the summer season would be beneficial, contributing to better water availability,

vital for crop irrigation, leading to improved agricultural yields and promoting crop diversification.

Overall, these results allow us to confirm our second hypothesis that meteorological variables exhibit

a non-linear relationship with the agricultural production function in the MENA region, in line with

existing literature [Chen et al., 2016; Dell et al., 2014; Mendelsohn et al., 1994; Schlenker and Roberts,

2009].

Weather change marginal impacts: To provide a more detailed understanding of how cli-

mate affects the agricultural production index, we calculate the total short-term marginal impacts

of temperature and precipitation for the spatial model (FEi-SEM) using Equation (3). The average

marginal values of the agricultural production index for each season are presented in Table 6, below.

From these results, we observe that the FEi-SEM model shows significant negative short-term

marginal impacts of winter temperature, resulting in an average decrease in the agricultural pro-

duction index in the MENA region of −0.528US$. In contrast, the FEi-SEM model suggests sig-

nificant positive short-term impacts of spring, summer, and autumn temperatures, leading to an

average increase in the agricultural production index in the MENA region of 0.363US$, 1.358US$

and 0.148US$ respectively. These results, except for the summer, are consistent with findings from

empirical literature worldwide, demonstrating beneficial effects of warmer temperatures in spring and

autumn but adverse effects in summer and winter [Massetti and Mendelsohn, 2011; Mendelsohn and

Massetti, 2017; Van Passel et al., 2017]. Regarding the short-term marginal impacts of precipita-

tion, the FEi-SEM model shows that winter precipitation has a non-significant positive short-term

impact, resulting in an average increase in the agricultural production index in the MENA region

of 0.0052US$. In contrast, spring, summer and autumn precipitation has a non-significant nega-

tive short-term impact, leading to an average decrease in the agricultural production index in the

MENA region of −0.0001US$, −0.078US$ and −0.027US$ respectively. Thus, our results confirm,
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Table 6: Marginal weather change impacts on agricultural production

Climatic variables FEt_SEM FEi_SEM

Temperature

Winter 2.257 US$ −0.528 US$

[2.182 ; 2.333] [−0.599 ; −0.457]

Spring −2.701 US$ 0.363 US$

[−2.759 ; −2.642] [0.308 ; 0.418]

Summer 0.497 US$ 1.358 US$

[0.382 ; 0.612] [1.250 ; 1.465]

Autumn 2.004 US$ 0.148 US$

[1.908 ; 2.099] [0.058 ; 0.237]

Precipitation

Winter 0.257 US$ 0.0052 US$

[−0.483 ; 0.527] [−0.467 ; 0.477]

Spring 0.049 US$ −0.0001 US$

[−0.560; 0.659] [−0.570 ; 0.570]

Summer −0.058 US$ −0.078 US$

[−0.155 ; 0.038] [−0.168 ; 0.012]

Autumn −0.033 US$ −0.017 US$

[−0.259 ; 0.192] [−0.228 ; 0.193]

Note: Confidence interval at 95% is presented in parentheses.
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as shown in previous studies in the MENA region [Alboghdady and El-Hendawy, 2016; Drine, 2011;

Waha et al., 2017], that countries in the region will be more adversely affected by a decrease in

precipitation than an increase in temperatures. Indeed, according to Waha et al. [2017], most of

the land area in the MENA region receives less than 300 mm of annual precipitation, and the lower

limit for rainfed agriculture is between 200 and 300 mm of annual precipitation. These results may

support decisions regarding effective and efficient policy measures, especially for irrigation. In fact,

Belghazi [2013] emphasized the crucial role of irrigation and capital intensification as key factors for

productivity growth in the agriculture of MENA countries, compensating for the structural scarcity

of precipitation in the region and the effects of climate change. Thus, Yuan et al. [2022] showed

that the use of drip irrigation underneath plastic mulch enables better water utilization by reducing

evaporation losses and providing targeted irrigation to plants.

