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Abstract

A growing number of central authorities use assignment mechanisms to allocate students to schools in a way

that reflects student preferences and school priorities. However, most real-world mechanisms incentivize students to

strategically misreport their preferences. In this paper, we provide an approach for identifying the causal effects of

school assignment on future outcomes that accounts for strategic misreporting. Misreporting may invalidate existing

point-identification approaches, and we derive sharp bounds for causal effects that are robust to strategic behavior.

Our approach applies to any mechanism as long as there exist placement scores and cutoffs that characterize that

mechanism’s allocation rule. We use data from a deferred acceptance mechanism that assigns students to more than

1,000 university–major combinations in Chile. Matching theory predicts that students’ behavior in Chile should

be strategic because they can list only up to eight options, and we find empirical evidence consistent with such

behavior. Our bounds are informative enough to reveal significant heterogeneity in graduation success with respect

to preferences and school assignment.
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1 Introduction

One of the most important decisions students make is their choice of field and institution of

education. Identification of the impact of such choices on future outcomes is a critical step in the

study of this decision process and of public education policies. The causal effects of schooling may

vary widely across economic agents because of heterogeneous skills and preferences. Moreover,

individuals’ expectations about potential returns may prompt them to choose schools strategically.

Heterogeneity and selection make identification of causal effects very challenging, especially when

students face a large number of unordered options. On the positive side, a growing number of

schools use centralized assignment mechanisms, which produce credible instruments based on the

discontinuities generated by the assignment of comparable students to different schools (Kirkeboen

et al. (2016) and Abdulkadiroglu et al. (2022)). Such discontinuities arise from unpredictable

admission cutoffs that characterize the matching of students to schools.

Many centralized school assignment mechanisms effectively amount to a quasi-experimental

design where two groups of individuals who share similar scores are assigned to different schools

based on how their scores relate to admission cutoffs. The assignment in a matching characterized

by such cutoffs depends on the student’s preferences over feasible schools. Unlike in a typical

regression discontinuity (RD) design, in this setting, students on the same side of the cutoff do not

necessarily receive the same assignment. For example, individuals with similar scores just above a

certain cutoff may all prefer to go to the same “school a” but could have very different second-best

options if they fall on the other side of the cutoff. In such a context, Kirkeboen et al. (2016)

construct comparable groups of individuals near a cutoff by conditioning on local preferences—that

is, by selecting students whose preferences yield identical first- and second-best options if they fall,

respectively, above and below that cutoff. Controlling for local preferences that equal a pair of

schools, e.g., (a, b), allows the RD to identify the causal effect of a change in the school assignment

from b to a, averaged over individuals who prefer a over b. A natural question to ask, then, is

how often students submit their true preferences and what the consequences are of controlling for

misreported preferences in the RD strategy. In fact, most real-world school assignment mechanisms

create incentives for students to misreport their preferences. Agarwal and Somaini (2018) and Fack

et al. (2019) provide thorough discussions with several real-world examples of this. Although a

powerful identification strategy, this paper shows that the RD strategy that controls for reported

preferences raises two important concerns, unless we assume everyone is a truth-teller. First, we

argue that an average effect over students that truly prefer a over b is more externally valid than

an average effect over students that only report to prefer a over b because preference reports

could easily change in counterfactuals with different incentives. Second, even if interest lies on the

second type of average effect, we show that controlling for reported preferences may invalidate the

fundamental continuity assumption of the RD identification strategy.

This paper derives sharp bounds for causal effects of school assignment on future outcomes in

mechanisms with cutoff characterization and strategic student behavior. We propose a two-step

identification approach that is robust to strategic reporting of preferences. In the first step, the
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researcher partially identifies local preferences and constructs local preference sets for each student.

We provide several tools for constructing these sets in the context of a student-proposing deferred

acceptance (DA) mechanism where constraints on the submitted preferences lead to strategic be-

havior. Outside such a context, researchers may employ alternative tools to partially identify local

preferences, as the second step of our procedure does not require a particular method to be used in

the first step. For example, the identification method of Agarwal and Somaini (2018) applies to a

general class of mechanisms with cutoff representation that includes variants of the DA mechanism,

Boston, First Preferences First, Chinese Parallel, etc. Finally, in the second step, the researcher

employs an RD identification strategy that controls for local preference sets and partially identifies

the causal effects of school assignment.

Strategic behavior among students depends on the characteristics of the assignment mechanism.

A mechanism is said to be strategy proof if submitting true preferences is a weakly dominant

strategy for all students. For example, Dubins and Freedman (1981) demonstrate that the DA

mechanism is strategy proof. However, this result breaks down when the mechanism imposes

constraints on the preferences that students can submit. In many real-world school assignment

mechanisms, the number of schools is too large for students to feasibly rank all schools. The

central authorities running these systems may either limit the number of schools that students may

rank or impose costs on the basis of the number of schools submitted. See Table 1 Panel B by Fack

et al. (2019) for examples.

Our first-step tools for partial identification of local preferences naturally require assumptions on

students’ strategic behavior. We motivate our assumptions following the important contributions

of Haeringer and Klijn (2009). They study a game where students submit constrained preference

rankings and a central mechanism allocates the students to schools. One of their important findings

is that it is rational for students to submit partial orders of their true preferences in some mecha-

nisms. Specifically, suppose that a mechanism is strategy proof when students are free to rank any

number of schools, as under, e.g., the unconstrained DA or Top Trading Cycles (TTC) mechanisms.

Then, if the preference rankings are constrained to having at most K schools, a student can do no

better than selecting K schools among her acceptable schools and ranking them according to her

true preferences.

The key assumption for our first-step tools is that students submit only partial orders of their

preferences. This feature is in addition to the cutoff characterization of the matching, which

we assume throughout the paper. Cutoff characterization means that a student is matched to

her best feasible school, where “best” is defined according to her true preferences and a school

is feasible if the student’s placement score clears that school’s admission cutoff. Our assumption

about cutoff characterization is satisfied when the matching outcome is stable (Azevedo and Leshno,

2016). Stability means that each student is matched to an acceptable school and all slots in

preferred schools have been filled with people who have better placement scores. In constrained

DA and TTC mechanisms, stability occurs in Nash equilibrium of the preference revelation game

under appropriate conditions on the placement scores (Theorems 6.3 and 6.4, Haeringer and Klijn
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(2009)). Stability occurs in Nash equilibrium without restrictions on the scores in the constrained

serial dictatorship (SD) mechanism, which is a particular case of DA. We characterize sharp local

preference sets for every individual that are compatible with the observed data and these model

assumptions. Our random local preference sets contain the true local preference random variable

with probability one. We also show a way to shrink these sets by imposing assumptions on students’

expectations regarding the outcome of the match and by assuming students maximize expected

utility, in line with Agarwal and Somaini (2018).

The form of our local preference sets has two important implications for applied work. First, if

we ignore strategic behavior and condition only on reported local preferences, the RD strategy may

yield inconsistent estimates. The reason is that, when we select individuals with the same (strate-

gically) reported local preferences near a cutoff, our local preference sets change discontinuously at

that cutoff. The problem is akin to the manipulation problem in RD: we are controlling for a vari-

able that is manipulable, that is, reported preferences. Second, suppose that we select individuals

with reported local preferences (a, b) and see that the local preference sets are all singletons {(a, b)};
in other words, our selection contains only individuals who do not manipulate. Even in this case,

an RD strategy that controls for reported local preferences may still be inconsistent because the

local preference sets may well contain the pair (a, b) for someone whose reported local preferences

differ from (a, b). Thus, selecting individuals who report (a, b) does not necessarily imply that we

select all individuals whose true local preferences equal (a, b).

The second step of our approach relies on the local preference sets constructed in the first step

with either our method or an alternative method. Given interest in a pair of schools (a, b), we

select all individuals whose local preference sets contain (a, b) and whose placement scores are close

to the cutoff for admission at school a. This subpopulation of individuals contains all individuals

whose true local preferences equal (a, b), but also other individuals. The average outcome in the

subpopulation equals a weighted average of two averages: first, the average outcome for individuals

with true local preferences (a, b), which is interesting for the identification of causal effects, and

second, the average outcome for individuals with true local preferences that differ from (a, b). We

do not know which individuals have preferences (a, b), but we do characterize sharp bounds on the

proportion of such individuals in the subpopulation using the random sets constructed in the first

step. Thus, our setting fits the identification problem with corrupted data studied by Horowitz

and Manski (1995). This method allows us to derive closed-form bounds on the first out of the two

average outcomes above, which then leads to bounds on the average causal effects. This closed-form

approach offers some intuition on when we can expect the bounds to be informative about or equal

to the actual average causal effect (i.e., point identification). Although practical and intuitive, these

closed-form bounds may not be sharp. Thus, building on Molinari (2020) and using random set

theory, we characterize sharp bounds that are numerically computable when outcomes take finitely

many values.

Methods combining RD identification with school matching data have been popular among

applied and theoretical researchers in economics (Jackson, 2010; Bertanha, 2020). To the best of
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our knowledge, our paper is the first to prove RD identification of returns of school assignment in

matching mechanisms with strategically reported preferences. We note that our two-step approach

differs from the usual control function approach because our first step partially identifies the control

variable instead of point-identifying it as in the usual approach. This paper unifies and complements

two branches of the literature. One branch features the methods proposed by Agarwal and Somaini

(2018) and Fack et al. (2019) that take into account strategic reporting and identify students’ true

preferences, but they do not focus on causal effects of school matches on future outcomes. The

other branch features the methods of Kirkeboen et al. (2016) and Abdulkadiroglu et al. (2022)

that identify the causal effects of different assignments but control for reported instead of true

preferences. Chen (2023) discusses methods applicable in the case when assignment is based both

on lottery- and RD-driven variation.

We apply our two-step identification strategy to matching data from Chile. Chile has a cen-

tralized DA mechanism that assigns students to university–major pairs. In 2010, 88,000 students

ranked at most eight university–major pairs out of a total of 1,092 options available. Thus, the

mechanism constrains students’ preference rankings, and students have incentives to behave strate-

gically. The methods proposed by Kirkeboen et al. (2016) and Abdulkadiroglu et al. (2022) are

hence not directly applicable in the Chilean case, even if all students report their preferences truth-

fully.

The methods of Kirkeboen et al. (2016) apply to the SD mechanism—a particular case of the DA

mechanism in which all schools utilize the same placement score. In the SD case, the counterfactual

set of schools for students just above or just below a cutoff does not vary across students. For

example, for students just above a cutoff, their counterfactual set includes all schools whose cutoffs

are lower than the cutoff in question. The same does not apply in DA, the mechanism used in Chile.

Students have multiple placement scores, and the set of feasible schools may vary widely across

students. Defining the counterfactual set is an important step in the RD identification strategy

because local preferences are defined over these sets, which then become the control variable in the

RD strategy.

Abdulkadiroglu et al. (2022) propose a solution to the DA counterfactual problem by con-

structing a propensity score control variable. They study New York City public high schools,

where placement scores are functions of integer priority scores plus a continuously distributed vari-

able with full support. This particular structure of school priorities does not correspond to the

Chilean case, where program-specific placement scores are computed as functions of five primitive

scores: math, language, history, science, and an average score from high school. These functions

are different across programs and sometimes nonlinear. This setting requires the counterfactual

set of schools to be carefully defined such that controlling for local preferences does not violate the

continuity assumptions required by RD. We therefore propose a general method that applies to such

empirical contexts and leads to point identification if students are truthful but partial identification

otherwise.

We present several pieces of evidence that students in Chile behave strategically. In settings
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where behavior is strategic, existing methods that control for reported preferences are invalid, and

identification requires the tools that we introduce in this paper. Our data contain more than

three hundred university–major pairs for which the localized RD samples are large enough for our

procedure to be implemented. For each pair, we construct bounds on the average effect of a change

in the initial assignment between the second- and first-best options in that pair. We examine the

effects on two binary outcomes: graduation from the first-best university–major and graduation

from a top university. The bounds that we compute are informative about the sign of average

treatment effects in 33–67% of the university–major pairs, depending on the outcome. The bounds

are also informative in that they reveal substantial heterogeneity in the treatment effects across local

preferences and second-best options. Finally, we compare our bounds to point estimates that we

obtain by naively ignoring strategic behavior and simply controlling for reported preferences. The

naive estimates fall outside our bounds for 25–57% of the university–major pairs, consistent with

the fact that naive estimates are generally inconsistent for an average treatment effect parameter

when students behave strategically.

The rest of this paper proceeds as follows. Section 2 lays out the matching model for a continuum

population of students and a finite number of schools. Section 3 examines point identification of

average treatment effects when students are truth-tellers. Section 4 examines partial identification

when students strategically report their preferences, with two subsections: Section 4.1 provides tools

for construction of local preference sets that apply to constrained DA mechanisms, and Section 4.2

discusses how to use local preference sets constructed in this or other ways to derive bounds on

the average treatment effects. We illustrate our identification approach with the Chilean data in

Section 5. The appendix presents all proofs for the paper.

2 Model

We consider a continuum population of students and a set of J schools, J := {1, . . . , J}, that
have capacities {q1, . . . , qJ} defined in terms of shares of the student population (Azevedo and

Leshno, 2016). Denote by Ω the set of all students in the universe of interest and use ω to index

an individual student type. The student type consists of three objects. First, Q(ω) denotes the

true (strict) preference relation of student ω over the set of options J 0 := J ∪ {0}, which includes

schools J and an outside option 0. For example, if J = 2 and Q(ω) = {1, 2, 0}, then 1 is preferred

to 2 (i.e., 1Q(ω)2), 1 is preferred to 0 (i.e., 1Q(ω)0), and 2 is preferred to 0 (i.e., 2Q(ω)0). Let Q be

the set of all strict preference relations over J 0 that admit at least one school that is acceptable.

A school j ∈ J is “acceptable” for student ω if it is preferred to that student’s outside option, i.e.,

jQ(ω)0. We define Q̄ as the weak preference relation induced by Q, i.e., jQ̄k ⇔ jQk or j = k.

The second object of the student type is a vector of scores R(ω) := (R1(ω), . . . , RJ(ω)) ∈ R ⊆ RJ ,

where each school j utilizes Rj to rank students for admission. The third and last object, Y (ω, d),

is the potential outcome of student ω if the student is assigned to option d ∈ J 0. Each student has

a potential outcome function Y (ω, ·) that maps from J 0 to Y ⊆ R. We call Γ the set of all possible
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potential outcome functions. The set of all student types is Ω := Q × R × Γ. In a continuum

economy, there is a probability measure P over Ω and the Borel σ-algebra of the product space Ω.

We suppress the argument ω whenever it is unnecessary for ease of notation, e.g., Y (d) vs. Y (ω, d)

and Q vs. Q(ω).

A “matching” is described by a measurable function µ : Ω → J 0 that satisfies two conditions:

for every j ∈ J , (i) the mass of students matched to j is less than or equal to the capacity of school

j, i.e., P{ω : µ(ω) = j} ≤ qj ; and (ii) the set of students who weakly prefer option j ∈ J 0 over

their matching, i.e., {ω : jQ̄(ω)µ(ω)}, is an open set.1 For every student type ω, µ(ω) is either the

school j to which the student is matched or zero. When µ(ω) = 0, the student is unmatched and

takes an outside option. An important definition for this paper is that of stability.

Definition 1 (Stability). The matching µ : Ω → J 0 is a stable matching if three conditions are

satisfied for every ω ∈ Ω: (i) µ(ω)Q̄(ω)0 (individual rationality); (ii) for any j ∈ J , if jQ(ω)µ(ω),

then j is full (no waste); and (iii) for any j ∈ J that is full, if µ(ω′) = j and jQ(ω)µ(ω), then

Rj(ω
′) > Rj(ω) (no justified envy).

A mechanism φ matches students to schools by mapping the students’ scores and submitted

preference lists to schools. Student ω submits a preference list P (ω) ⊆ J , which is an ordered list

of her acceptable schools. For example, for J = 3, if Q(ω) = {1, 2, 0, 3}, then P (ω) = {1, 2}, as long
as the student submits her true list of acceptable schools. The number of schools in P , denoted

|P |, is at least one because everyone participating in the match has at least one acceptable school.

As with Q̄, we also define P̄ as the weak preference relation induced by P . A mechanism takes as

inputs everyone’s submitted preferences (i.e., a correspondence P : Ω ⇒ J ) and everyone’s scores

(i.e., a vector-valued function R : Ω → R) and gives rise to a matching function. Formally, φ(P,

R) : Ω → J 0. We say a mechanism φ is strategy proof if submitting her true ranking of acceptable

schools is weakly dominant for every student—in other words, if any student ω’s misreporting of

P never leads to a better option and sometimes leads to a worse option, depending on what other

students submit. We say a student is a truth-teller if her P equals her true ranking of acceptable

schools. Otherwise, we say she is strategic or not a truth-teller.

The ability to characterize a matching allocation on the basis of cutoffs is fundamental for this

paper.