Economic variables impacts: Regarding the economic control variables in the FEi-SEM model,

we observe that the coefficients representing the contribution of capital and labor factors are all sig-

nificant at the 1% level. Indeed, the model predicts a positive impact for livestock, indicating that

a 1% increase in this production factor generates, ceteris paribus, a 0.146% increase in the agricul-

tural production index. According to Dixon et al. [2001], the livestock population (21 million heads

in 2000) increased at a rate of nearly 0.8% between 1971 and 2000, explaining the primary role of

this factor in the growth of agricultural productivity and the sustainability of traditional farming

practices in the MENA region. As for the contribution of the total areas of rainfed and irrigated

agricultural land, both have a positive impact, showing that a 1% increase in these areas generates,

ceteris paribus, an increase of 0.541% and 0.193%, respectively, in the agricultural production index

of MENA countries. Indeed, according to the OECD/FAO [2018] report, the production of horticul-

tural and cereal products increased during the period 1971-2016, due to the expansion of cultivated

areas and improved yields. Moreover, the analysis of the total area variable of irrigated agricultural

land allows us to demonstrate that public policy interventions, such as the improvement or expansion

of irrigation infrastructure (especially groundwater), have a positive impact on agricultural produc-

tion in MENA countries, mitigating the adverse effects of decreased agricultural production due to

rising temperatures Ward et al. [2014]. According to Belghazi [2013], the share of irrigated land in

arable permanent crops slowly increased from 17.3% in 1994-1996 to 18.5% in 2007. Moreover, irri-

gation enabled countries like Egypt, Kuwait, Saudi Arabia, the UAE, Oman, and Lebanon to achieve

yields exceeding three tons per hectare in 2010-2016 for wheat [OECD/FAO, 2018]. Conversely, the

contribution of agricultural labor is negative and significant. Indeed, a 1% increase in this factor

leads, ceteris paribus, to a decrease of −0.247% in the agricultural production index. This decline

in agricultural production could be attributed to social factors. Firstly, farms are relatively small in

most countries in the MENA region, and they have a significant family workforce. However, their
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ability to adopt new technologies and access investment is limited, resulting in a shortage of skilled

labor in the agricultural sector. This can impact agricultural productivity due to a lack of technical

knowledge and skills needed to maximize crop yields. As a result, many agricultural workers may

choose to migrate to other sectors or leave the MENA region in search of better economic opportu-

nities. According to Belghazi [2013], limited access to education and illiteracy primarily affect rural

areas, especially agricultural workers and women. Illiteracy is responsible for the marginalization of

the rural workforce as it leads to low productivity growth in much of the agricultural sector, mainly

in small poor households that are the first to migrate to urban areas. Consequently, the agricultural

workforce in MENA countries was about 25 million in 1994-96, decreasing to 24.5 million in 2007.

Over the past decades, the agricultural workforce in MENA countries has been slowly declining at

a rate of 0.2% per year, compared to the annual growth of 0.7% in the rural population worldwide

[Belghazi, 2013].

5.3 Simulation of short term climate change impacts

Marginal impacts can be complemented by the impacts of future climate scenarios on the agricul-

tural production index of MENA region countries. For this purpose, simulations were conducted using

the Shared Socioeconomic Pathways (SSP) climate change scenarios rather than the Representative

Concentration Pathways (RCP). The climate research community has demonstrated that RCPs must

cover various aspects, describing different climate futures, and ideally encompassing internal and con-

sistent socioeconomic developments [Moss et al., 2010; Van Vuuren et al., 2011, 2014]. Furthermore,

the conceptual framework for the design and use of SSP scenarios calls for the development of global

pathways describing the future evolution of key societal aspects that, together, would pose a series

of challenges for climate change mitigation and adaptation [O’Neill et al., 2017]. Thus, SSPs are

considered more suitable for local and regional needs, allowing for the exploration of the impact of

various greenhouse gas emission reduction policies on the agricultural sector [O’Neill et al., 2017].