Definition 2 (Cutoff Characterization). For placement scores S : Ω → S ⊆ RJ , S(ω) := (S1(ω),

. . . , SJ(ω)) and admission cutoffs c ∈ S, c := (c1, . . . , cJ), the set of feasible options of a student ω

equals all schools for which her placement scores clear the admission cutoffs plus the outside option:

{0} ∪ {j ∈ J : Sj(ω) ≥ cj}; student ω’s best feasible option is the option that ranks first according

to Q(ω) among her feasible options. We say the matching µ : Ω → J 0 has cutoff characterization

if there exist placement scores S : Ω → S and admission cutoffs c ∈ S such that, for every ω ∈ Ω,

the matching µ(ω) equals student ω’s best feasible option according to Q(ω).

1Azevedo and Leshno (2016) impose the same condition to rule out multiplicity of stable matchings that differ in
a set of types with measure zero.
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This paper considers mechanisms that produce matching functions with a cutoff characterization

according to Definition 2. Placement scores S may or may not equal school priority scores R. The

definition gives researchers the freedom to construct special placement scores S if the mechanism

that they consider does not admit cutoff characterization by means of priority scores R. The

idea behind this definition stems from the logic of the general class of mechanisms of Agarwal

and Somaini (2018). Moreover, we assume throughout the paper that, for any j ∈ J , Sj has a

distribution that is absolutely continuous with respect to (wrt) the Lebesgue measure and support

Sj that contains a closed interval around cj . The support of S is S. For any two scores Sj and

Sl, we assume that either P[Sj = Sl] = 1 or P[f(Sj) = Sl] < 1 for any measurable function f .

This says that the only deterministic function relating any two scores may be the identity function.

Azevedo and Leshno (2016) demonstrate that, if the matching function is stable, the matching has

cutoff characterization with S = R and admission cutoffs constructed as follows. For each j ∈ J ,

cj := inf{Sj(ω) : for ω with µ(ω) = j} if some individuals are matched to j or cj := inf Sj if

nobody is matched to j. Many mechanisms produce stable matchings. For example, SD and DA

are strategy proof and lead to stable matchings if agents are truth-tellers. Regarding settings where

agents are not truth-tellers, e.g., because they face constraints in the submission of P , Haeringer

and Klijn (2009) study how the SD, DA, Boston, and TTC mechanisms lead to stable matchings.

This paper is about identification of moments of treatment effects Y (d′)− Y (d). The econome-

trician has access to an infinite amount of data and observes the joint distribution of the following

random objects: P (ω), S(ω), µ(ω), and Y (ω) := Y (ω, µ(ω)), where we abuse the notation and

employ the letter Y for both the observed outcome, Y (ω), and the potential outcome of being

assigned to school d, Y (ω, d).

3 Identification with Truthful Reports

In this section, we consider identification of causal effects when all students are truth-tellers,

that is, when they submit their true ranking of acceptable schools. This behavior is rational in

strategy-proof mechanisms. For instance, Dubins and Freedman (1981) and Roth (1982) show that

the DA mechanism without constraints on preference submission is strategy proof in the finite

economy; Abdulkadiroglu et al. (2015) show the same for the continuum economy.2 The SD is also

strategy proof, as it is a special case of DA. On the other hand, experimental evidence show that

some individuals deviate from the rational behavior of truth-telling (Chen and Sönmez (2006), Pais

and Pintér (2008)). Thus, we explicitly assume every one is a truth-teller.

Assumption 1 (Truth-telling). Students submit their true list of acceptable schools.

The identification strategy of this paper resembles a sharp RD design. Our goal is to identify the

effects of the school of assignment on future outcomes. Another interesting question is the effect of

the school of graduation on future outcomes—to answer it we would require a strategy resembling

2See also the work by Azevedo and Budish (2019), who advocate a robust notion of strategyproofness in a large
economy.
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a fuzzy RD because some students do not graduate from the same school they are assigned to. We

defer this identification problem to future work as several issues beyond the scope of this paper

(e.g., multiple compliance types with unordered treatments) arise in that case.

Unlike in a standard sharp RD, that Sj(ω) clears the cutoff cj does not automatically determine

that student ω is allocated to school j. This is the case only when j is the most preferred school

among the schools that are feasible to the student, that is, when j is the favorite school in the set

of schools for which the student clears the cutoff.

The first step in the RD is to correctly identify the marginal individuals for a given cutoff

and a given change in schools. For example, for any individual with score Sj just to the right

of cj , we need to determine two things: that the individual is matched to school j, and that the

individual would have been matched to school k had her score been just to the left of cj . The cutoff

representation implies that these two things depend on the counterfactual sets of available schools

on either side of the cutoff and on the individual’s preferences over these sets.

It is straightforward to obtain counterfactual sets of available schools in the case where all

schools rely on the same placement score, that is, Sj = S1 for every j. For example, this is the

case under the SD mechanism. In this case, the set of feasible schools is all schools with a cutoff

below or equal to score S1. Note that everyone just above (or just below) cutoff cj has exactly

the same set of feasible schools. For someone with S1 ≥ cj , the counterfactual scenario has the

score crossing to the left of cutoff cj , and school j is dropped from the set of feasible schools. In

turn, for someone with S1 < cj , the counterfactual scenario adds school j to the set of feasible

schools. Unlike under SD, agents near and on the same side of a cutoff in DA differ in their sets

of feasible schools. It is not immediately obvious which schools appear in their counterfactual sets.

In DA, schools use different scores, and these scores may be functions (e.g., weighted averages)

of a small set of primitive scores. That is the case in our application with the Chilean data.

This makes the joint support of the distribution of scores highly dependent and complicates the

counterfactual analysis. Dealing with this complexity is empirically relevant since many real-world

higher education assignment mechanisms use DA. See Table 1 Panel B in Fack et al. (2019) for a

list of examples.3

Our framework allows for a variety of joint distributions on the vector of scores S and works

with the definition of counterfactual budget sets below.

Definition 3 (Counterfactual Budget Sets). Consider a student with a vector of scores S. The

3A common practice in applied work consists of “cleaning” irrelevant schools from the submitted preference lists in
cases where Sj = S1 for every j. For instance, say an individual submits P = {1, 2, 3} and c2 > S1 > c1 > c3. Given
the cutoff characterization and truth-telling, the matching assignment of this individual is school 1; the counterfactual
assignment is school 3 even though 2P3; this is the case because school 2 has a cutoff higher than the cutoff of school
1. In this case, the irrelevant school to be cleaned from P is school 2. The general idea is to remove all schools ranked
below 1 that have cutoffs higher than c1. See the description of this practice by Estrada and Gignoux (2017). The
practice cannot be used to identify counterfactual assignments in cases where different schools use different placement
scores, as under, e.g., the DA mechanism.
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budget set for this student is her set of feasible options,

B(S) :={0} ∪ {m ∈ J : Sm ≥ cm}.

Fix a school j ∈ J with cutoff cj. The right-counterfactual budget set for this student at cutoff cj

is B+
j (S) := B(S) ∪ {m : Sm = Sj and cm = cj}; the left-counterfactual is B−

j (S) := B(S) \ {m :

Sm = Sj and cm = cj}, where C \D equals the set C minus the elements of set D.

To fix ideas, we consider a simple example throughout the paper in the context of the SD

mechanism.

Example (SD Example, Part I). In SD, Sj = S1 for every j, and the definition of the budget set

above equals B(S) = {m : S1 ≥ cm}. Suppose we have four schools with cutoffs c1 < c2 < c3 < c4.

Individuals in this economy have five possible budget sets: {0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, and

{0, 1, 2, 3, 4}. For individuals near cutoff c4, the counterfactual budget sets are B−
4 (S) = {0, 1, 2, 3}

and B+
4 (S) = {0, 1, 2, 3, 4}.4

Next, we define the concept of local preferences, that is, the first- and second-best choices for a

marginal individual at any given cutoff.

Definition 4 (Local Preferences). Fix a school j ∈ J with cutoff cj. Consider a student ω with

preference Q(ω) and scores S(ω). For any pair of options (k, l) ∈ J 0 × J 0, we say that (k, l)

is the local preference of student ω at cutoff cj if the favorite feasible option of student ω shifts

from l to k as we exogenously increase Sj(ω) from being smaller than cj to being larger than

cj. We define the true local preference of this student as the pair Qj(ω) := (k, l). Formally, for

a set of options B ⊆ J 0, define the best option in B according to Q as Q(B). We have that

Q(B) = m ⇔ m ∈ B and mQ̄(ω)n ∀n ∈ B. Finally, Qj(ω) = (k, l) if, and only if, Q(B+
j (S)) = k

and Q(B−
j (S)) = l. The reported local preference Pj(ω) is defined in a similar fashion. If B∩P ̸= ∅,

P (B) = m ⇔ m ∈ B and mP̄ (ω)n ∀n ∈ B; otherwise, if B ∩ P = ∅, P (B) = 0. We have that

Pj(ω) = (k, l) if, and only if, P (B+
j (S)) = k and P (B−

j (S)) = l.

Example (SD Example, Part II). Consider four individuals whose submitted preferences are P (1) =

{3, 4, 2, 1}, P (2) = {4, 1, 2, 3}, P (3) = {4, 2, 3, 1}, and P (4) = {4, 3, 1, 2}. Their corresponding local

preferences at cutoff c4 are P
(1)
4 = (3, 3), P

(2)
4 = (4, 1), P

(3)
4 = (4, 2), and P

(4)
4 = (4, 3).

There is no distinction between Pj and Qj at this stage because of Assumption 1. Students

are truthful when they submit their list of acceptable schools, so P equals the schools listed higher

than 0 in Q and Pj = Qj . Section 4 considers the case of strategic misreporting. In that case, Pj

is observed but Qj is not. Cutoff characterization implies that an individual with Qj = (k, l) is

matched to school k if Sj is just above cj or to school l if Sj is just below cj . The same applies for

individuals with Pj = (k, l) under Assumption 1.

4In SD or in DA with independent placement scores, the definitions of the counterfactual equal B+
j (S) = B(S) ∪

{m : cm = cj} and B−
j (S) = B(S) \ {m : cm = cj}; moreover, if the cutoffs are unique, B+

j (S) = B(S) ∪ {j} and

B−
j (S) = B(S) \ {j}.
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The local preference pair (j, k) at a certain cutoff cj is useful for identification only if there

exists a positive fraction of individuals in the data near cutoff cj with those local preferences. We

collect such useful pairs in the set P.

Definition 5 (Comparable Pairs). We say (j, k) ∈ J×J , j ̸= k, is a comparable pair of alternatives

if (i) cj is an interior point of the support Sj and (ii) P[Qj = (j, k)|Sj = s] is bounded away from

zero for s in an open neighborhood of cj. Finally, we define P ⊆ J ×J as the set of all comparable

pairs.

We adopt the convention that comparable pairs do not involve the outside option 0. We do this

because it may be hard to interpret the treatment effects of a change from the outside option to

a school when the outside option varies across individuals. We do not consider pairs with j = k

because the initial school assignment does not change for these individuals. We also exclude pairs

Qj = (j′, k) with j′ ̸= j from P to avoid redundancy. We may find individuals with Qj = (j′, k)

whenever schools j and j′ use the same score and have the same cutoff. As the score Sj = Sj′

crosses the cutoff cj = cj′ , access is granted to both schools j and j′, and individuals may differ

in their preferences for these schools. Individuals who prefer j′ will not appear in P as having

Qj = (j′, k), but they may appear in P with Qj′ = (j′, k).

The purpose of defining counterfactual sets and local preferences is to construct a local pref-

erence variable for every student and use it as a control variable in the RD. In this section, this

variable is Pj , which equals to Qj because of Assumption 1. When we focus on students with

Pj = (j, k), k ̸= j, the marginal switch in the allocation around cutoff cj becomes a function of

Sj . Controlling for Pj ensures that we apply the RD strategy to all individuals whose assignment

switches from k to j at the cutoff; this identifies the effect of the change in the assignment as long

as the typical RD continuity assumptions are satisfied.

RD identification requires continuity assumptions on the distribution of individual types con-

ditional on the relevant placement score. In our case, we also need to verify continuity after we

condition on Pj = Qj . After all, we do not want to condition on a variable that breaks the central

argument for identification in RD: that individuals to the right and the left of the cutoff are “similar

on average”. Below, we state an assumption on the continuity of types and prove that it implies the

kind of smoothness required by RD. Before we do so, we define the following set of events. For every

school j ∈ J , partition the placement scores S as the score of school j and all other scores: S ≡ (Sj ,

S−j). Define A−j to be the collection of events on S−j that determine the availability of all non-j

schools. There are 2J−1 such events in A−j . For example, if J = 2, A−1 = {{S2 ≥ c2}, {S2 < c2}};
if J = 3, A−1 = {{S2 ≥ c2, S3 ≥ c3}, {S2 ≥ c2, S3 < c3}, {S2 < c2, S3 ≥ c3}, {S2 < c2, S3 < c3}};
and so forth.

Assumption 2. (Continuity of Types) Consider a school j with cutoff cj in the interior of the

support Sj. Assume the following functions of s are all continuous at s = cj: (i) P[S−j ∈ A0,

Q = Q0|Sj = s] for any A0 ∈ A−j and Q0 ∈ Q and (ii) E[ g(Y (d)) I{S−j ∈ A0, Q = Q0} | Sj = s]

for any A0 ∈ A−j, Q0 ∈ Q, and g ∈ G, where G is a set of measurable functions g : R → R that

includes the constant function g(y) = 1 and the identity function g(y) = y.
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Lemma 1. Suppose Assumption 2 holds. Consider a school j with cutoff cj in the interior of the

support Sj, and choose two schools k, l ∈ J 0 such that P[Qj = (k, l)|Sj = cj ] > 0. Then, for

any function g ∈ G and any d ∈ J 0, we have that E[g(Y (d))|Qj = (k, l), Sj = s] and P[Qj = (k,

l)|Sj = s] are continuous functions of s at s = cj.

The proof of this lemma and all other proofs appear in the appendix. Finally, Assumptions 1 and

2 give sufficient conditions for identification for comparable pairs of school changes.

Proposition 1. Suppose Assumptions 1–2 hold. For any pair (j, k) ∈ P,

E[g(Y (j))|Qj = (j, k), Sj = cj ] = E[g(Y )|Pj = (j, k), Sj = c+j ]

E[g(Y (k))|Qj = (j, k), Sj = cj ] = E[g(Y )|Pj = (j, k), Sj = c−j ]

E[g(Y (j))− g(Y (k))|Qj = (j, k), Sj = cj ]

= E[g(Y )|Pj = (j, k), Sj = c+j ]− E[g(Y )|Pj = (j, k), Sj = c−j ],

where the condition Sj = c+j denotes the limit as Sj ↓ cj and the condition Sj = c−j denotes the

limit as Sj ↑ cj.

Proposition 1 shows that a standard RD is valid in the truth-telling case as long as we control

for Pj . The parameter of interest is the average treatment effect on g(Y ) from a change in the

school of assignment from j to k, averaged over individuals at the cutoff cj and with true local

preferences (j, k). Indeed, these are the parameters of interest for the rest of this paper:

E [g(Y (j))− g(Y (k)) |Qj = (j, k), Sj = cj ] , (j, k) ∈ P, g ∈ G. (1)

Parameters like these are of economic interest not only for evaluating current mechanisms in place

but also for studying the effects of counterfactual assignments (e.g., of students near cj currently

at school k being offered admission at school j.) The fact that the parameter is conditional on Qj

instead of Pj is important for the external validity of (1) when P is manipulable by agents.

4 Identification with Strategic Reports

This section studies identification of causal effects when students are strategic in reporting their

rankings of acceptable schools. Strategic reports make Pj generally different from Qj , and Qj is

not observed. Identification strategies that condition on the observed Pj are potentially invalid for

two reasons. First, in contrast to Proposition 1, controlling for Pj does not identify the parameters

of interest in (1), which condition on Qj . Second, controlling for Pj breaks the internal validity of

the RD in some cases because Pj is a variable subject to manipulation by agents.
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We propose a two-step identification approach that is robust to strategic reporting. In the first

step, the researcher characterizes the set of true local preferences Qj that is compatible with the

data and appropriate behavioral assumptions. In the second step, the researcher controls for the

constructed local preference sets and partially identifies the parameters in (1). We discuss the first

and second steps in Sections 4.1 and 4.2, respectively. Note that our two-step approach differs

from the usual two-step control function approach in econometrics. The usual approach is to point-

identify the control variable in the first step, while our approach involves partially identifying the

control variable.

Section 4.1 presents several tools for the identification of local preference sets. These tools

rely on assumptions known to be appropriate in SD and DA contexts, although we do not rule

out their applicability in contexts with other mechanisms; e.g., the TTC mechanism satisfies one

of our assumptions, such that some of the tools from Section 4.1 are still useful. More generally,

researchers may utilize preference identification tools that work under alternative assumptions, for

example, the methods of Agarwal and Somaini (2018) and Fack et al. (2019). Either way, the

researcher must construct a set of local preferences for each individual in the first step.

Section 4.2 describes the second step of our procedure. This step features high-level assumptions

imposed on the local preference sets such that the researcher is not restricted to the methods in

Section 4.1.

4.1 Partial Identification of Local Preferences

This section provides tools for set identification of local preferences using assumptions on agents’

behavior and the mechanism. These assumptions are specific to this subsection, and we motivate

them with reference to the context of the constrained DA mechanism studied by Haeringer and Klijn

(2009). Haeringer and Klijn (2009) study a game where students submit constrained preference

rankings and a mechanism matches students to schools as a function of P ,R, and schools’ capacities.

Although the unconstrained DA mechanism is strategy proof, many real-world implementations of

DA restrict the number of schools that students can submit in their rankings. In this case, there is

a cap K < J such that 1 ≤ |P | ≤ K, and the submitted ranking P is generally different from the

list of acceptable schools in Q. When implemented in this way, the DA mechanism is not strategy

proof, and there are no dominant strategies. Strategyproofness also breaks down if, instead of

facing a cap, students incur an application cost as a function of the number of schools submitted

(Fack et al., 2019).

Lemma 4.2 by Haeringer and Klijn (2008) shows that, if a mechanism is strategy proof when

K = J , then, in the game with K < J , any constrained ranking of schools is weakly dominated

by the same set of schools ranked according to true preferences. This result implies that a student

cannot lose and may possibly gain by taking any arbitrary list with less than or equal to K

schools, dropping the unacceptable schools, and ranking the acceptable schools according to her true

preferences. A further implication is that if a student’s number of acceptable schools is less than or

equal to K, then her dominant strategy is to submit her true list of acceptable schools (Proposition
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4.2 of Haeringer and Klijn (2009)). These implications give rise to a class of undominated strategies

according to the following definitions of partial order.

Definition 6. (Weak and Strong Partial Order) We say P is a weak partial order of Q if P is

any selection of up to K schools among the acceptable schools in Q and that selection of schools

is ranked according to Q. Formally, (i) 1 ≤ |P | ≤ K, P ⊆ {d ∈ Q : dQ0}; and (ii) for every

d, d′ ∈ P , d′Pd ⇔ d′Qd. We say P is a strong partial order of Q when a third condition holds

in addition to (i) and (ii). Namely, (iii) |P | = min{K, |{d ∈ Q : dQ0}|}. In other terms, if the

number of acceptable schools in Q is less than or equal to K and P is a strong partial order of Q,

then P equals the list of acceptable schools in Q; otherwise, if the number of acceptable schools in

Q is greater than K, P is a subset of K schools among the acceptable schools in Q.

Lemma 2 in Section A.3 of the appendix summarizes the implications of the result on partial

orders from Haeringer and Klijn (2008, 2009) in terms of our Definition 6. In short, for a student

with true preferences Q, any P is weakly dominated by a weak partial order P ∗ of Q that has the

same acceptable schools as P ; in turn, P ∗ is weakly dominated by a strong partial order P ∗∗ of Q

that contains the same set of acceptable schools as P ∗. Every strong partial order is a weak partial

order, but the converse is not true. Our definition of a weak partial order strategy is similar to the

definition of the dropping strategy from Kojima and Pathak (2009).

Assuming that agents always submit a strong partial order implies they reveal their true ordered

list of acceptable schools whenever they submit P with fewer schools than the cap K. This could

be a strong behavioral assumption in some contexts where agents have more than K acceptable

schools but have a strong expectation that they will gain admission to a smaller-than-K set of

schools. In this case, they may submit |P | < K not because it reflects their full list of acceptable

schools but simply because they may not want to incur the mental costs of ranking all schools up

to K. In the rest of this subsection, we consider mechanisms that impose a cap K on P and assume

that students submit a weak partial order of their true preferences.

Assumption 3 (Submission of Weak Partial Order). Students submit a weak partial order of their

true preferences.

Assumption 3 replaces Assumption 1 to accommodate mechanisms that are not strategy proof.

Submitting a weak partial order is rational in DA mechanisms with cap constraints. That is true

for any mechanism that becomes strategy proof once we remove the cap constraint, for example,

the TTC mechanism.

An assumption maintained throughout this paper is that the cutoff characterization from Defi-

nition 2 applies to the mechanism. This assumption says that µ(ω) = Q(B(S(ω)) for every ω ∈ Ω.

Azevedo and Leshno (2016) show that stability is equivalent to cutoff characterization with S = R

and cutoffs that equal the minimum score of the admitted students in each school. Thus, it is

worth discussing the stability of the constrained DA mechanism. Theorem 6.3 from Haeringer and

Klijn (2009) demonstrates that any Nash equilibrium in constrained DA where R satisfies Ergin
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acyclicity leads to a stable matching in the finite economy.5 Even without Ergin acyclicity, some

Nash equilibria still produce stability. SD always satisfies Ergin acyclicity, and thus every Nash

equilibrium in SD produces a stable matching. Fack et al. (2019) also study the constrained DA

mechanism. They extend Theorem 6.3 from Haeringer and Klijn (2009) to (pure-strategy) Bayesian

Nash equilibria in the continuum economy (Proposition A3, Online Appendix A.2.5, Fack et al.

(2019)). Fack et al. (2019) also provide primitive conditions for finite economies where students

play partial orders to converge to a continuum economy with a stable equilibrium (Proposition 5,

Fack et al. (2019)). They further provide a test for implications of stability and find no empirical

or simulation evidence against it. In the context of the constrained TTC mechanism, any Nash

equilibrium leads to a stable matching as long as R satisfies Kesten acyclicity (Theorem 6.4 from

Haeringer and Klijn (2009)). Therefore, constrained SD, DA, and TTC all satisfy the assumption

of cutoff characterization as in Definition 2 with S = R under the appropriate conditions.

There is another interesting feature of the cutoff characterization of DA mechanisms. We know

that DA produces a stable matching if agents are truth-tellers. In case agents are not truth-tellers,

the matching outcome continues to be “stable” if we replace Q with P in the definition of stability.

Definition 7 (Stability wrt P ). We say the matching µ : Ω → J 0 is a stable matching wrt P if

three conditions are satisfied for every ω ∈ Ω: (i) µ(ω)P̄ (ω)0 (individual rationality); (ii) for any

j ∈ J , if jP (ω)µ(ω), then j is full (no waste); and (iii) for any j ∈ J that is full, if µ(ω′) = j and

jP (ω)µ(ω), then Rj(ω
′) > Rj(ω) (no justified envy), where we adopt the convention that mP0 for

every m ∈ P . This is the same as Definition 1 except that P appears in the place of Q.

The DA mechanism, constrained or unconstrained, produces a matching that is stable wrt

reported preferences P . Stability wrt P leads to a cutoff characterization wrt P according to the

work of Azevedo and Leshno (2016). This cutoff characterization has scores S = R and admission

cutoffs that equal the smallest scores of admitted students in each school. In other words, this

is the same cutoff characterization from Definition 2 except that Q is replaced with P . Cutoff

characterization wrt P is natural in DA but not necessarily in other mechanisms, so we state it in

the following assumption.

Assumption 4 (Cutoff Characterization wrt P ). In addition to the maintained assumption of

cutoff characterization as in Definition 2, the matching function µ satisfies µ(ω) = P (B(S(ω)) for

every ω ∈ Ω.

Assumption 4 essentially says that agents are matched to their best feasible options, where best

is now defined according to P . Assumption 4 is convenient because it allows us to write a simple

expression for the identified set of local preferences in Proposition 2 below; however, it is not a

necessary assumption for the identification of those sets. The convenience comes from the fact that

Assumption 4 implies µ = P (B(S)) = Q(B(S)), where both µ and P are observed and P and Q are

related via the weak partial order assumption. If we drop Assumption 4, we have only one equality

5Ergin acyclicity ensures that no student can block a potential improvement for any two other students without
affecting her own assignment. See Ergin (2002) for the formal definition.
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µ = Q(B(S)), which leads to larger sets of local preferences in Proposition 2 below. This is useful

to know for settings such as those with the TTC mechanism, which is not stable wrt P .

Next, we characterize all possible pairs of local preferences at a cutoff that are compatible with

the data and Assumptions 3 and 4.

Proposition 2 (Identification of Local Preference Sets). Suppose Assumptions 3 and 4 hold. Select

a school j with cutoff cj. Consider a student with scores S ≡ (Sj ,S−j) and submitted preferences P .

Call (a, b) = Pj. For this student, define N+
j = B+

j (S) \ {P ∪ {0}} and N−
j = B−

j (S) \ {P ∪ {0}},
respectively, the sets of unlisted feasible schools in the counterfactual budget sets to the right and

the left of the cutoff. Then, the Qj of this student belongs to Qj, where the set Qj is defined as

follows:

Qj =


{(a, b)}, if Sj ≥ cj and a = b,

{(a, b)} ∪
(
{a} ×N−

j

)
, if Sj ≥ cj and a ̸= b,

{(a, b)} ∪
(
(N+

j \N−
j )× {b}

)
if Sj < cj ,

(2)

where
(
{a} ×N−

j

)
denotes the set formed by the Cartesian product of a and elements in N−

j and(
{a} ×N−

j

)
= ∅ if N−

j = ∅.
Moreover, assume P is a strong partial order of Q. Then, Qj becomes:

Qj =


{(a, b)}, if |P | < K, or if |P | = K, Sj ≥ cj , and a = b,

{(a, b)} ∪
(
{a} ×N−

j

)
, if |P | = K, Sj ≥ cj , and a ̸= b,

{(a, b)} ∪
(
(N+

j \N−
j )× {b}

)
if |P | = K and Sj < cj .

(3)

Finally, the characterization in (2) is sharp if the distribution of Q conditional on P and S has

full support, that is, if every Q ∈ Q that satisfies Assumptions 3 and 4 is in that support. Likewise,

(3) is sharp if the distribution of Q conditional on P and S has full support under Assumptions 3

and 4 and P being a strong partial order.

Example (SD Example, Part III). Suppose the cap constraint is K = 3 and the four schools are

acceptable for everyone. We consider all agents whose P4 = (4, 2). For example, if agents submit

strong partial orders, they submit either P = {4, 2, 1} or P = {4, 2, 3}. The assumption of cutoff

characterization wrt P (Assumption 4) says that these agents are matched to school 4 if S1 ≥ c4

and to school 2 otherwise. To keep things simple, consider five different types of true preferences:

Q(1) = {4, 2, 3, 1, 0}, Q(2) = {4, 3, 2, 1, 0}, Q(3) = {4, 1, 3, 2, 0}, Q(4) = {3, 4, 2, 1, 0}, and Q(5) = {1,
3, 2, 4, 0}. The weak partial order assumption rules out Q(5) because 2Q(5)4 contradicts 4 being

reported preferred to 2. The maintained assumption of cutoff characterization (Definition 2) further

rules out more types of Q, depending on whether S1 ≥ c4 or S1 < c4:

1. if S1 ≥ c4, Q
(4) is not possible because the matching assignment is 4 but the best feasible

option according to Q(4) is 3; in this case, the possible true local preferences are: Q
(1)
4 = (4, 2),

16



Q
(2)
4 = (4, 3), and Q

(3)
4 = (4, 1); for a student who submits P = {4, 2, 1}, Q4 = {(4, 2), (4, 3)};

otherwise, for someone who submits P = {4, 2, 3}, Q4 = {(4, 2), (4, 1)};

2. if S1 < c4, none of Q(2), Q(3), or Q(4) is possible because the matching assignment is 2 but

the best feasible options according to these Qs differ from 2; in this case, the only possible

true local preference is Q
(1)
4 = (4, 2), so that Q4 = {(4, 2)}.

This example illustrates why an RD that controls only for P4 = (4, 2) may fail to identify the

treatment effect of a change in assignment from school 2 to school 4. As the score S1 crosses the

cutoff c4, the support of the distribution of true local preference types generally changes discontin-

uously from having only (4, 2) to having (4, 1), (4, 2), and (4, 3). This possibility invalidates RD

identification because true preferences and potential outcomes are plausibly dependent on each other;

in this case, the distribution of potential outcomes conditional on S1 = s and P4 = (4, 2) changes

discontinuously at S1 = c4. For the possibility to arise, a positive mass of agents must change their

submission P as their score S1 crosses c4. This does not necessarily require that these agents are

certain ex ante about the cutoff value c4 but simply that they have expectations about that cutoff

that change as S1 crosses c4.

Proposition 2 identifies all possible values of Qj for students near a cutoff cj as a function of

their scores and submitted preferences. In some settings, many unlisted programs may be feasible

for students, which translates into sets Qj with many values. For example, the Chilean data have

K = 8 but more than 1,000 options; a student may have numerous feasible options but not consider

many of them. It is possible to obtain smaller sets Qj by imposing further assumptions on the

expectations that students have when they submit P .

Agarwal and Somaini (2018) propose a general framework to rationalize strategic reporting as

the optimal solution to an expected utility maximization problem. In this framework, agents have

private information about their preferences and scores and form beliefs about the distribution of

other people’s preferences and scores. These beliefs plus knowledge of the mechanism lead the

rational agent to derive probabilities of admission to the various schools as a function of the agent’s

private information and expectations about other agents. The agent then chooses the submission

P that maximizes her expected utility.

We assume that agents are expected utility maximizers and note that it is sufficient for each

individual to consider beliefs on admission cutoffs. This is the case in our continuum economy with

cutoff characterization because cutoffs and scores fully characterize the agent’s budget set. Given

the student’s scores, a distribution of possible cutoffs translates into a distribution of possible

budget sets. Under Assumption 4, the student is admitted to the best school according to the

submission P among the available schools in the budget set. Therefore, beliefs on cutoffs translate

into probabilities of admission to various schools for any given P . We make an assumption on

the distribution of cutoffs expected by agents that has to do with the concept of uniformly more

accessible schools.
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Definition 8 (Uniformly More Accessible Schools). For a pair of distinct schools (d, e), we say e

is uniformly more accessible than d if two conditions are satisfied: first, if access to school d implies

access to school e,

{ω : Sd(ω) ≥ cd} ⊆ {ω : Se(ω) ≥ ce},

and second, if replacing option d with option e in any submission P alters the likelihood of admission

for at least one school listed in P ; formally, for any two fixed (i.e., nonrandom) submissions P and

P̃ such that P has d but does not have e and P̃ equals P except for e in the place of d, there exists

u ∈ {0, 1, . . . , |P |} for which

P [P (B(S)) = P u] ̸= P
[
P̃ (B(S)) = P̃ u

]
,

where P (B) denotes the best choice in set B according to P (Definition 4) and P u denotes the

school ranked in the u-th position in P . In short, we say (d, e) ∈ UMAS, where UMAS ⊆ J × J
is the set of all such pairs.

Definition 8 says that e is uniformly more accessible than d if everyone who qualifies for school d

also qualifies for school e. Schools d and e must also be relevant in the sense of the second condition:

there is always a strictly positive fraction of individuals for whom listing e in the place of d changes

their best feasible options. In the SD case, a sufficient condition for Assumption 5 is that cd > ce

and the cutoffs are distinct interior points in the support of the placement score. Uniformly more

accessible schools do not always exist. Whether they do depends on the mechanism in place and

the joint distribution of the placement scores. We use this definition to impose a mild restriction

on the expectations of agents regarding cutoffs.

Assumption 5. Consider a student with scores s ∈ S who views uncertain cutoffs as random

variables C1, . . . , CJ before the matching assignment. Let B̃ = {0} ∪ {j ∈ J : sj ≥ Cj} be the

student’s corresponding random budget set. For every pair (d, e) ∈ UMAS, the distribution of

cutoffs for this student is such that two conditions are satisfied: first,

{sd ≥ Cd} ⊆ {se ≥ Ce},

and second, for any two fixed (i.e., nonrandom) submissions P and P̃ such that P has d but does

not have e and P̃ equals P except for e in the place of d, there exists u ∈ {0, 1, . . . , |P |} for which

P
[
P (B̃) = P u

]
̸= P

[
P̃ (B̃) = P̃ u

]
.

This is true for every student in the economy.

Assumption 5 says that students correctly anticipate which schools will be uniformly more

accessible after the matching assignment. For example, agents may learn this information by

observing past realizations of the matching in the economy. If a school e is well known to be

accessible to everyone who has access to school d, then it is natural for a student to expect to have
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access to e if she ever has access to school d. Note that the assumption does not pin down the

expected probability of admission or the set of schools to which the student will have access in the

ex post economy. It restricts only the expected hierarchy of school access according to UMAS.

This assumption has implications for the joint distribution of (P,Q).

Proposition 3. Suppose Assumptions 3–5 hold. Consider a student with reported preference rank-

ing P . Let (P × P c) be the Cartesian product of listed and unlisted schools, respectively, P and P c.

If (d, e) ∈ UMAS ∩ (P × P c), then dQe.

Proposition 3 says that if an agent lists school d but does not list the uniformly more accessible

school e, it must be that this agent prefers d over e. This result offers a refinement of Proposition

2 above.

Corollary 1. Consider the setup of Proposition 2, where Pj = (a, b), and suppose Assumption 5

holds. Define A−
j = N−

j \
{
e : ∃d ∈ P with which (d, e) ∈ UMAS and bP̄ d

}
and

A+
j =

(
N+

j \N−
j

)
\
{
e : ∃d ∈ P with which (d, e) ∈ UMAS and aP̄d

}
. Then, under weak partial

order,

Qj =


{(a, b)}, if Sj ≥ cj and a = b,

{(a, b)} ∪
(
{a} ×A−

j

)
, if Sj ≥ cj and a ̸= b,

{(a, b)} ∪
(
A+

j × {b}
)

if Sj < cj .