Climate projections scenario: The climate change scenarios play an essential role in assessing

the impact of climate change. They help understand the long-term consequences of short-term deci-

sions and offer the opportunity to explore different future developments in the context of fundamental

uncertainties Riahi et al. [2017]. In our study, we use SSP1 2.6 and SSP5 8.5 scenarios for the period

2020-2039. Indeed, SSP1 2.6 scenario is the most optimistic, assuming relatively low temperatures

and significant efforts to reduce greenhouse gas emissions. It aims to limit global warming, targeting

to keep the overall increase below 2°C compared to pre-industrial levels Riahi et al. [2017]. While

SSP5-8.5 scenario is a pessimistic scenario predicting higher temperatures among the scenarios. It

assumes continued dependence on fossil fuels, rapid economic growth, and population increase, lead-
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Table 7: Summary Statistics of Projected Climate Change for 2020–2039

Observations SSP1 2.6 Relative SSP5 8.5 Relative

1991-2018 2020-2039 Variation 2020-2039 Variation

Average Temperature 21.28 24.12 +13% 24.29 +14%

Average Precipitation 353.89 135.59 −61% 133.50 −62%

ing to very high greenhouse gas emissions and significant global warming Riahi et al. [2017]. Climate

projection data of SSP1 2.6 and SSP5 8.5 scenarios for the period 2020-2039 are collected from the

World Bank Group’s Climate Change Knowledge Portal (CCKP).

The portal provides climate projection data from the sixth phase of the Coupled Model Intercom-

parison Project (CMIP6) global climate model compilations. Indeed, Moore et al. [2017] as well as

Auffhammer and Schlenker [2014] recommended the use of the CMIP6 average rather than a indi-

vidual model. This preference is justified by systematic demonstrations indicating that predictions

resulting from this multimodel approach outperform those from individual models. Thus, Knutti

[2010] highlights that this method can mitigate significant heterogeneity present in individual mod-

els, resulting in a loss of crucial information. We utilize the monthly data presented on the portal

as projected averages for the period 2020-2039, spatially presented by country with a resolution of

25km× 25km.

We calculate the relative variation in future climate change by differentiating the average meteoro-

logical variables projected by the SSP1 2.6 and SSP5 8.5 scenarios over the period 2020 to 2039,

compared with that of our study period (1991-2018). Tables 11–12 in Appendix 8 and Figures 17–18

in Appendix 9, show the spatial distributions of these projected changes in weather variables for

MENA countries. The summary statistics for the projected values of our meteorological variables

are shown in Table 7 above, showing that the SSP5 8.5, e.g., scenario seems to suggest future global

warming in the MENA region by 2039, predicting a 14% increase in Average temperature and a −62%

decrease in Average precipitation.

Predicted impact from scenarios projections: The results of the FEi-SEM model’s pre-

dicted impacts from the SSP1 2.6 and SSP5 8.5 scenarios covering the period 2020-2039 provide an

overview of the expected impacts on the agricultural production index of MENA countries. Tables

9 and 10 in Appendix 8 presents the values of anticipated impacts by country, and their spatial

distribution maps are presented in Figures 10–11 in Appendix 9. For a visual representation of these

results, Figures 3,4, 5 and 6 above, illustrate the predicted impacts of temperature and precipitation
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Figure 3: Predicted temperature impact on API by country: Scenario SSP1 2.6

for both scenarios, SSP1 2.6 and SSP5 8.5. For total impacts, see figures 7 and 8 in Appendix 9.

Overall, these results reveal a negative trend on agricultural production in MENA countries. Indeed,

the FEi-SEM model, under SSP5 8.5 scenario for exemple, reveals that the average predicted impact

on the agricultural production index is −29.1%. However, we note that the predicted impact of tem-

perature change is much greater than that of precipitation. When we look at the predicted impact of

temperature increase, we see that most MENA countries are expected to experience negative effects

on their agricultural production index, with an average predicted impact of −27%. However, there

are notable exceptions, such as Iran, Israel, Palestine, and Syria, which could benefit from climate

change under SSP1 2.6 scenario, and Iran, Iraq, and Syria under SSP5 8.5 scenario. One point to note

is the great heterogeneity of the expected negative impacts of rising temperatures between countries

in the MENA region. For example, the countries of the Arabian Peninsula (Saudi Arabia, Qatar,

United Arab Emirates, Oman, Yemen) are likely to suffer significant losses, particularly in Djibouti,

which is in a particularly vulnerable situation. In contrast, the countries of North Africa (Algeria,

Egypt, Libya, Morocco, Tunisia) and the Mashreq (Iraq, Kuwait, Syria, Lebanon, Jordan, Israel and

Palestine) appear to be less affected, although variations remain within these geographical groups.

With regard to the expected impact of reduced rainfall, we find a predicted average impact of −2.1%

on the agricultural production index in the MENA region under SSP1 2.6 and SSP5 8.5 scenarios

conditions covering the period 2020-2039. In fact, the FEi-SEM model predicts a generalized negative

effect on agricultural production in all MENA countries, with the exception of Djibouti, for which

the model anticipates a positive impact.

These findings align with those of Lobell and Asseng [2017], who demonstrated that temperature
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Figure 4: Predicted precipitations impact on API by country: Scenario SSP1 2.6

Figure 5: Predicted temperature impact on API by country: Scenario SSP5 8.5
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Figure 6: Predicted precipitations impact on API by country: Scenario SSP5 8.5

changes are expected to overshadow precipitation changes. The results from Lobell and Burke [2010]

also emphasized that studies examining the sensitivity of simulated yields to precipitation changes

reported reduced sensitivity when aggregated across various soil types. Schlenker and Roberts [2009]

estimated a relatively weak effect of changes in the growing season precipitation, indicating that a

50% reduction in precipitation would result in a predicted yield loss of only 10%. Thus, the work

of Lobell and Burke [2008] highlighted that warming is expected to be the primary driver of both

anticipated impacts related to climate trends and associated uncertainties, especially at regional

and global scales. However, they also underscored that the impacts of precipitation trends may be

significant in certain locations and time scales [Lobell and Burke, 2008].

These results highlight the vulnerability of the MENA region’s agricultural sector to global warming

and reduced rainfall in the near future (2020-2039). These predicted negative impacts on agricultural

production could lead to a reduction in the availability of locally produced food. This could affect

the food security of countries in the region, by increasing dependence on imported food. According to

Le Mouël et al. [2023], current trends in food consumption and agricultural production in the MENA

region will result in a growing reliance on food imports until 2050. This dependence will further

increase due to the impacts of climate change, especially in the sub-regions of the Middle East, Near

East, and Maghreb, where net imports could represent up to 70% of national food requirements

Le Mouël et al. [2023].
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6 Conclusion

The aim of this study was to assess the impacts of climate change on agriculture in the MENA region

using the profit function approach. Our study takes into consideration both spatial autocorrelation

and individual heterogeneity among different countries. We compared the results of spatial and non-

spatial models to determine the short-term effects of weather variations on agricultural production.

Our models are based on balanced panel data for 20 countries over a 28-year period (1991-2018). We

found that taking into account the spatial auto-correlation among data of MENA countries is crucial

to accurately assess the impacts of weather variations on agriculture. The profit function approach

initially proposed by Deschênes and Greenstone [2007], commonly used to assess the short-term

impacts of climate on agriculture, has faced criticism for neglecting spatial autocorrelation [Fisher

et al., 2012]. In our research, we address this limitation by incorporating spatial autocorrelation in

our estimates, employing the Fixed Effects Spatial Error Model (FE-SEM). Statistical specification

tests were conducted to confirm the presence of spatial autocorrelation in our models.