(4)

Under strong partial order,

Qj =


{(a, b)}, if |P | < K, or if |P | = K, Sj ≥ cj , and a = b,

{(a, b)} ∪
(
{a} ×A−

j

)
, if |P | = K, Sj ≥ cj , and a ̸= b,

{(a, b)} ∪
(
A+

j × {b}
)

if |P | = K and Sj < cj .

(5)

These characterizations are sharp as long as (2)–(3) are sharp in their respective contexts in Propo-

sition 2 and imposing Assumption 5 sets to zero only the following probabilities: P [eQd|P,S] for
every (d, e) ∈ UMAS ∩ (P × P c).

Corollary 1 describes how to use Proposition 3 to potentially reduce the number of elements in

the Qj constructed in Proposition 2. The intuition runs as follows. Suppose that a student submits

P and Pj = (a, b). If school e is uniformly more accessible than school d and d is listed in P but e

is not listed in P , then we know the student truly prefers d over e. This excludes some possibilities

of Qj in the Qj defined by Proposition 2. For instance, this person cannot have Qj = (a, e) if

bP̄ d because that presupposes eQbQ̄d, which contradicts dQe. Likewise, this person cannot have

Qj = (e, b) if aP̄d.

Example (SD Example, Part IV). The set of uniformly more accessible schools is UMAS = {(2,
1), (3, 2), (3, 1), (4, 3), (4, 2), (4, 1)}. Assumption 5 shrinks the set Q4 of those agents with S1 ≥ c4
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and P = {4, 2, 3}. Applying the assumption changes Q4 = {(4, 2), (4, 1)} to Q4 = {(4, 2)} because

1 is uniformly more accessible than 2, 2 is listed, and 1 is not listed, so Proposition 3 implies 2Q1.

4.2 Partial Identification of Causal Effects

In this section, we lay out conditions and derive bounds on average treatment effects. We assume

that the researcher has already identified the set of local preferences at a cutoff of interest. This

means that the researcher has a set-valued variable Qj for all students in the vicinity of a cutoff j

corresponding to a comparable pair (j, k) in P. Researchers may construct Qj using the methods

in Section 4.1 if they find it reasonable to rely on at least some of the specific assumptions in that

subsection; otherwise, they may use any other method to construct Qj . There is no restriction

on the choice of the method for constructing Qj except a couple of high-level conditions that we

assume to hold in this section. We start by defining the conditional support of partially identified

true local preferences.

Definition 9 (Support of Local Preference Sets). Consider a pair (j, k) ∈ P and corresponding

cutoff cj. The support of partially identified true local preferences conditional on Sj = s is defined

as

Λj(s) =
{
B ⊆ J 0 × J 0 : P

[
Qj = B|Sj = s

]
> 0

}
.

The union set of this support is defined as the collection of all unions of sets in Λj(s), namely,

Λ∪
j (s) =

{
B∪ ⊆ J 0 × J 0 : ∃B1, B2, . . . ∈ Λj(s) with B

∪ = ∪iBi

}
.

The set Λj(s) collects all values ofQj that occur with positive probability conditional on Sj = s.

In the specific context of Section 4.1, Qj is constructed from the mapping of observables (P,S) to a

subset of J 0 × J 0, i.e., Qj = ψj(P,S). For example, Proposition 2 and Corollary 1 give examples

of such mapping ψj . A set B of pairs (a, b) ∈ J 0 × J 0 belongs to the support set Λj(s) if there

is a set of values in the support of the conditional distribution of (P,S) given Sj = s such that ψj

maps those values to the set B. The union set Λ∪
j (s) collects all possible unions of support points

of Qj conditional on Sj = s. These definitions are instrumental in the computation of the partially

identified distribution of Qj , as explained in Proposition 4 below.

Sharpness of identification of the distribution of Qj requires sharpness in the construction of

the sets Qj . Proposition 2 and Corollary 1 gave the conditions for sharpness of Qj in the context

of Section 4.1. Outside that context, researchers may construct Qj in a different way, so we impose

sharpness of Qj in the general form of the assumption below.

Assumption 6 (Sharp Local Preference Sets). Consider a pair (j, k) ∈ P and corresponding cutoff

cj. Assume that:

(i) the random variable Qj and the random set Qj are both measurable maps on the same

probability space and P
[
Qj ∈ Qj | Sj

]
= 1 with probability 1; and
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(ii) supp
[
Qj | Qj , Sj

]
= Qj with probability 1, where supp [Y | X] denotes the support set of

the distribution of Y conditional on X.

Assumption 6(i) says thatQj(ω) of individual ω contains the true pair of local preferences Qj(ω)

of that individual (for almost all individuals), which is a minimum requirement for the construction

of Qj(ω). This does not say anything about the sharpness of Qj . For example, Qj = J 0 × J 0

is completely uninformative and trivially satisfies Assumption 6(i). The sharpness requirement is

stated in Assumption 6(ii). It says that all possibilities of local preferences listed in Qj actually

occur in the data with positive probability. This rules out unnecessarily large sets Qj . Assumption

6(ii) may be dropped at the cost of lacking sharpness in the identified sets in the rest of this section.

Partial identification of true local preferences and treatment effects occurs at the limit, as Sj

approaches cj , and is conditional on Qj . For this to work, we impose regularity conditions on the

distribution of potential outcomes and Qj conditional on Sj at the limit cj .

Assumption 7 (Distribution of Local Preference Sets). Consider a pair (j, k) ∈ P and correspond-

ing cutoff cj. Assume that:

(i) there exist a small ε > 0 and collections of subsets of J 0 × J 0 denoted Λ+
j and Λ−

j such

that Λ+
j = Λj(cj + e) ∀e ∈ [0, ε) and Λ−

j = Λj(cj − e) ∀e ∈ (0, ε); consistent with Definition 9, we

define Λ∪+
j and Λ∪−

j as union sets of Λ+
j and Λ−

j , respectively;

(ii) for any g ∈ G of Assumption 2 and any τ , τ ∈ R ∪ {−∞,+∞}, τ < τ , the side limits of

the following expectations are well defined: E
[
g(Y )I{Qj = A, τ < g(Y ) < τ} | Sj = c+j

]
∀A ∈ Λ+

j

and E
[
g(Y )I{Qj = A, τ < g(Y ) < τ} | Sj = c−j

]
∀A ∈ Λ−

j .

Assumption 7(i) concerns the distribution of Qj conditional on Sj : the support set of Qj is

constant as Sj = s approaches the cutoff cj from either side of it. Part (ii) of the assumption

concerns the joint distribution of potential outcomes and Qj conditional on Sj . For example,

Assumption 7(ii) implies that P
[
Qj = A | Sj = c+j

]
and E[Y | Qj = A, Y < τ, Sj = c+j ] are well-

defined limits for any A ∈ Λ+
j and τ ∈ R ∪ +∞ provided that P[Qj = A, Y < τ | Sj = c+j ] > 0.

The next result gives inequalities to construct bounds on P[Qj = (a, b)|Sj = cj ] for any pair (a, b).

Proposition 4 (Sharp Set of Distributions of Local Preferences). Consider a pair (j, k) ∈ P.

Suppose Assumptions 2, 6, and 7 hold. Then, the sharp set of all possible discrete probability

distributions of Qj conditional on Sj = cj is characterized as follows. For every A ∈ Λ∪+
j ∪Λ∪−

j ,

each probability distribution in that set implies a value for P [Qj ∈ A|Sj = cj ] that satisfies one of

the three inequalities below:

(i) if A ∈ Λ∪+
j ∩Λ∪−

j ,

P [Qj ∈ A|Sj = cj ] ≥ max
{

P
[
Qj ⊆ A|Sj = c+j

]
; P

[
Qj ⊆ A|Sj = c−j

] }
;

(ii) if A ∈ Λ∪+
j \Λ∪−

j ,

P [Qj ∈ A|Sj = cj ] ≥ P
[
Qj ⊆ A|Sj = c+j

]
; or
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(iii) if A ∈ Λ∪−
j \Λ∪+

j ,

P [Qj ∈ A|Sj = cj ] ≥ P
[
Qj ⊆ A|Sj = c−j

]
.

Proposition 4 provides a way to construct the sharp partially identified set of all possible

distributions of Qj conditional on Sj = cj . A distribution of Qj conditional on Sj = cj consists

of values pa,b ∈ [0, 1] for every (a, b) ∈ J 0 × J 0 such that
∑

(a,b)∈J 0×J 0 pa,b = 1, where pa,b =

P [Qj = (a, b)|Sj = cj ] . The sharp set is constructed by finding all values of pa,b where
∑

(a,b)∈A pa,b

satisfies the inequalities of Proposition 4 for every A ∈ Λ∪+
j ∪Λ∪−

j .

Example (SD Example, Part V). Continue to assume that the four schools are acceptable for

everyone. Suppose for a moment that all combinations of (P,Q) that satisfy Assumptions 3–5 exist

in the economy, for both S1 ≥ c4 and S1 < c4. Then, this is the list of all possible Q4:

1. if S1 ≥ c4, {(1, 1)}, {(2, 2)}, {(3, 3)}, {(4, 1)}, {(4, 2)}, {(4, 3)}, {(4, 1), (4, 2), (4, 3)}, {(4, 1),
(4, 3)}, and {(4, 2), (4, 3)};

2. if S1 < c4, {(1, 1)}, {(2, 2)}, {(3, 3)}, {(4, 1)}, {(4, 2)}, {(4, 3)}, {(1, 1), (4, 1)}, {(2, 2), (4, 2)},
and {(3, 3), (4, 3)}.

Let us focus on the case that S1 ≥ c4. To keep things simple, suppose three types of Q4 occur

with positive probability conditional on S1 = s for any s ≥ c4: {(4, 2)} with probability 0.1, {(4, 3)}
with probability 0.3, and {(4, 2), (4, 3)} with probability 0.6. It follows that Λ4(s) = Λ+

4 = {{(4, 2)},
{(4, 3)}, {(4, 2), (4, 3)}} and Λ∪

4 (s) = Λ∪+
4 = {{(4, 2)}, {(4, 3)}, {(4, 2), (4, 3)}}. The lower bounds

P[Q4 ⊆ A|S1 = c+4 ] of Proposition 4 are as follows: 0.1 for A = {(4, 2)}; 0.3 for A = {(4, 3)}; and
1 for A = {(4, 2), (4, 3)}. Thus, P[Q4 = (4, 2)|S1 = c+4 ] has lower bound 0.1, P[Q4 = (4, 3)|S1 = c+4 ]

has lower bound 0.3, and the sum of the two equals 1. When we look at each individual probability,

the bounds are [0.1, 0.7] on P[Q4 = (4, 2)|S1 = c+4 ] and [0.3, 0.9] on P[Q4 = (4, 3)|S1 = c+4 ].

Recall that the construction of the random set Qj depends on assumptions regarding the be-

havior of agents when they submit P . For example, Section 4.1 characterizes Qj by assuming weak

partial order and cutoff characterization wrt P . Alternatively, the identification approach of Agar-

wal and Somaini (2018) makes different types of assumptions on agents’ expectations and requires

data variation in the choice environment. The theoretical credibility of these types of assumptions

depends on the mechanism faced by agents; in practice, the assumptions have testable implications

for what we should observe in the data. It is therefore useful to characterize a falsification test

based on these implications to aid researchers in screening out assumptions rejected by the data.

Such a test can rely on the fact that the right-hand sides of the inequalities in Proposition 4 must

provide a lower bound for a probability mass function if the model assumptions are correct. For

any partition A of J 0 × J 0, we must have
∑

A∈A P [Qj ∈ A|Sj = cj ] = 1 for any given distribu-

tion in the sharp set of Proposition 4. Thus, the same sum applied to the right-hand sides of the

inequalities above must be less than or equal to one.
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Corollary 2 (Model’s Falsification Test). Assume the setup of Proposition 4, which presupposes

that the model assumptions utilized to construct Qj are true. Then, for any partition A of J 0×J 0,

we have that

∑
A∈A

{
I
{
A ∈ Λ∪+

j ∩Λ∪−
j

}
max

{
P
[
Qj ⊆ A|Sj = c+j

]
; P

[
Qj ⊆ A|Sj = c−j

] }
+ I

{
A ∈ Λ∪+

j \Λ∪−
j

}
P
[
Qj ⊆ A|Sj = c+j

]
+ I

{
A ∈ Λ∪−

j \Λ∪+
j

}
P
[
Qj ⊆ A|Sj = c−j

] }
≤ 1.

Partial identification of the distribution of local preferences allows us to bound the fraction of

individuals near cutoff cj who have Qj = (j, k). The average outcome near the cutoff is a weighted

average of the average outcomes from two different groups: first, individuals with Qj = (j, k), who

interest us for the identification of treatment effects; and second, individuals with Qj ̸= (j, k). The

overall average is identified, but the average in each of the groups is not. A strictly positive lower

bound on the fraction of individuals in the Qj = (j, k) group allows us to construct lower and upper

bounds on the average outcome for that group.

Start with all individuals above and near cutoff cj whose Qj contain the comparable pair of

interest, (j, k) ∈ P. The fraction of those individuals who have Qj = (j, k) equals

δ+j,k =
P [Qj = (j, k)|Sj = cj ]

P
[
Qj ∩ {(j, k)} ≠ ∅|Sj = c+j

] ,
where both numerator and denominator are strictly positive by virtue of (j, k) being a comparable

pair (Definition 5) and of the sharpness of Qj (Assumption 6). The denominator of δ+j,k is identified

from the data, and Proposition 4 bounds the numerator. All we need for identification of treatment

effects is a lower bound on δ+j,k, which comes from a lower bound on its numerator. Let p
j,k

denote the infimum over all probability values for P [Qj = (j, k)|Sj = cj ] that belong to the partially

identified set of Proposition 4. The sharp lower bound on δ+j,k equals

δ+j,k =
p
j,k

P
[
Qj ∩ {(j, k)} ≠ ∅|Sj = c+j

] .
The denominator of δ+j,k is strictly positive, but p

j,k
may or may not be strictly positive.

The same idea applies for individuals just below the cutoff. Select all individuals whose Qj

contain the comparable pair of interest, (j, k) ∈ P. The fraction of those who have Qj = (j, k)

equals

δ−j,k =
P [Qj = (j, k)|Sj = cj ]

P
[
Qj ∩ {(j, k)} ≠ ∅|Sj = c−j

] ,
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and the sharp lower bound on δ−j,k is

δ−j,k =
p
j,k

P
[
Qj ∩ {(j, k)} ≠ ∅|Sj = c−j

] .
Example (SD Example, Part VI). We have that P

[
Q4 ∩ {(4, 2)} ≠ ∅|S1 = c+4

]
= 0.7 and the

bounds on P [Q4 = (4, 2)|S1 = c4] are [0.1, 0.7]. These imply p
4,2

= 0.1 and δ+4,2 = 1/7.

The following result utilizes the proportions δ+j,k and δ−j,k to partially identify average outcomes

for individuals with Qj = (j, k) on either side of the cutoff. Taking differences of these bounds yield

bounds for the averages of the treatment effects Y (j)− Y (k).

Proposition 5. Suppose Assumptions 2, 6, and 7 hold. Consider a pair (j, k) ∈ P such that

p
j,k
> 0.

(i) If g(Y ) is a continuous random variable for g ∈ G of Assumption 2, then we have the following

bounds on E[g(Y (j))|Qj = (j, k), Sj = cj ] and E[g(Y (k))|Qj = (j, k), Sj = cj ]:

E
[
g(Y )

∣∣∣Qj ∩ {(j, k)} ≠ ∅, g(Y ) < F−1
j,k+(δ

+
j,k), Sj = c+j

]
≤ E [g(Y (j)) |Qj = (j, k), Sj = cj ] ≤

E
[
g(Y )

∣∣∣Qj ∩ {(j, k)} ≠ ∅, g(Y ) > F−1
j,k+(1− δ+j,k), Sj = c+j

]
,

and

E
[
g(Y )

∣∣∣Qj ∩ {(j, k)} ≠ ∅, g(Y ) < F−1
j,k−(δ

−
j,k), Sj = c−j

]
≤ E [g(Y (k)) |Qj = (j, k), Sj = cj ] ≤

E
[
g(Y )

∣∣∣Qj ∩ {(j, k)} ≠ ∅, g(Y ) > F−1
j,k−(1− δ−j,k), Sj = c−j

]
,

where F−1
j,k+(u) := inf

{
y : P

[
g(Y ) ≤ y

∣∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = c+j

]
≥ u

}
and

F−1
j,k−(u) := inf

{
y : P

[
g(Y ) ≤ y

∣∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = c−j

]
≥ u

}
.

(ii) If Y is a binary random variable, then we have the following bounds on E[Y (j)|Qj = (j, k),

Sj = cj ] and E[Y (k)|Qj = (j, k), Sj = cj ]:

max

{
1− 1

δ+j,k
P
[
Y = 0

∣∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = c+j

]
, 0

}
≤ E [Y (j) |Qj = (j, k), Sj = cj ] ≤

min

{
1

δ+j,k
P
[
Y = 1

∣∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = c+j

]
, 1

}
,
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and

max

{
1− 1

δ−j,k
P
[
Y = 0

∣∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = c−j

]
, 0

}
≤ E [Y (k) |Qj = (j, k), Sj = cj ] ≤

min

{
1

δ−j,k
P
[
Y = 1

∣∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = c−j

]
, 1

}
.

The bounds in Proposition 5 build on the work by Horowitz and Manski (1995). To see the

intuition, take part (i) of the proposition, make g(Y ) = Y , and focus on individuals just above

the cutoff. Among all individuals in the subpopulation with Qj ∩ {(j, k)} ̸= ∅ and Sj = c+j , a

fraction δ+j,k of them has Qj = (j, k) and Y = Y (j) by the cutoff characterization. We do not

know who these individuals are among those in the subpopulation. However, the lowest possible

value for E[Y (j)|Qj = (j, k), Sj = cj ] occurs if all such individuals are located at the lower tail

of the distribution of outcomes in the subpopulation. Likewise, the highest possible value for

E[Y (j)|Qj = (j, k), Sj = cj ] occurs if all of that same fraction of individuals are located in the

upper tail of the distribution of outcomes. We do not know δ+j,k, but we do know that it is no

smaller than δ+j,k > 0. The bounds only grow wider as the fraction δ+j,k decreases, so the bounds

evaluated at δ+j,k = δ+j,k take into account all possible values for δ+j,k. The expressions for the bounds

in the case of binary Y change relative to the case of continuous Y , but the derivation of the bounds

follows the same intuition. We refer the reader to the proof in the appendix for details (Section

A.8).

Although intuitive, these bounds are not necessarily sharp because δ+j,k is not exogenously given

as considered by Horowitz and Manski (1995); δ+j,k is constructed from only the distribution of Qj .

Providing a complete characterization of the sharp bounds is complex because it involves deriving

bounds on the joint distribution of potential outcomes and Qj , which may not be practical when the

potential outcomes are continuous. For the sake of simplicity, we relegate the sharp characterization

to Section B in the appendix. The bounds of Proposition 4 contain the sharp bounds of Section B

as long as our model assumptions are true. The lack of sharpness may not matter in practice when

Proposition 4 yields tight bounds for a given dataset. However, if our assumptions are not true,

the bounds of Proposition 4 may not contain the sharp bounds of Section B. That said, we may

obtain tight bounds from the data using Proposition 4, but this does not mean they contain the

true parameter (Kédagni et al., 2020). Therefore, it is advisable to assess the testable implications

of Corollary 2 as a matter of routine.

5 Assignment to College Majors and Graduation in Chile

In this section, we illustrate our method using data from college applications in Chile. Before

estimating bounds for the effect of assignment to a program on graduation outcomes, we document
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the presence of strategic behavior in this setting.

5.1 Data, Institutional Setting, and Evidence of Strategic Behavior

Centralized college application system in Chile. We use publicly available data on Chile’s

centralized college application and assignment system from 2004 to 2010 and on graduations from

2007 to 2020. The institutional setting has been described in detail by Hastings et al. (2013) and

Larroucau and Rios (2020, 2021), among others. College choice in Chile is organized as a semicen-

tralized system—a subset of universities participate in a centralized market in which a clearinghouse

collects rank-order lists from applicants and determines assignments using a variant of the DA al-

gorithm. Students can submit rank-order lists of up to eight major–university pairs (“programs”)

out of more than 1,000.6 Priorities are program-specific and determined by a weighted average of

scores obtained in a national standardized test (the PSU, for prueba de selección universitaria) and

of high-school GPA.7 Descriptive statistics about the sample of students and programs are shown

in the left panel of Tables 3 and 4 in Appendix C.

Strategic behavior. That Chilean college applicants behave strategically has been thoroughly

documented by Larroucau and Rios (2020, 2021). Using a 2014 survey linked to administrative

data on applications, they show that listed programs often do not coincide with the truly preferred

programs explicitly elicited by the survey. Focusing on applications to medicine programs, they

find, for instance, that “among the 40,000 students who answered the survey, close to 10% (3,797)

reported Medicine as their top preference, and 2,987 of these students ended up applying to the

system. Among these, only 1,360 listed Medicine as their top preference.” Moreover, students’

probability of not including medicine at the top of their submitted list (while declaring it their most

preferred program in the survey) increases as their application scores decrease, and the probability

of applying to medicine drops after the 600–750 application score range, where the cutoffs for most

medicine programs lie. This suggests that students tend to omit medicine as their admission chances

fall, despite preferring it over other programs. These findings are confirmed in a 2019 survey, where

the researchers find that “most students who did not include their first true preference in their

application list expected a higher cutoff than the cutoff for their first listed preference.”

Figure 1 provides additional evidence of strategic behavior. Consider a program j with cutoff

cj . Suppose that students tend to prefer programs of higher quality, consistent with what is found

in the literature. If applicants behave strategically, one would expect applications to program j

to peak among students with application scores close to cj . If cutoffs tend to remain in the same

neighborhood across years, students with application scores much higher than cj can expect to be

admissible to more selective, higher-quality programs than j, which they prefer over j. Hence, we

expect very few of these students to include j on their list. As application scores drop and are

closer to cj , students’ chances of admission to the most selective programs decrease, and program

6The cap was increased to ten in 2012.
7In 2014, students’ relative rank within their high school was added as one of the “primary” scores to be averaged

to construct priorities.
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j becomes one of the most selective (desirable) programs among those for which they still have a

high admission probability. Hence, we expect applications to cj to increase as application scores

decrease and draw closer to cj . As application scores decrease below cj , students realize that their

probability of admission to program j is lower, and while program j remains a relatively desirable

(selective) alternative, we expect these expectations to drive applications down. This application

pattern, expected if students behave strategically, is exactly what we observe in the top panel of

Figure 1. Pooling all programs j together, the top panel of Figure 1 shows the fraction of students

listing program j in their rank-order lists (ROLs or P in terms of our notation), as a function of

the distance between their priority score for program j and the cutoff cj .

It may be difficult to disentangle the role of preferences from the role of expectations about

admission probabilities when both may enter students’ choice of which programs to include in their

ROLs (Manski (2004); Agarwal and Somaini (2018)). The pattern observed in the top panel of

Figure 1 could, alternatively, be consistent with students not behaving strategically but preferring

programs that are a good fit in terms of quality, that is, programs in which their skill level would

be close to the average skill level. If this were the case, applications should peak among students

whose skills (proxied by application score) are close to the mean skill level in the program. This is

not what we observe in the bottom panel of Figure 1. Pooling all programs j together, the bottom

panel of Figure 1 shows the fraction of students including program j in their list, as a function of the

distance between their priority score for program j and the mean application score among students

admitted to j. Conditional on application score, the share of students applying to a program j is

not the highest for application scores close to the mean score among students admitted to j. It

peaks well below this level, showing that students do not systematically prefer programs in which

they would be the “average” student. This is again consistent with the hypothesis that students

behave strategically.

5.2 Results

We are interested in identifying the effects of assignment to a given postsecondary program on

college graduation. College returns are typically thought of as tied to college graduation, motivating

our focus on graduation-related outcomes (see Kirkeboen et al. (2016) and Altonji et al. (2016) for

further references). In addition, the extent to which students eventually graduate from the program

to which they are assigned, rather than programs they switch to in later years, can be viewed as

measure of performance of the assignment mechanism. However, for the average college program,

initial enrollment and eventual graduation are far from being perfectly correlated (OECD 2019,

Larroucau and Rios (2021)). Therefore, we first look at whether assignment to a given program

increases one’s probability of graduating from that same program. We also consider graduation

from a top university as another outcome of interest. The choice of this second outcome is in

line with the literature on returns to education and college choice, which highlights the role of

institution quality in driving returns (see Kirkeboen et al. (2016) and Altonji et al. (2016) for more

references). In our setting, the set of “top” universities consists of Pontificia Universidad Católica
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Figure 1: Applications to a program peak among applicants with scores close to the cutoff

This figure provides evidence of strategic behavior in student applications. Pooling all pro-
grams j together, the top panel of the figure shows the fraction of students listing program
j in their rank-order lists (ROLs or P in terms of our notation), as a function of the dis-
tance between their priority score for program j and the cutoff cj . Pooling all programs
j together, the bottom panel shows the fraction of students including program j in their
list, as a function of the distance between their priority score for program j and the mean
application score among students admitted to j.

de Chile in Santiago (PUC Santiago; hereafter PUC) and Universidad de Chile (UChile).

We present two types of results. First, we discuss the economic implications of our results by

focusing on a single program j and popular next-best programs k associated with it. Then, we

further illustrate the implementation of our method by estimating bounds on the treatment effects

of interest for a large number of pairs (j, k) and presenting statistics across these pairs. The bounds

we present throughout this section represent estimates—not inference bounds. Inference is beyond

the scope of this paper.8

As noted earlier, the identification proposed in this paper resembles a sharp RD design and

is therefore well suited for studying the effects of assignment to a program on graduation-related

outcomes. In contrast, estimating the effects of graduation from a program on earnings typically

involves a fuzzy design, which we study in separate ongoing work.9

8Beyond the fact that the admission cutoffs are estimated, the fact that the δs used in the construction of bounds
are partially identified must be taken into account when confidence bands are derived—a task that we leave for future
research.

9At the time of writing of the present paper, we do not have access to earnings data and therefore cannot provide
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On the importance of preferences for graduation outcomes. We use medicine at PUC in

Santiago as our illustrative program j. The choice of this program is driven by two considerations.

First, to obtain reasonably precise estimates, we need sufficient observations, and this program is

popular. Second, assignment to the program is interesting in itself in regard to our graduation

outcomes of interest. The chosen program is a very popular program at a selective university, such

that it is particularly relevant to look at its associated outcomes. Descriptive statistics about the

program and its applicants are shown in the right panels of Tables 3 and 4 in Appendix C. We

estimate the effects on graduation of being assigned to medicine at PUC instead of being assigned

to a second-best option. We consider the five most popular second-best options to medicine at

PUC—namely, medicine at UChile, medicine at University of Concepción, medicine at University

of Santiago de Chile, science at PUC, and engineering at PUC. As a simple procedure to construct a

sample local to the admission cutoff cj of interest (medicine at PUC), we use a 30-point bandwidth

on either side of cj . The resulting estimation sample is therefore invariant across our two outcomes,

that is, graduation from medicine at PUC and graduation from a top university.

Given our choice of bandwidth, in estimating our bounds for the treatment effects of interest,

the next step of the exercise is to recover local preferences Qj for each student. Absent strategic

behavior, students’ next-best alternatives are straightforwardly given by their application lists—

direct observation of P and placement scores allows to compute cutoffs, budget sets, and finally

Pj , which equals Qj under truth-telling. When we account for strategic behavior, Qj is not fully

revealed by the observed Pj . Section 4.1 shows how the set of possible Qjs, Qj , can be constructed

under different sets of assumptions. The weak partial order (WPO) assumption implies that any

submitted list is a subset of acceptable programs ordered just as in the student’s true preferences.

The strong partial order (SPO) assumption implies, in addition, that any student submitting a list

strictly shorter than permitted reveals the student’s complete true list of acceptable schools. Under

the SPO assumption, true local preferences Qj are observed for students submitting strictly fewer

than eight choices (in the case of our empirical application). For students ranking eight choices,

Qj is observed only if Qj is a singleton. The UMAS assumption (Assumption 5) can be used in

combination with WPO and SPO to reduce the size of Qj for those students for whom it is not

already a singleton (Corollary 1). We first present the results obtained under our strongest set of

assumptions (SPO in combination with UMAS) in Figure 2 and then discuss how the estimated

bounds vary as we impose weaker assumptions (Figure 3).

Figure 2 shows the estimated bounds on the effect on graduation of being assigned to medicine

at PUC instead of being assigned to a next-best alternative to medicine at PUC. The top panel

shows the estimated effects on the probability of graduating from medicine at PUC Santiago and

the bottom panel on the probability of graduating from any program at a top university.

Focusing first on the top panel, we can make several comments. First, reassuringly, the estimates

show that assignment to the case-study program, medicine at PUC Santiago, tends to increase

students’ probability of graduating from that program. Indeed, our bounds exclude zero and

bounds here on the intent-to-treat (ITT) effects on earnings.
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Figure 2: Estimated effects of assignment to medicine at PUC, under the SPO+UMAS assumptions

The figure shows estimated bounds for the effect of assignment to medicine at PUC
relative to the effect of assignment to the five most frequent next-best alternatives on
students’ probability of graduating from medicine at PUC (top panel) and their proba-
bility of graduating from a top university, that is, PUC or UChile (bottom panel). The
bounds on this picture are estimated under the SPO and UMAS assumptions and with
a 30-point bandwidth on either side of the assignment cutoff of the program of interest
(medicine at PUC). Note that the bounds represent bounds on estimates, not inference
bounds.
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identify a positive treatment effect in all five cases. Our bounds also reveal that the effect is

heterogeneous across the next-preferred alternatives. This is shown by the fact that, in some cases,

the bounds do not overlap across the next-preferred alternatives. For instance, our bounds suggest

that admission to medicine at PUC Santiago increases the probability of graduating from that

program to a larger extent for students whose next-preferred alternative is medicine at University

of Santiago de Chile than for those whose next-preferred alternative is medicine at University of

Concepción, engineering at PUC, or science at PUC.

In the bottom panel, our estimates show that admission to the case-study program, medicine

at PUC Santiago, tends to increase students’ probability of graduating from a top university (i.e.,

PUC or UChile). For this outcome, our bounds exclude zero and identify a positive treatment effect

in four of the five cases. Notably, though, the finding of a positive effect does not hinge on students’

next-preferred option not being a top university. In fact, we find that admission to medicine at

PUC Santiago increases the probability of graduating from a top university for students whose

next-preferred option is not at a top university (such as medicine at University of Santiago de Chile

or University of Concepción) and for students whose next-preferred option is at PUC, too (e.g., in

science or engineering). Similarly to those for the previous outcome, our estimates reveal that the

effect is heterogeneous across the next-preferred alternatives, as the bounds do not overlap across

a number of next-preferred options.

We interpret these results as evidence that students’ preferences matter for their graduation

outcomes, suggesting that preferences are correlated with ability or effort choices.

Figure 3 shows how the estimated bounds change across sets of assumptions for our two outcomes

of interest. Just as Figure 2 does, Figure 3 shows the estimated effects of being assigned to medicine

at PUC relative to the effects of being assigned to one of the five most frequent next-preferred

alternatives. For each next-best alternative, four sets of bounds are shown: from left to right and

from darkest to lightest gray, the bounds pictured are derived under SPO in combination with

UMAS (thus coinciding with those pictured in Figure 2), SPO alone, WPO in combination with

UMAS, and WPO alone. As we relax the assumptions we use to constructQj , the estimated bounds

become wider. Under SPO alone, we are still able to draw the same conclusions as above—namely,

that students’ preferences matter for their graduation outcomes, suggesting that preferences are

correlated with ability or effort choices. Under SPO, we do find that assignment to medicine at

PUC has a strong positive effect on the probability of graduating from the program for those

students whose next-preferred alternative is any of the five we consider and that the magnitude

of this effect differs across the next-preferred alternatives. For instance, the SPO bounds for

the treatment effect on graduation from medicine at PUC for those whose next-preferred option is

science at PUC do not overlap with the bounds for those whose next-preferred option is engineering

at PUC or medicine at University of Santiago. The conclusions relative to our second outcome of

interest—graduation from a top university—also continue to hold under SPO alone. The bounds

derived under WPO, with and without UMAS, are much wider than those derived under SPO,

demonstrating the identifying power of the SPO assumption. In particular, we do not recover
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Figure 3: Estimated effects of assignment to medicine at PUC, across assumptions

The figure shows estimated bounds for the effect of assignment to medicine at PUC
relative to the effect of assignment to the five most frequent next-best alternatives on
students’ probability of graduating from medicine at PUC (top panel) and their proba-
bility of graduating from a top university, that is, PUC or UChile (bottom panel). For
each next-best alternative, four sets of bounds are shown: from left to right and from
darkest to lightest gray, the bounds pictured are derived under SPO in combination with
UMAS, SPO alone, WPO in combination with UMAS, and WPO alone. All sets of
bounds are estimated with a 30-point bandwidth on either side of the assignment cutoff
of the program of interest (medicine at PUC). Note that the bounds represent bounds
on estimates, not inference bounds.
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Table 1: Local samples and estimated δj,ks for j = medicine at PUC

(1) (2) (3) (4)
SPO SPO WPO WPO
UMAS UMAS

Next-preferred k: medicine at UChile
Observations with Qj ∩ {(j, k)} ≠ ∅ 772 772 964 964
Share listing < 8 choices .90 .90 .92 .92
δ+j,k .55 .32 .07 .03

δ−j,k .53 .53 .03 .03

Next-preferred k: medicine at U.Concepción
Observations with Qj ∩ {(j, k)} ≠ ∅ 93 99 437 627
Share listing < 8 choices .59 .55 .91 .92
δ+j,k 1 .46 .1 .03

δ−j,k 1 1 .92 .92

Next-preferred k: medicine at U.Santiago
Observations with Qj ∩ {(j, k)} ≠ ∅ 63 75 161 475
Share listing < 8 choices .69 .58 .88 .93
δ+j,k .73 .52 .06 .03

δ−j,k .84 .84 .16 .16

Next-preferred k: science at PUC
Observations with Qj ∩ {(j, k)} ≠ ∅ 81 102 224 477
Share listing < 8 choices .85 .67 .94 .93
δ+j,k .92 .92 .49 .49

δ−j,k 1 1 .71 .71

Next-preferred k: engin. at PUC
Observations with Qj ∩ {(j, k)} ≠ ∅ 97 113 1142 1362
Share listing < 8 choices .51 .44 .95 .95
δ+j,k 1 .68 .22 .02

δ−j,k .88 .88 .42 .42

The table describes the sample used in the estimation of the effect on outcomes of
interest of assignment to medicine at PUC (j in the table) relative to the effect of
assignment to several next-preferred options k, under different sets of assumptions
used to construct Qj . Given each set of assumptions (shown at the top of each
column), the table shows the number of students within a 30-point bandwidth around
the cutoff to medicine at PUC for whom Qj contains the pair (j, k) and the share of
these students who listed strictly fewer than eight choices in their ROLs. For each
pair (j, k) and each set of assumptions, the table also shows the estimated δ+j,k and

δ−j,k used in the estimation of the bounds on the treatment effects.

heterogeneity in the treatment effects across the next-preferred alternatives. When we use WPO

in combination with UMAS, our bounds still recover the positive sign of the treatment effect on

each outcome for three next-preferred alternatives.