Our findings affirm that disregarding the spatial dimension in production function models results

in less accurate estimates of the benefits and losses to agriculture due to weather changes. By inte-

grating spatial autocorrelation into our analysis, we account for spillover effects between neighboring

countries, highlighting the existence of spatially correlated unobservable factors. These factors ex-

hibit a significant degree of spillover among neighboring countries, underscoring that failure to control

for spatially correlated errors leads to less precise estimates of specific climate impacts. The spa-

tial model (FEi-SEM) also demonstrates enhancements in the values, significance, and direction of

the coefficients of meteorological variables, indicating an improved ability to quantify the impact of

these variables on agricultural production in MENA countries. Additionally, our analysis uncovers

a non-linear relationship between the agricultural production function and weather in the MENA

region. It reveals negative short-term marginal impacts of higher temperatures in winter, while for

other seasons, these impacts are positive on MENA agricultural production. Regarding precipita-

tion, winter precipitation is beneficial and nonsignificant, whereas precipitation in other seasons has

a nonsignificant negative impact on agricultural production in this region. Finally, we simulate the

short-term future climate change impact on MENA agriculture, utilising projected changes in me-

teorological variables under the SSP5 8.5 scenario for the period 2020-2039. The results indicate a

predicted negative impact on the agricultural production index of -25.5% in MENA countries. In

light of this, policies for the sustainable management of natural resources, particularly water and soil,

are imperative to ensure the long-term sustainability of agriculture in these countries.

While our study offers valuable insights into the impact of climate change on agriculture in the

MENA region, it is crucial to acknowledge certain limitations that warrant consideration for future

research, aiming to bolster the robustness of our findings. Firstly, our reliance on aggregated FAO
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data for agricultural production poses a limitation. Future research should explore methods to

acquire more precise data at a finer spatial scale, allowing for a more detailed analysis of agricultural

production. Additionally, considering the diverse nature of the MENA region, where climate change

effects may differ among sub-regions, future studies could investigate regional variations in climate-

agriculture relationships, taking into account local characteristics and vulnerabilities. Secondly, our

analysis employs the profit function approach, focusing solely on short-term interactions between

weather and agriculture. To provide a more comprehensive understanding, future research could delve

into the long-term dynamics of climate-agriculture relationships. Thirdly, while our study simulates

future climate change impacts under the SSP5 8.5 scenario, a more thorough assessment would involve

exploring alternative scenarios and their potential implications on agricultural outcomes. This could

include an examination of different emission pathways and their diverse effects on agriculture in the

MENA region.

In conclusion, our study advances our understanding of the short-term impacts of climate change

on agriculture in the MENA region, especially by addressing the issue of spatial autocorrelation.

However, recognizing the outlined limitations, future research efforts should aim to refine and expand

our findings to provide a more comprehensive and nuanced understanding of the dynamic relationship

between climate change and agriculture in the region.
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7 Appendix: Model and test specifications

The Spatial AutoRegressive (SAR) panel model: This model is developed by Anselin

et al. [2008] and improved by Elhorst et al. [2010] to consider directly the spatial dependence of the

explained variable on the explanatory variables and the error term for the case of panel data.

ln (Yit) = λ

N∑
j=1

ωijln (Yit) + β1ln (Lit) + β2ln (Lstit) + β3ln (Irrgit) + β4ln (labit)+

β5 (Tit) + β6
(
T 2
it

)
+ β7 (Pit) + β8

(
P 2
it

)
+ β0 + µi + νt + εit,

(4)

where: Yit is the dependent variable for cross-sectional i at time t (i = 1.....N ; t = 1.....T ).∑N
j=1 ωijYkt is the interaction effect of the dependent variable Yit with the dependent variables Yit in

neighboring units, where ωij is the i, jth element of a prespecified non negative N×N spatial weights

matrix W describing the arrangement of the spatial units in the sample. the response parameter of

these endogenous interaction effects, and λ : the spatial autoregressive coefficient. β is matching

1 × K vector of fixed but unknown parameters. µi is individual fixed effect, νt terme is time fixed

effect and εit is vector of the idiosyncratic error term.

Global spatial correlation test: To do the correlation spatial we have applied two most

popular global spatial correlation tests in spatial econometric :

• The Moran index is represented as follows [Moran, 1948] :

IW =
n∑

i

∑
j Wij

.