To illustrate how the different assumptions affect the derivation of estimates, Table 1 provides

descriptive statistics on the sample used in the estimation of the bounds in each case and the

implied (estimated) δ+j,k and δ−j,k for each pair (j, k) and each set of assumptions. The equations
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Table 2: Summary of overall results

Grad. from program j Grad. from top university
SPO SPO WPO WPO SPO SPO WPO WPO
UMAS UMAS UMAS UMAS

Total pairs 309 309 309 309 309 309 309 309
Bounds identify sign 206 142 26 10 101 77 7 3
Naive est. is outside the bounds 76 37 7 1 176 152 76 69

The table summarizes the results of the implementation of our method for 309 pairs (j, k) and under different
assumptions. For each of the two outcomes of interest and each of the four sets of assumptions, the table shows
the numbers of pairs (j, k) for which our estimated bounds identify the sign of the treatment effect of assignment
to j for those whose next-preferred option is k. It also shows the frequency at which naive RD estimates fall
outside our bounds.

in Proposition 5 make clear how the different assumptions affect the values taken by our bounds.

The different assumptions are used to construct Qj for each individual and therefore determine

the conditioning set {Qj ∩ {(j, k)} ̸= ∅} and the values we estimate for δ+j,k and δ−j,k. Focusing

first on the comparison of SPO and WPO, we note that an individual’s set Qj is larger when

constructed under WPO than when constructed under SPO. This implies that the conditioning set

{Qj∩{(j, k)} ≠ ∅} is larger under WPO than it is under SPO—as seen in Table 1 when we compare

the first row of each panel across Columns (1) and (3) or (2) and (4). Given a fixed bandwidth

around the cutoff cj , the set {Qj ∩ {(j, k)} ̸= ∅} being larger under WPO than under SPO means

that the denominator in the equations defining δ+j,k and δ−j,k is larger under WPO than under SPO.

In addition, as the set Qj is larger when constructed under WPO than when constructed under

SPO, the share of individuals for whom Qj is found to be a singleton is lower under WPO than

it is under SPO. This means that the numerator in the equations defining δ+j,k and δ−j,k is smaller

under WPO than under SPO. Overall, this leads to δ+j,k and δ−j,k being smaller under WPO than

under SPO, as seen in Table 1. The increase in δ+j,k and δ−j,k as we impose SPO instead of WPO

unambiguously tends to reduce the width of the bounds. The exact extent to which the width of

the bounds shrinks as we impose SPO instead of WPO also depends on the joint distribution of

the outcome Y and Qj , however. Turning to the role of the UMAS assumption (UMAS hereafter),

we note that as we impose UMAS, certain elements are eliminated from individuals’ sets Qj . As

a consequence, following the same logic as above, {Qj ∩ {(j, k)} ≠ ∅} is larger absent UMAS then

under UMAS, and δ+j,k and δ−j,k are smaller absent UMAS than under UMAS. We can see this in

Table 1 by comparing Columns (1) to (2) or (3) to (4). Again, the increased values of δ+j,k and δ−j,k
are the key force that tends to reduce the width of the bounds as UMAS is imposed.

Results for a larger set of pairs. To further illustrate the informativeness and the relevance

of our bounding approach, we look at 309 pairs (j, k), which we select as follows. For each postsec-

ondary program j available on the platform at any point between 2004 and 2010 and each program

k ranked right after j in a list, we compute the total number of students who listed (j, k) in their

ROLs between 2004 and 2010 and had a j-specific application score within a 30-point bandwidth of

34



the year-specific cutoff for j. We find 327 pairs (j, k) with at least 50 such applicants. These pairs

involve 137 distinct programs j, each of them associated with a number of ks ranging from one to

18. We exclude the 18 pairs (j, k) associated with one of these programs because no graduates are

recorded in the data for this program. This yields a final set of 309 pairs involving 136 distinct js.

As a simple procedure to construct a sample local to each admission cutoff cj , we first use a

30-point bandwidth on either side of that cutoff. For a number of our js of interest, there exists

another program ℓ that uses the same placement score as j and whose cutoff cℓ is within a 30-point

distance of cj . In these cases, we use a bandwidth smaller than 30 around the cutoff cj of interest,

so it does not include any such cℓ, and the bandwidth is possibly different across sides of cj .

Table 2 provides statistics on the estimated bounds we obtain. The left panel shows statistics

relative to our first outcome of interest, graduation from the treatment program j, while the right

panel focuses on our second outcome of interest, graduation from a top university. Within each

panel, statistics are shown for four different sets of assumptions: SPO with and without UMAS

and WPO with and without UMAS. Under our strongest set of assumptions (SPO in combination

with UMAS), our bounds identify the sign of the treatment effect on students’ probability of

graduating from program j (respectively, of graduating from a top university) for 206 (respectively,

101) out of the 309 pairs (j, k) we study. This shows that our bounding approach is informative

enough to recover the sign of causal effects for potentially many cases of interest. As we relax the

assumptions we use to construct Qj , the estimated bounds become less informative—they widen,

and the frequency with which they recover the sign of the treatment effect decreases. This exercise

can help empirical researchers evaluate and gauge the empirical content of the different assumptions

they are willing to work with.

Finally, Table 2 also illustrates that naively ignoring strategic behavior in the identification of

treatment effects can produce misleading results. First, recall that the naive estimand E[Y | Pj = (j,

k), Sj = c+j ] − E[Y | Pj = (j, k), Sj = c−j ] identifies our causal parameter of interest if we assume

everyone is a truth-teller. One might expect naive estimands to always lie within our bounds since

truth-telling is a special case of our behavioral assumptions. However, Table 2 shows this is not

true. Under the SPO and UMAS assumptions, the naive estimates fall outside our bounds for

approximately 25% of the pairs of interest for our first outcome and for more than 50% of the

pairs of interest for our second outcome. That the naive estimates fall outside our bounds provides

additional evidence consistent with behavior being strategic. Indeed, Part III of our SD example

(Section 4.1, right after Proposition 2), shows that the distribution of the potential outcomes

conditional on reported local preferences and the priority score can change discontinuously at the

cutoff in the presence of strategic behavior. In such a case, the naive estimand E[Y | Pj = (j, k),

Sj = c+j ] − E[Y | Pj = (j, k), Sj = c−j ] no longer equals the average treatment effect and may fall

outside our bounds. More broadly, this also suggests that caution is warranted in cases where most

but not all students submit P with |P | < K or very few students are assigned to their last-listed

option. It may not be safe to simply assume that everyone is a truth-teller just because the cap

does not bind for most people. In other words, naive estimates may be severely biased even if the
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share of constrained students is small.

6 Conclusion

Centralized mechanisms for the assignment of students to educational programs are growing

in popularity across the world. These systems provide a valuable source of exogenous variation

through the discontinuities that they generate around admission cutoffs. This along with individual-

level data on admissions, preferences, and future outcomes allows researchers to identify a wide

range of causal effects of education on outcomes. The variation is useful for identification as

long as we control for students’ true preferences; however, true preferences generally differ from

what students report to the assignment system given that most real-world implementations of

mechanisms generate incentives for students to behave strategically.

This paper provides a novel approach to partially identify the effects of mechanism assignment

on future outcomes that is robust to strategic behavior. We illustrate our approach using data from

a deferred-acceptance mechanism that assigns approximately 80,000 students to more than 1,000

university–major programs every year in Chile. First, we find substantial evidence of strategic

behavior, confirming earlier findings from the literature on Chile. Second, we compute bounds on

the average effect of program assignment on graduation outcomes. We do so for students whose

scores are marginal to the cutoff for admission to a popular and selective program in the system:

medicine at the Pontifical Catholic University in Santiago. Although admission to this program

increases the likelihood of graduating from that same program, its effect on the likelihood of ever

graduating from university varies with students’ second-best option. In this paper, we illustrate our

bounding approach for RD-like parameters that are local to 309 university–major pairs. However,

in many contexts, researchers may want to focus on more aggregate average effects, either because of

lack of data near the multitude of cutoffs or because policymakers are primarily concerned with the

returns to a change in the field of knowledge instead of a change in the university–major program,

e.g., the impact of pursuing a STEM degree vs. a non-STEM degree. The RD identification strategy

we propose in this paper is valid at the most granular level because this is the level at which students

make decisions and the matching algorithm is run. The same strategy is not automatically justified

for aggregates of university–major pairs. Aggregation of local effects brings additional challenges

that we address in separate ongoing work.
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A Proofs

A.1 Proof of Lemma 1

Consider a school j with cutoff cj in the interior of the support Sj . Once you fix an event A ∈ A−j , you

fix the availability of those schools with non-j scores S−j . The right- and left-counterfactual budget sets

B−
j (S) and B+

j (S) become fixed (i.e., nonrandom), regardless of the value of Sj . Once we fix Sj on top of

that, the actual budget set B(S) is also fixed.

Fix an event A ∈ A−j and Sj in a small neighborhood of cj . Pick schools k, l ∈ J 0 such that P[Qj = (k,

l)|Sj = cj ] > 0. Define Q(A) to be the set of all preference relations Q ∈ Q such that Q(B+
j (S)) = k and

Q(B−
j (S)) = l. Note that Q(A) is a fixed set of preferences (i.e., nonrandom).

Enumerate the mutually exclusive events inA−j as A1, . . . , AM , whereM = 2J−1. We have thatQj = (k,

l) is equivalent to Q ∈ Q(A1) if A1, . . ., Q ∈ Q(AM ) if AM . Therefore, for s in a small neighborhood of

cj ,

E[g(Y (d))I{Qj = (k, l)}|Sj = s]

=

M∑
l=1

E[g(Y (d))I{Qj = (k, l),S−j ∈ Al}|Sj = s]

=

M∑
l=1

E[g(Y (d))I{Q ∈ Q(Al),S−j ∈ Al}|Sj = s]

=

M∑
l=1

∑
Q0∈Q(Al)

E[g(Y (d))I{Q = Q0,S−j ∈ Al}|Sj = s].

It follows that E[g(Y (d))I{Qj = (k, l)}|Sj = s] is a continuous function of s at s = cj because

E[g(Y (d))I{Q = Q0,S−j ∈ Al}|Sj = s] is continuous at s = cj for every l and Q0 by assumption.

Likewise,

P[Qj = (k, l)|Sj = s]

=

M∑
l=1

P[Qj = (k, l),S−j ∈ Al|Sj = s]

=
M∑
l=1

P[Q ∈ Q(Al),S−j ∈ Al|Sj = s]

=

M∑
l=1

∑
Q0∈Q(Al)

P[Q = Q0,S−j ∈ Al|Sj = s],

which is continuous at s = cj for every l and Q0 by assumption.

Therefore,

E[g(Y (d))|Qj = (k, l), Sj = s]

=
E[g(Y (d))I{Qj = (k, l)}|Sj = s]

P[Qj = (k, l)|Sj = s]

is continuous at s = cj

□
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A.2 Proof of Proposition 1

Take (j, k) ∈ P. Start with school j, s ≥ cj ,

lim
s↓cj

E[g(Y )|Pj = (j, k), Sj = s] = lim
s↓cj

E[g(Y )|Qj = (j, k), Sj = s]

= lim
s↓cj

E[g(Y (j))|Qj = (j, k), Sj = s]

= E[g(Y (j))|Qj = (j, k), Sj = cj ].

For school k, s < cj ,

lim
s↑cj

E[g(Y )|Pj = (j, k), Sj = s] = lim
s↑cj

E[g(Y )|Qj = (j, k), Sj = s]

= lim
s↑cj

E[g(Y (k))|Qj = (j, k), Sj = s]

=E[g(Y (k))|Qj = (j, k), Sj = cj ].

□

A.3 Proof that Partial Orders Dominate Nonpartial Orders

First, we state some definitions. The strategy for each student ω is an ordered list of schools P (ω) ⊆ J
that has at least one and at mostK < J schools in it. The strategy profile of the economy is a correspondence

P : Ω ⇒ J (random set). The score profile of individuals in the economy is denoted by the random vector

S : Ω → S. A mechanism φ takes the whole correspondence P and function S as givens and produces school

assignments for each individual ω ∈ Ω, such that φ(P,S) : Ω → J 0. The assignment of student ω for profiles

(P,S) is φ(P,S)[ω].

For this proof, it is convenient to focus on the assignment of an individual ω0 as a function of her individual

ranking submission p ⊆ J , the ranking submissions of others P−ω0 : Ω \ {ω0} ⇒ J , and everyone’s scores

S : Ω → S. We write this assignment as φ((p, P−ω0),S)[ω0].

For individual ω0 with true preferences Q(ω0), we say p′ weakly dominates p if

φ((p′, P−ω0),S)[ω0] Q̄(ω0) φ((p, P
−ω0),S)[ω0] for every P

−ω0 . In addition, we say φ is strategy proof with

unrestricted lists if submitting the true list of acceptable schools weakly dominates submitting anything else

for every individual ω.

Lemma 2. Assume φ is strategy proof with unrestricted lists. Consider student ω with true preference Q(ω).

Fix an arbitrary ranking of schools p ⊆ J . For this student, p is weakly dominated by any weak partial order

p′ of Q(ω) that contains all the acceptable schools in p. In turn, p′ is weakly dominated by any strong partial

order p′′ of Q(ω) that contains all the acceptable schools in p′.

Moreover, suppose the number of acceptable schools in Q(ω) is less than or equal to K. Then, the

dominant strategy is to submit the unique strong partial order of Q(ω) that equals the true list of acceptable

schools.

Proof of Lemma 2:

This proof is from Haeringer and Klijn (2008), Lemma 4.2. We expand it here in terms of our framework

and definitions of partial order.
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From the main text, everyone has at least one acceptable school. Take student ω, and consider an

arbitrary list of schools p that has at least one acceptable school for that student. If p does not have any

acceptable schools, then it is clearly dominated by any weak partial order.

First, remove the unacceptable schools from p (if any), keep the relative ordering of the acceptable

schools, and call the resulting list p̄. It follows that p̄ weakly dominates p for student ω.

Second, let p′ be a weak partial order of Q(ω) that contains the schools listed in p̄. Construct a new

“true” preference ranking q ⊆ J 0 as follows: (a) take the acceptable schools of p′, and place them first in q

in the same order as they appear in p′; (b) add a 0 to q after the last school in part (a); (c) fill the remaining

positions below 0 in q with the schools not listed in p′, in any order. Note that p′ equals the true list of

acceptable schools from q, p′ is a weak partial order of q, and p′ is the unique strong partial order of q.

Third, suppose for a moment that the true preference of individual ω were q instead of Q(ω). In that

case, strategyproofness of φ implies that

φ((p′, P−ω),S)[ω] q̄ φ((p̄, P−ω),S)[ω] for every P−ω.

Given that p′ is a weak partial order of both Q(ω) and q, for any two options d, d′ in p′, we have d′ q̄ d

implies d′Q̄(ω)d. Therefore,

φ((p′, P−ω),S)[ω] Q̄(ω) φ((p̄, P−ω),S)[ω] for every P−ω.

It then follows that p′ weakly dominates p̄, which weakly dominates p, so p′ weakly dominates p.

It follows that any strong partial order p′′ of Q(ω) that contains the same acceptable schools as p′ weakly

dominates p′. To see this, repeat the argument above by replacing p with p′ and replacing p′ with p′′.

The second claim of the lemma follows from the strategyproofness of φ since the cap constraint is not

binding for an individual whose number of acceptable schools is less than or equal to K and submission of

the true list of acceptable schools is feasible.

□

A.4 Proof of Proposition 2

The true preference list Q is unobserved. The submitted preference list P is observed, and P is a weak

partial order of Q. Note that all the schools listed in P appear in Q ranked before 0 (i.e., as acceptable

schools). There may be other elements in Q not listed in P . These remaining schools might appear anywhere

in Q as long as the relative ordering of schools in P is preserved in Q. Our focus is on students with Pj = (a,

b), so we know that aQ̄b, where aQb if a ̸= b.

We consider all possibilities of Q that are consistent with the observed P and assumptions and that

affect Qj . In such cases, the acceptable schools in Q include all the schools in P and possibly more; in fact,

since |P | ≤ K < J , the J − |P | > 0 unlisted schools in P may appear as acceptable in Q. The additional

acceptable schools in Q may be schools that are feasible or infeasible within the budget set of the individual.

The proposition defines two sets of unlisted feasible schools for an individual with scores S and submitted

preferences P : N+
j = B+

j (S) \ {P ∪ {0}} and N−
j = B−

j (S) \ {P ∪ {0}}. The only difference between B+
j

and B−
j is the set of schools whose priority scores equal Sj and cutoffs equal cj .

The rest of the proof builds on the following reasoning. Ignore Assumption 4 for a moment. The first

coordinate of Qj depends on Pj and the set N+
j . In fact, the first coordinate of Pj is the best option in

B+
j (S) according to P : that is option a. The best option in B+

j (S) according to Q may also be a as long

as there are no unlisted options in P that are available in B+
j (S) and rank higher than a in Q. A similar
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argument applies to the second coordinate of Q: it is a function of Pj and the set N−
j . Now, Assumption 4

further restricts Qj because it implies that P (B(S)) = Q(B(S)) and P (B(S)) is observed.

Regarding the outside option 0, the only way that Qj will have a zero is if Pj has a zero. In fact, if a ̸= 0

and b ̸= 0, we have that aP̄ bP0, which implies aQ̄bQ0, so none of the coordinates of Qj will be zero. This

is why the sets of unlisted feasible options, N+
j and N−

j , do not contain zero.

Case 1: Sj ≥ cj .

By Assumption 4, we have that the mechanism assignment µ equals the best option according to P in

the set B(S) = B+
j (S). An individual with Pj = (a, b) has a = P (B+

j (S)) = P (B(S)); therefore, µ = a. The

cutoff characterization dictates that a = Q(B(S)) = Q(B+
j (S)), so the first coordinate of Qj equals a. It

remains to us to determine the second coordinate of Qj , which depends on Pj and the set N−
j .

Case 1.1: N−
j = ∅.

None of the unlisted schools in P are feasible in the counterfactual below the cutoff. These unlisted schools

may rank higher than b in Q, but none of them will ever be the best feasible option in the counterfactual

below the cutoff. Thus, the 2nd coordinate of Qj equals b, and Qj = {Pj}.
Case 1.2: N−

j ̸= ∅.
For any option d ∈ N−

j , we have that d ̸= a, d ̸= b, d ∈ N+
j , and aQd.

Case 1.2.1: If a ̸= b, we have aQb. We can always find a Q such that dQb and the second coordinate of

Qj equals d; and we can always find another Q such that bQd and the second coordinate of Qj equals b.

Therefore, Qj = {Pj} ∪ {(a×N−
j )}.

Case 1.2.2: If a = b, then we have bQd because aQd. Thus, Qj = {Pj}.

Case 2: Sj < cj .

By Assumption 4 we have that the mechanism assignment µ equals the best option according to P in

the set B(S) = B−
j (S). An individual with Pj = (a, b) has b = P (B−

j (S)) = P (B(S)); therefore, µ = b. The

cutoff characterization dictates that b = Q(B(S)) = Q(B−
j (S)), so the second coordinate of Qj equals b. It

remains to us to determine the first coordinate of Qj , which depends on Pj and the set N+
j .

Case 2.1: N+
j = ∅.

None of the unlisted options in P are feasible in the counterfactual above the cutoff. These unlisted op-

tions may rank higher than a in Q, but none of them will ever be the best feasible option in the counterfactual

above the cutoff. Thus, the first coordinate of Qj equals a, and Qj = {Pj}.
Case 2.2: N+

j ̸= ∅
For any option d ∈ N+

j ∩ N−
j , we have that d ̸= a, d ̸= b, and d is in B−

j (S), but bQd since the 2nd

coordinate of Qj equals b. We have that aQ̄b, and it follows that aQd. In this case, we can never find a Q

such that the best choice in B+
j (S) is d.

Consider there is an option d ∈ N+
j \N−

j . We have that d ̸= a, d ̸= b, d is in B+
j (S) but not in B−

j (S).

It is possible to find Q such that dQa, in which case the best choice in B+
j (S) is d. It is also possible to

find another Q such that aQd, in which case the best choice in B+
j (S) is a. Therefore, Qj = {Pj} ∪ ((N+

j \
N−

j )× {b}).

Moreover, assume P is a strong partial order of Q. This implies that |P | = min{K, |{d ∈ Q : dQ0}|} in

addition to P being a subset of {d ∈ Q : dQ0}. If |P | < K, then |P | = |{d ∈ Q : dQ0}|, and P equals the

true list of acceptable schools in Q. Therefore, Qj = Pj , and Qj = {Pj}. On the other hand, if |P | = K, P

may or may not be the true list of acceptable schools in Q, and Qj continues to be as defined in the case of

weak partial order.
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Finally, the proof above is constructive as it considers all possibilities of Q given P and S that are

consistent with the assumptions. Thus, it leads to the sharp set of possible Qjs under the full support

assumption.

□

A.5 Proof of Proposition 3

Before the matching mechanism is run, the agent knows her placement scores s = (s1, . . . , sJ) and her

true preferences Q but does not know what the admission cutoffs will be after the matching is run. She sees

the admission cutoffs as random variables (C1, . . . , CJ). The strict preference relation Q is represented by

a vector of distinct utility values (U0, U1, ..., UJ) so that aQb ⇔ Ua > Ub for any a, b ∈ J 0. We normalize

U0 = 0 for simplicity.

The agent has to decide on a ranking of acceptable schools P to submit. The number of schools ranked

in P is |P |, and a feasible ranking has 1 ≤ |P | ≤ K. The set of all feasible rankings is defined as ∆P . We let

Pu denote the u-th school listed in P , for u = 1, . . . , |P |. We define LP
u as the agent’s expected probability of

being assigned to school u when submitting ranking P , u = 1, . . . , |P |. LP
0 denotes the expected probability

of her remaining unassigned, that is, of her taking the outside option. Naturally, LP
u ≥ 0 for every u, and∑|P |

u=0 L
P
u = 1. Cutoff characterization wrt P (Assumption 4) implies:

LP
0 = P

[
∩|P |
v=1 {sPv < CPv}

]
,

LP
u = P

[
∩u−1
v=1{sPv < CPv} ∩ {sPu ≥ CPu}

]
, u = 1, . . . , |P |,

where we adopt the convention that ∩u−1
v=1{sPv < CPv} ∩ A = A for any measurable set A if u = 1;

in other words, if the intersection ∩v∈V is to be computed over an empty set of indices, V = ∅, then

P [∩v∈V {sPv < CPv} ∩ A] = P [A] , for any measurable set A.

The agent’s optimal ranking to be submitted is the solution to the following problem,

max
P∈∆P

|P |∑
u=1

UPuLP
u .

From now on, let P be the optimal choice of this agent. Suppose there is a pair of schools (d, e) ∈
UMAS ∩ (P × P c). Let n be the position in P where d appears, i.e., Pn = d. Construct P̃ by taking P and

replacing option d with option e. This implies that P̃u = Pu for every u ̸= n and P̃n = e.

Suppose eQd⇔ Ue > Ud by contradiction. In what follows, we compare the expected utility of submitting

P to the expected utility of submitting P̃ for this agent and show a contradiction. To do this, we first establish

some implications of Assumption 5 for the probabilities of admission:

LP
u = LP̃

u for any u such that 1 ≤ u < n if n > 1, (6)

LP
n ≤ LP̃

n , (7)

LP
u ≥ LP̃

u for any u such that n < u ≤ |P | if n < |P |, (8)

LP
0 ≥ LP̃

0 , (9)

where at least one of the inequalities (7)–(9) is strict if n < |P |; or, if n = |P | and at least one of the

inequalities (7) and (9) is strict. Below, we prove (6)–(9).
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Equation 6 comes from the fact that P̃u = Pu for every 1 ≤ u < n if n > 1. The admission probability

depends on u being the lowest ranked school for which the agent qualifies. Thus,

P
[
∩u−1
v=1{sPv < CPv} ∩ {sPu ≥ CPu}

]
= P

[
∩u−1
v=1{sP̃v < CP̃v} ∩ {sP̃u ≥ CP̃u}

]
,

for every 1 ≤ u < n if n > 1.

For Equation 7, we have that P[sd ≥ Cd] ≤ P[se ≥ Ce] is implied by the first condition of Assumption 5.

This further implies that

P
[
∩n−1
v=1{sPv < CPv} ∩ {sd ≥ Cd}

]
≤ P

[
∩n−1
v=1{sPv < CPv} ∩ {se ≥ Ce}

]
,

which is equivalent to LP
n ≤ LP̃

n .

For Equation 8, note that the first condition of Assumption 5 implies P[sd < Cd] ≥ P[se < Ce]. This

further implies that

LP
u =P

[
∩n−1
v=1{sPv < CPv} ∩ {sd < Cd} ∩u−1

v=n+1 {sPv < CPv} ∩ {sPu ≥ CPu}
]

≥

P
[
∩n−1
v=1{sPv < CPv} ∩ {se < Ce} ∩u−1

v=n+1 {sPv < CPv} ∩ {sPu ≥ CPu}
]
= LP̃

u

for u such that n < u ≤ |P | if n < |P |.
For Equation 9, again we have that P[sd < Cd] ≥ P[se < Ce] implies

LP
0 =P

[
∩n−1
v=1{sPv < CPv} ∩ {sd < Cd} ∩|P |

v=n+1 {sPv < CPv}
]

≥

P
[
∩n−1
v=1{sPv < CPv} ∩ {se < Ce} ∩|P |

v=n+1 {sPv < CPv}
]
= LP̃

0 .

Finally, the second condition in Assumption 5 (relevance condition) implies that at least one of the

inequalities (7)–(9) is strict if n < |P | or, if n = |P |, at least one of the inequalities (7) and (9) is strict.

Having established these facts, we now move on to compare the expected utility of submitting P to the

expected utility of submitting P̃ .

Define ϵ = Ue −Ud = UP̃n −UPn > 0. Note that LP
0 = 1−

∑|P |
u=1 L

P
u and LP

0 −LP̃
0 =

∑|P |
u=1

(
LP̃
u − LP

u

)
=

(
LP̃
n − LP

n

)
+

∑|P |
u=n+1

(
LP̃
u − LP

u

)
, where we adopt the convention that a sum over an empty set of

indices equals zero, i.e.,
∑|P |

u=n+1

(
LP̃
u − LP

u

)
= 0 if n+ 1 > |P |. This leads to

(
LP̃
n − LP

n

)
=

(
LP
0 − LP̃

0

)
−∑|P |

u=n+1

(
LP̃
u − LP

u

)
. Next, we combine these definitions with the inequalities in Equations 7–9 to evaluate

the difference between the expected utility of submitting P and the expected utility of submitting P̃ :

|P |∑
u=1

UPuLP
u − UP̃uL

P̃
u = UPnLP

n − UP̃nL
P̃
n +

|P |∑
u=n+1

UPu(LP
u − LP̃

u )

= UPn(LP
n − LP̃

n )− ϵLP̃
n +

|P |∑
u=n+1

UPu(LP
u − LP̃

u )

= UPn

−(
LP
0 − LP̃

0

)
+

|P |∑
u=n+1

(
LP̃
u − LP

u

)− ϵLP̃
n +

|P |∑
u=n+1

UPu(LP
u − LP̃

u )
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= −UPn

(
LP
0 − LP̃

0

)
− UPn

|P |∑
u=n+1

(
LP
u − LP̃

u

)
− ϵLP̃

n +

|P |∑
u=n+1

UPu

(
LP
u − LP̃

u

)

= −UPn

(
LP
0 − LP̃

0

)
− ϵLP̃

n −
|P |∑

u=n+1

(UPn − UPu)
(
LP
u − LP̃

u

)
< 0,

where we use the fact that weak partial order (Assumption 3) implies UP 1 > . . . > UP |P | > 0, ϵ > 0, and at

least one of
(
LP
0 − LP̃

0

)
, LP̃

n , and
(
LP
u − LP̃

u

)
for u > n is strictly positive if n < |P |. If n = |P |, at least

one of
(
LP
0 − LP̃

0

)
and LP̃

n is strictly positive. The inequality above shows that submitting P̃ increases the

expected utility relative to that from submitting P , which contradicts P being the optimal choice. Therefore,

dQe.

□

A.6 Proof of Corollary 1

Let (d, e) be an arbitrary pair of distinct schools such that e is uniformly more accessible than school d;

d ∈ P , e /∈ P . Call (a, b) = Pj . Proposition 3 implies dQe. This fact weakly decreases the set of possible

Qs each individual has and thus potentially affects only the nonsingleton cases in the definition of Qj in

Proposition 2. These correspond to cases 1.2.1 and 2.2 in the proof of Proposition 2. We re-examine these

cases below for the arbitrary pair (d, e).

Case 1.2.1: Sj ≥ cj , N
−
j ̸= ∅, and a ̸= b.

We have aQb. For any option f ∈ N−
j , we have that f ̸= a, f ̸= b, f ∈ B−

j (S), and f ∈ B+
j (S).

Case 1.2.1(a): Suppose bP̄ d.

bP̄ d implies that bQ̄d. Given that dQe, we have bQe. In case e ∈ N−
j , it is no longer true that we can

construct Q such that fQl for any f ∈ N−
j . We can do so only for f ̸= e. Therefore, Qj = (a, e) does not

belong to Qj .

Case 1.2.1(b): Suppose dPb.

This implies that dQb. The fact that dQe does not restrict us from having two possibilities: dQeQb or

dQbQe. It is again possible to construct Q such that fQb for any f ∈ N−
j , including f = e if e ∈ N−

j .

Therefore, Qj = (a, e) does belong to Qj in this case.

Case 2.2: Sj < cj , N
+
j ̸= ∅

Consider there is an option f ∈ N+
j \N−

j . We have that f ̸= a, f ̸= b, f is in B+
j (S) but not in B−

j (S).

Case 2.2(a): Suppose aP̄d.

aP̄d implies that aQ̄d. Given that dQe, we have that aQe. If f = e, we cannot construct Q such that

fQa. Thus, it is no longer true that we can find Q such that fQa for every f ∈ N+
j \N−

j ; this is true only

for f ̸= e. Therefore, Qj = (e, b) does not belong to Qj in this case.

Case 2.2(b): Suppose dPa.

dPa implies dQa. The fact that dQe does not restrict us from having two possibilities: dQeQa or dQaQe.

It is again possible to construct Q such that fQa for every f ∈ N+
j \N−

j , including f = e if e ∈ N+
j \N−

j .

Therefore, Qj = (e, b) does belong to Qj in this case.

Sharpness follows because we remove all Qs that violate the implication of Proposition 3.

□
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A.7 Proof of Proposition 4

The random set Qj is a measurable map from Ω to J 0×J 0, so it is compact valued. Following Definition

A.1 by Molinari (2020), we say that Qj is a random closed set because for every compact set K ∈ R2, the set

{ω ∈ Ω : Qj(ω)∩K ̸= ∅} is a measurable event. By Assumption 6(i), the random vector Qj and the random

set Qj are measurable maps on the same probability space, and P
[
Qj ∈ Qj |Sj = s

]
= 1 for any s ∈ Sj .

Artstein’s inequality (Theorem A.1 by Molinari (2020)) characterizes all possible probability mass func-

tions P [Qj = (a, b)|Sj = s] over (a, b) ∈ J 0×J 0 for any Qj such that P
[
Qj ∈ Qj |Sj = s

]
= 1 for any s ∈ Sj .

Since Qj is sharp (Assumption 6(ii)), the Artstein’s inequality yields the sharp set of all probability mass

functions P [Qj = (a, b)|Sj = s]. For any s ∈ Sj , the inequality says that

P
[
Qj ⊆ A|Sj = s

]
≤ P [Qj ∈ A|Sj = s] ∀A ∈ 2J

0×J 0

, (10)

where 2J
0×J 0

denotes the power set of J 0 × J 0.

Lemma 1 of Chesher and Rosen (2017) applied to our case shows that the inequalities (10) are equivalent

to:

P
[
Qj ⊆ A | Sj = s

]
≤ P [Qj ∈ A | Sj = s] ∀A ∈ Λ∪

j (s).