∑
i

∑
j Wij(yi − y)(yj − yj)∑

i(yi − y)2
(5)

The Moran test follows the following hypotheses:

• H0: No spatial auto-correlation.

• H1: IW > 0 (positive spatial auto-correlation).

• The Geary index can be formulated as follows [Geary, 1954]:

Cw =
n− 1

2
∑

i

∑
j Wij

.

∑
i

∑
j Wij(yi − yj)

2∑
i(yi − y)2

(6)

Geary’s test hypotheses can be written as follows:

• H0: The differences between neighbors have no particular structure.

• H1: CW < 1 (positive spatial autocorrelation).
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8 Appendix: Tables
Table 8: Estimation results of Fixed Effects Spatial AutoRegressive panel model (FE_SAR 4 )

Dependent variable: log(InPrd)

FEi_SAR FEt_SAR

Winter Temperature 0.001 0.022
(0.025) (0.023)

Spring Temperature −0.045∗∗ −0.076∗∗∗

(0.017) (0.017)
Summer Temperature −0.036 0.302∗∗∗

(0.067) (0.066)
Autumn Temperature 0.072∗∗ −0.019

(0.043) (0.049)
Winter Temperature.square −0.0001 0.0001

(0.0006) (0.0006)
Spring Temperature.square 0.001∗∗ 0.001∗∗∗

(0.0006) (0.0005)
Summer Temperature.square 0.0008 −0.005∗∗∗

(0.001) (0.001)
Autumn Temperature.square −0.001∗∗ 0.0009

(0.001) (0.001)
Winter Precipitations −0.00003 0.0004

(0.0002) (0.0003)
Spring Precipitations 0.00003 0.0009∗∗∗

(0.0002) (0.0002)
Summer Precipitations −0.001∗∗ −0.001∗

(0.0005) (0.0005)
Autumn Precipitations −0.0003 −0.0008

(0.0005) (0.0005)
Winter Precipitations.square −3.021e−08 −6.469e−07

(4.948e−07) (5.749e−07)
Spring Precipitations.square 7.504e−08 −1.033e−06∗∗

(3.323e−07) (3.822e−07)
Summer Precipitations.square 5.656e−06∗∗∗ 6.107e−06∗∗∗

(2.009e−06) ( 2.266e−06)
Autumn Precipitations.square 1.540e−06 3.769e−06∗

(1.973e−06) (2.153e−06)
log(Irrigation) 0.189∗∗∗ 0.021∗∗

(0.025) (0.008)
log(Land) 0.40∗∗∗ −0.020∗∗

(0.084) (0.008)
log(Livestock) 0.129∗∗∗ 0.004

(0.019) (0.012)
log(labor) −0.168∗∗∗ 0.106∗∗∗

(0.036) (0.015)
λ 0.339∗∗∗ 0.117∗∗∗

(0.034) (0.042)

Observations 560 560

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Predicted climate change impact on agricultural production index (API)

Scenario SSP5 8.5 Scenario SSP1 2.6

Country Temperature Precipitations Temperature Precipitations

Algeria −0.095 −0.019 −0.088 −0.019

Saudi Arabia −0.331 −0.025 −0.320 −0.028

Djibouti −0.886 0.004 −0.880 0.009

Egypt −0.281 −0.019 −0.282 −0.025

U.A. Emirates −0.595 −0.029 −0.588 −0.032

Iran 0.164 −0.022 0.182 −0.019

Iraq −0.007 −0.021 0.002 −0.029

Israel 0.019 −0.016 −0.365 −0.022

Kuwait −0.104 −0.029 −0.096 −0.0163

Lebanon −0.162 −0.014 −0.171 −0.019

Libya −0.171 −0.022 −0.164 −0.029

Mauritania −0.539 −0.023 −0.533 −0.013

Morocco −0.109 −0.025 −0.101 −0.022

Oman −0.452 −0.024 −0.447 −0.023

Jordan −0.096 −0.019 −0.097 −0.018

Palestine 0.022 −0.028 −0.411 −0.025

Qatar −0.473 −0.033 −0.465 −0.024

Syria 0.029 −0.017 0.015 −0.040

Tunisia −0.181 −0.032 −0.172 −0.016

Yemen −0.427 −0.007 −0.421 −0.005

Predicted impact Average −0.270 −0.021 −0.234 −0.021
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Table 10: Total predicted climate change impact on API in MENA region