Next, consider any s ∈ [cj , cj + ε) for ε of Assumption 7(i). We have that

P
[
Qj ⊆ A | Sj = s

]
≤ P [Qj ∈ A | Sj = s] ∀A ∈ Λ∪+

j ,

and taking limits on both sides as s ↓ cj leads to

P
[
Qj ⊆ A | Sj = c+j

]
≤ P [Qj ∈ A | Sj = cj ] ∀A ∈ Λ∪+

j , (11)

where we use the continuity of P [Qj ∈ A | Sj = s] wrt s (Assumption 2) and the existence of side limit

P
[
Qj ⊆ A | Sj = c+j

]
(Assumption 7(ii)). Applying an analogous argument to the left of the cutoff cj leads

to

P
[
Qj ⊆ A | Sj = c−j

]
≤ P [Qj ∈ A | Sj = cj ] ∀A ∈ Λ∪−

j . (12)

If there is A ∈ Λ∪+
j ∩Λ∪−

j , then both (11) and (12) are true, which leads to

max
{
P
[
Qj ⊆ A|Sj = c+j

]
; P

[
Qj ⊆ A|Sj = c−j

] }
≤ P [Qj ∈ A | Sj = cj ] . (13)

In summary, we have an inequality for every A ∈ Λ∪+
j ∪ Λ∪−

j . There are three possibilities: A ∈
Λ∪+

j ∩Λ∪−
j (Inequality 13), A ∈ Λ∪+

j \Λ∪−
j (Inequality 11), and A ∈ Λ∪−

j \Λ∪+
j (Inequality 12).

□

A.8 Proof of Proposition 5

Define

δj,k(s) =
P [Qj = (j, k)|Sj = s]

P
[
Qj ∩ {(j, k)} ≠ ∅|Sj = s

] ,
where we know δj,k(s) is well defined for s in a neighborhood of cj because (j, k) is a comparable pair

(Definition 5) and because of Assumption 6.
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By Assumptions 2 and 7, the side limits of δj,k(s) as s ↓ cj and s ↑ cj are well defined and equal to δ+j,k
and δ−j,k, respectively.

Take g ∈ G of Assumption 2. For s ≥ cj ,

E
[
g(Y )

∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = s
]

= δj,k(s) E
[
g(Y )

∣∣Qj = (j, k),Qj ∩ {(j, k)} ≠ ∅, Sj = s
]

+ (1− δj,k(s)) E
[
g(Y )

∣∣Qj ̸= (j, k),Qj ∩ {(j, k)} ≠ ∅, Sj = s
]

= δj,k(s) E [g(Y (j)) |Qj = (j, k), Sj = s ]

+ (1− δj,k(s)) E
[
g(Y )

∣∣Qj ̸= (j, k),Qj ∩ {(j, k)} ≠ ∅, Sj = s
]
,

where we use the cutoff characterization and the fact that {Qj = (j, k)} ⊆ {Qj ∩ {(j, k)}}. Taking the limit

as s ↓ cj ,

E
[
g(Y )

∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = c+j
]

= δ+j,k E [g(Y (j)) |Qj = (j, k), Sj = cj ]

+ (1− δ+j,k) E
[
g(Y )

∣∣Qj ̸= (j, k),Qj ∩ {(j, k)} ≠ ∅, Sj = c+j
]
,

where again all limits are well defined by Assumptions 2 and 7. Repeating the derivation for s < cj and

making s ↑ cj ,

E
[
g(Y )

∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = c−j
]

= δ−j,k E [g(Y (k)) |Qj = (j, k), Sj = cj ]

+ (1− δ−j,k) E
[
g(Y )

∣∣Qj ̸= (j, k),Qj ∩ {(j, k)} ≠ ∅, Sj = c−j
]
.

We know the expectations on the left-hand sides of the last two equations, but we do not know

the δs or the expectations on the right-hand sides. Above the cutoff, the goal is to partially identify

E [g(Y (j)) |Qj = (j, k), Sj = cj ] using the distribution of g(Y ) conditional on Qj ∩ {(j, k)} ≠ ∅ and Sj = c+j
plus knowledge of a strictly positive lower bound on δ+j,k, i.e., δ

+
j,k. Likewise, below the cutoff, the goal is

to partially identify E [g(Y (k)) |Qj = (j, k), Sj = cj ] using the distribution of g(Y ) conditional on Qj ∩ {(j,
k)} ≠ ∅ and Sj = c−j plus δ−j,k. This problem fits the setting of Horowitz and Manski (1995), specifically,

Propositions 1–4 and Corollary 4.1 of their paper.

Part (i)

Assume g(Y ) is a continuous random variable. Assume for the time being that we know the fraction of

individuals with Qj = (j, k), that is, δ+j,k > 0. The lowest possible value for the mean E[g(Y (j))|Qj = (j,

k), Sj = cj ] occurs when all individuals with Qj = (j, k) are in the lower tail of the distribution of g(Y )

conditional on Qj ∩ {(j, k)} ≠ ∅ and Sj = c+j . This gives the lower bound

E
[
g(Y )

∣∣∣Qj ∩ {(j, k)} ≠ ∅, g(Y ) < F−1
j,k+(δ

+
j,k), Sj = c+j

]
.

On the other hand, the highest possible value for the mean E [g(Y (j)) |Qj = (j, k), Sj = cj ] occurs when

all individuals with Qj = (j, k) are in the upper tail of the distribution of g(Y ) conditional onQj∩{(j, k)} ≠ ∅
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and Sj = c+j . This gives the upper bound

E
[
g(Y )

∣∣∣Qj ∩ {(j, k)} ≠ ∅, g(Y ) > F−1
j,k+(1− δ+j,k), Sj = c+j

]
.

We do not know δ+j,k, but we know that 0 < δ+j,k ≤ δ+j,k, so all values δ+j,k ∈ [δ+j,k, 1] are possible. As the

fraction δ+j,k decreases, the lower bound derived above decreases, and the upper bound increases. Thus, the

widest bounds occur when δ+j,k = δ+j,k, that is,

E
[
g(Y )

∣∣∣Qj ∩ {(j, k)} ≠ ∅, g(Y ) < F−1
j,k+(δ

+
j,k), Sj = c+j

]
and

E
[
g(Y )

∣∣∣Qj ∩ {(j, k)} ≠ ∅, g(Y ) > F−1
j,k+(1− δ+j,k), Sj = c+j

]
.

The bounds for E [g(Y (k)) |Qj = (j, k), Sj = cj ] are derived in an analogous fashion.

Part (ii)

Assume g(Y ) = Y and Y is binary. The expressions for the bounds in Part (i) are not valid in this case.

To see this, take the lower bound for the mean of Y (j) as an example. The quantile function F−1
j,k+(δ

+
j,k)

equals either 0 or 1, so that the conditioning event Y < F−1
j,k+(δ

+
j,k) is either empty or has probability that

is generally different from δ+j,k.

To start, note that

E [g(Y (j)) |Qj = (j, k), Sj = cj ] = P [Y (j) = 1 |Qj = (j, k), Sj = cj ] .

Define

q+j,k := E
[
Y
∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = c+j

]
= P

[
Y = 1

∣∣Qj ∩ {(j, k)} ≠ ∅, Sj = c+j
]
.

Assume for the time being that we know δ+j,k.

Case (a): Suppose 1−q+j,k ≥ δ+j,k, that is, that the fraction of individuals with Y = 0 in the population of

individuals withQj∩{(j, k)} ≠ ∅ and Sj = c+j is greater than or equal to the fraction of individuals with Qj =

(j, k) in that same population. In this case, the lowest possible value for P [Y (j) = 1 |Qj = (j, k), Sj = cj ]

occurs when all δ+j,k individuals have Y equal to 0. That lowest value is zero.

Case (b): Now, suppose 1− q+j,k < δ+j,k. It is no longer possible to have all δ+j,k individuals with Y equal

to 0. The lowest possible value for P [Y (j) = 1 |Qj = (j, k), Sj = cj ] has as many of δ+j,k individuals as we

can with Y = 0, that is, 1− q+j,k of them. The remaining δ+j,k − (1− q+j,k) individuals must have Y = 1. That

lowest possible value is (1− q+j,k)/δ
+
j,k × 0 + [δ+j,k − (1− q+j,k)]/δ

+
j,k × 1 = 1− (1− q+j,k)/δ

+
j,k.

The lower-bound expression for P [Y (j) = 1 |Qj = (j, k), Sj = cj ] that covers both cases (a) and (b) is as

follows:

max

{
1−

1− q+j,k

δ+j,k
, 0

}
.

Next, we consider the upper bound for P [Y (j) = 1 |Qj = (j, k), Sj = cj ].

Case (c): Suppose q+j,k ≥ δ+j,k, that is, that the fraction of individuals with Y = 1 in the population of

individuals with Qj ∩ {(j, k)} ≠ ∅ and Sj = c+j is greater than or equal to the fraction of individuals with
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Qj = (j, k) in that same population. The highest possible value for P [Y (j) = 1 |Qj = (j, k), Sj = cj ] occurs

when all δ+j,k individuals have Y = 1. That highest value is 1.

Case (d): Now, suppose q+j,k < δ+j,k. It is no longer possible to have all δ+j,k individuals with Y equal to

1. The highest possible value for P [Y (j) = 1 |Qj = (j, k), Sj = cj ] has as many of the δ+j,k individuals as we

can with Y = 1, that is, q+j,k of them. The remaining δ+j,k − q+j,k individuals must have Y = 0. That highest

possible value is q+j,k/δ
+
j,k × 1 + (δ+j,k − q+j,k)/δ

+
j,k × 0 = q+j,k/δ

+
j,k.

The upper-bound expression for P [Y (j) = 1 |Qj = (j, k), Sj = cj ] that covers both cases (c) and (d) is

as follows:

min

{
q+j,k

δ+j,k
, 1

}
.

We do not know δ+j,k; we know only the lower bound δ+j,k > 0. As in Part (i) above, we compute the

bounds at δ+j,k because they grow weakly wider as δ+j,k decreases.

The bounds for P[Y (k) = 1|Qj = (j, k), Sj = cj ] are derived in an analogous fashion.

□

B Sharp Bounds on Treatment Effects

In this section, we utilize Artstein’s inequality (Theorem A.1 from Molinari (2020)) to characterize sharp

bounds on the joint distribution of potential outcomes and true local preferences. That set of distributions

produces sharp bounds on the averages of the treatment effects Y (j)− Y (k) conditional on Qj = (j, k) and

Sj = cj for any comparable pair (j, k) ∈ P. Recall that we denote the space of possible outcomes Y as Y.

Let 2J
0×J 0

denote the power set of J 0 × J 0 and 2Y denote the power set of Y.

Theorem 1. Suppose Assumptions 2, 6, and 7 hold. Assume Y is compact. Consider a pair (j, k) ∈ P.

Then, the inequalities below characterize the sharp set of all probability values of P [Y (d) ∈ A,Qj = (b, b′)|Sj = cj ]

for A ⊆ Y, (b, b′) ∈ J 0 × J 0, and d ∈ {b, b′}:

P
[
Y ∈ A,Qj ⊆ B|Sj = c+j

]
≤

∑
(b,b′)∈B

P [Y (b) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ Λ∪+
j ,

P
[
Y ∈ A,Qj ⊆ B|Sj = c−j

]
≤

∑
(b,b′)∈B

P [Y (b′) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ Λ∪−
j .

Proof of Theorem 1: The random set ({Y } ×Qj) is a measurable map from Ω to Y ×J 0 ×J 0, so it is

compact valued. Following Definition A.1 from Molinari (2020), we say that ({Y } ×Qj) is a random closed

set because, for every compact set K ∈ R3, the set {ω ∈ Ω : ({Y (ω)} × Qj(ω)) ∩ K ̸= ∅} is a measurable

event. By Assumption 6(i), the random vector (Y,Qj) and the random set ({Y }×Qj) are measurable maps

on the same probability space, and P
[
(Y,Qj) ∈ ({Y } ×Qj)|Sj = s

]
= 1 for any s ∈ Sj .

Artstein’s inequality (Theorem A.1 from Molinari (2020)) characterizes the sharp set of all possible

probability distributions for (Y,Qj) that are consistent with our observation of ({Y }×Qj) and the fact that

P[(Y,Qj) ∈ ({Y } ×Qj)|Sj = s] = 1. For any s ∈ Sj , the inequality says that

P
[
Y ∈ A,Qj ⊆ B|Sj = s

]
≤ P [Y ∈ A,Qj ∈ B|Sj = s] ∀A ∈ 2Y , B ∈ 2J

0×J 0

. (14)
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Next, we use the cutoff characterization and rewrite the right-hand side of (14) as a sum. For s ≥ cj ,

P [Y ∈ A,Qj ∈ B|Sj = s] =
∑

(b,b′)∈B

P [Y ∈ A,Qj = (b, b′)|Sj = s]

=
∑

(b,b′)∈B

P [Y (b) ∈ A,Qj = (b, b′)|Sj = s] . (15)

Substitute (15) into (14) and take the limit as s ↓ cj on both sides,

P
[
Y ∈ A,Qj ⊆ B|Sj = c+j

]
≤

∑
(b,b′)∈B

P [Y (b) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ 2J
0×J 0

, (16)

where the limits of the left- and right-hand sides of the inequality are well defined by Assumptions 7 and 2,

respectively.

Similarly, for s > cj ,

P [Y ∈ A,Qj ∈ B|Sj = s] =
∑

(b,b′)∈B

P [Y ∈ A,Qj = (b, b′)|Sj = s]

=
∑

(b,b′)∈B

P [Y (b′) ∈ A,Qj = (b, b′)|Sj = s] . (17)

Use (17) into (14), and take the limit as s ↑ cj on both sides,

P
[
Y ∈ A,Qj ⊆ B|Sj = c−j

]
≤

∑
(b,b′)∈B

P [Y (b′) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ 2J
0×J 0

. (18)

Lemma 1 of Chesher and Rosen (2017) applied to our case shows that the inequalities (16) and (18) are

equivalent to:

P
[
Y ∈ A,Qj ⊆ B|Sj = c+j

]
≤

∑
(b,b′)∈B

P [Y (b) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ Λ∪+
j ,

P
[
Y ∈ A,Qj ⊆ B|Sj = c−j

]
≤

∑
(b,b′)∈B

P [Y (b′) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ Λ∪−
j .

□

Theorem 1 characterizes the sharp set of all possible probability values of P [Y (d) ∈ A,Qj = (b, b′)|Sj = cj ]

for A ⊆ Y, (b, b′) ∈ J 0 × J 0, and d ∈ {b, b′}. For a fixed g ∈ G of Assumption 2, that set of distributions

allows us to define the sharp set of all possible means of potential outcomes,

E [g(Y (d))|Qj = (j, k), Sj = cj ] ,

for (j, k) ∈ P such that p
j,k

> 0 and d ∈ {j, k}. The set of possible means in turn allows us to define the

sharp set of all average treatment effects of the form

E [g(Y (j))− g(Y (k))|Qj = (j, k), Sj = cj ] .
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In case of continuous Y , it is impossible to directly evaluate all inequalities of Theorem 1 because there

are uncountably many sets A ∈ 2Y . This is one of the drawbacks of the Artstein inequality approach, which

has been extensively discussed by Beresteanu et al. (2012). In case Y takes finitely many values, e.g., when

Y is binary, the number of such inequalities is feasible to evaluate because 2Y × Λ∪+
j (or 2Y × Λ∪−

j ) has

finitely many elements. In fact, the number of inequalities is slightly higher than the number of inequalities

in Proposition 4 of the main text, which we utilize to compute lower bounds on δ+j,k and δ−j,k.

C Empirical Appendix

Table 3: Descriptive statistics: Students

All students Applicants to medicine
at PUC Santiago

Mean Std. dev. Mean Std. dev.

Number of programs in ROL 4.86 2.20 5.18 2.01
ROL strictly shorter than permitted .80 .40 .77 .42
Assigned (to any prog.) .65 .48 .68 .46
Rank of assigned program, cond. on assigned 2.24 1.59 2.58 1.68
Reapplies .19 .39 .25 .43
Graduates from assigned prog., cond. on assigned .22 .41 .32 .48
Graduates from any program .77 .42 .89 .31

Number of students 519,409 9,398

The left panel of the table provides descriptive statistics on the population of participants to the centralized
college assignment mechanism in Chile between 2004 and 2010. The right panel provides descriptive statistics on
the subpopulation of students who included medicine at PUC Santiago (our program j of interest in Section 5.2)
in their rank-ordered list (ROL).

Table 4: Descriptive statistics: Programs

All programs Medicine
at PUC Santiago

Mean Std. dev. Mean Std. dev.

Number of applicants (per year) 474 351 1,094 138
Number of admitted students (per year) 66 48 90 .90
Year-to-year absolute change in cutoff (points) .85 6.9 2.5 11.5

Cutoff 720 10
Number of programs 1,191

The left panel of the table provides descriptive statistics on all programs involved in the centralized college
assignment mechanism in Chile between 2004 and 2010. The right panel provides descriptive statistics
on the medicine program at PUC Santiago (our program j of interest in Section 5.2).
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