Country Scenario SSP5 8.5 Scenario SSP1 2.6

Algeria −0.107 −0.114

Saudi Arabia −0.349 −0.359

Djibouti −0.875 −0.877

Egypt −0.308 −0.307

U.A. Emirates −0.620 −0.627

Iran 0.163 0.145

Iraq −0.027 −0.037

Israel −0.388 −0.002

Kuwait −0.113 −0.121

Lebanon −0.191 −0.182

Libya −0.193 −0.200

Mauritania −0.547 −0.552

Morocco −0.123 −0.131

Oman −0.470 −0.475

Jordan −0.119 −0.114

Palestine −0.436 −0.002

Qatar −0.489 −0.498

Syria −0.017 −0.011

Tunisia −0.189 −0.198

Yemen −0.428 −0.433

Predicted impact Average −0,291 −0,255
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Table 11: Average variations between the SSP5 8.5 scenarios and the period (1991-2018)

Period : 1991-2018 Scenario SSP5 8.5 Variation

Country Temperature Prcipitation Temperature Prcipitation Var_Temp Var_Pricip

Algeria 18.30 558.28 24.54 48.07 0.34 −0.91

Saudi Arabia 21.052 413.01 26.64 47.38 0.26 −0.88

Djibouti 28.90 209.70 29.50 255.35 0.02 0.22

Egypt 20.45 98.00 24.01 3.37 0.17 −0.96

U.A.Emirates 27.62 75.51 28.86 31.17 0.04 −0.58

Iran 10.98 340.64 19.12 269.43 0.74 −0.21

Iraq 18.16 447.49 24.05 206.24 0.32 −0.53

Israel 19.61 654.90 20.20 216.84 0.02 −0.66

Kuwait 25.67 102.02 27.30 123.98 0.06 0.21

Lebanon 18.38 602.27 16.53 530.41 −0.10 −0.11

Libya 21.60 127.25 23.24 8.2 0.07 −0.93

Mauritania 22.30 57.87 28.69 54.85 0.28 −0.05

Morocco 17.44 662.41 24.54 48.07 0.40 −0.92

Oman 28.22 60.15 28.76 12.97 0.01 −0.78

Jordan 19.61 654.90 20.45 216.84 0.04 −0.66

Palestine 21.40 221.81 20.20 216.84 −0.05 −0.02

Qatar 27.62 75.51 28.45 50.26 0.02 −0.33

Syria 19.81 814.85 20.20 12.97 0.01 −0.98

Tunisia 18.87 625.46 21.32 182.46 0.13 −0.70

Yemen 19.57 275.83 26.30 134.21 0.34 −0.51

Average 21.28 353.89 24.29 133.50 0.14 −0.62
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Table 12: Average variations between the SSP1 2.6 scenarios and the period (1991-2018)

Period : 1991-2018 SSP1 2.6 Variation

Country Temperature Prcipitation Temperature Prcipitation Var_Temp Var_Pricip

Algeria 18.30 558.28 24.34 48.17 0.33 −0.91

Saudi Arabia 21.052 413.01 26.46 47.17 0.25 −0.88

Djibouti 28.90 209.70 29.45 237.41 0.01 0.13

Egypt 20.45 98.00 23.89 3.28 0.16 −0.96

U.A.Emirates 27.62 75.51 28.69 33.04 0.03 −0.56

Iran 10.98 340.64 18.94 273.85 0.72 −0.19

Iraq 18.16 447.49 23.84 208.18 0.31 −0.53

Israel 19.61 654.90 21.416 219.48 0.09 −0.66

Kuwait 25.67 102.02 27.09 124.91 0.05 0.22

Lebanon 18.38 602.27 16.43 540.12 −0.10 −0.10

Libya 21.60 127.25 23.09 8.18 0.06 −0.93

Mauritania 22.30 57.87 28.50 51.05 0.27 −0.12

Morocco 17.44 662.41 24.34 48.17 0.39 −0.93

Oman 28.22 60.15 28.64 13.73 0.01 −0.77

Jordan 19.61 654.90 20.32 53.31 0.03 −0.92

Palestine 21.40 221.81 21.41 219.48 0.0004 −0.01

Qatar 27.62 75.51 28.28 51.62 0.02 −0.31

Syria 19.81 814.85 20.05 219.48 0.01 −0.73

Tunisia 18.87 625.46 21.13 182.98 0.12 −0.70

Yemen 19.57 275.83 26.15 128.28 0.33 −0.53

Average 21.28 353.89 24.12 135.59 0.13 −0.61
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9 Appendix: Figures

Figure 7: Total Predicted impact on API by country: Scenario SSP 2.6

Figure 8: Total Predicted impact on API by country: Scenario SSP 8.5
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(a) Temperature impacts

Predicted impact$

under −0.43
−0.43 − −0.23
−0.23 − −0.1
over −0.1

(b) Precipitations impacts

Predicted impact $

under −0.03
−0.03 − −0.02
−0.02 − −0.02
over −0.02

Figure 9: Predicted climate change impacts on API by country: Scenario SSP 2.6

(a) Temperature impacts

Predicted impact$

under −0.43
−0.43 − −0.17
−0.17 − −0.07
over −0.07

(b) Precipitations impacts

Predicted impact $

under −0.03
−0.03 − −0.02
−0.02 − −0.02
over −0.02

Figure 10: Predicted climate change impacts on API by country : Scenario SSP 8.5

(a) Scenario SSP 2.6

Predicted impact $

under −0.45
−0.45 − −0.25
−0.25 − −0.12
over −0.12

(b) Scenario SSP 8.5

Predicted impact $

under −0.44
−0.44 − −0.19
−0.19 − −0.1
over −0.1

Figure 11: Total predicted climate change impacts on API by country
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Figure 12: Boxplots of agricultural production index by country over 1991-2018
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Figure 13: Moran Scatter-plots for agricultural production index (API)
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Figure 14: Gabriel contiguity weight matrix (W_cont)
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Figure 15: Nearest neighbors weight matrix (W_nn5)
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Figure 16: Inverse distance matrix (W_dinverse)
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(a) Temperature variations

Temp Variations

under 0.02
0.02 − 0.08
0.08 − 0.29
over 0.29

(b) Precipitations variations

Pricip Variations

under −0.89
−0.89 − −0.63
−0.63 − −0.19
over −0.19

Figure 17: Average variations between the SSP 2.6 scenario and the period (1991-2018) in MENA countries

(a) Temperature variations

Temp Variations

under 0.03
0.03 − 0.07
0.07 − 0.3
over 0.3

(b) Precipitations variations

Pricip Variations

under −0.89
−0.89 − −0.61
−0.61 − −0.18
over −0.18

Figure 18: Average variations between the SSP 8.5 scenario and the period (1991-2018) in MENA countries
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Figure 19: Annual Precipitation in the MENA countries during the Autumn season from 1991 to 2018
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Figure 20: Annual Precipitation in the MENA countries during the Spring season from 1991 to 2018
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Figure 21: Annual Precipitation in the MENA countries during the Summer season from 1991 to 2018
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Figure 22: Annual Precipitation in the MENA countries during the Winter season from 1991 to 2018
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Figure 23: Annual Temperature in the MENA countries during the Autumn season from 1991 to 2018
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Figure 24: Annual Temperature in the MENA countries during the Spring season from 1991 to 2018
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Figure 25: Annual Temperature in the MENA countries during the Summer season from 1991 to 2018
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Figure 26: Annual Temperature in the MENA countries during the Winter season from 1991 to 2018
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