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A.1 General Markov chain Monte Carlo algorithm

This part of the Appendix covers a generic MCMC algorithm to conduct inference for an

A type of SVAR model where shocks follow Dirichlet Process mixture models (DPMM). Let

α+ = vec(A+) and Ai• the i-th row of A. Further, let A
′
i• = wi + Wiai where ai is a vector

of ri free elements, Wi a K × ri selection matrix of zeros and ones, and wi an K × 1 vector

containing either zero or the constrained values. Then, following section 2, the full hierarchical

model (including prior distributions) reads for i = 1, . . . , K and t = 1, . . . , T :

A(yt − A+xt) = εt, (1)

εit|θit ∼ N (µit, σ
2
it), (2)

ai ∼ p(ai) (3)

α+ ∼ N (mα+ , Vα+), (4)

θit ∼ Gi, (5)

Gi ∼ DP(Gi0, αi), (6)

Gi0 ∼ N iG(si/2, Si/2,mi, τi), (7)

where xt = [y′t−1, . . . , y
′
t−p, 1]

′ and A+ = [A1, A2, . . . , Ap, c]. Although optional, I outline the

algorithm under the assumption that further hyperpriors are specified:

αi ∼ G(aαi
, bαi

), (8)

τi ∼ iG(aτi , bτi), (9)

mi ∼ N (mmi
, Vmi

). (10)
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In case that they’re treated as fixed values, the corresponding steps in the MCMC algorithm

can simply be skipped.

Define the set of parameters by φ = {α+, ai, αi, τi,mi, i = 1, . . . , K} and the collection

of auxiliary mixing parameters by Θ = {θit, i = 1, . . . , K, t = 1, . . . , T}. Also, define the

augmented set of parameter by ξ = {φ,Θ}, and denote by ξ−x all parameter in ξ but x. Based

on arbitrary initial values, the following MCMC algorithm eventually generates draws ξ(l), l =

1, 2, . . . from the posterior distribution of p(ξ|Y ), by cycling through blocks of conditionals

distributions of subsets in ξ. The algorithm involves the following steps:

1. For i = 1, . . . , K, draw from the mixture parameters θit, t = 1, . . . , T . To achieve better

mixing properties of the Markov Chain, this step is performed using Algorithm 3 of Neal

(2000). Neal further splits the mixing parameters into two components: θit = θ⋆i,cit , where

cit are latent discrete assignment variables and θ⋆ij are unique cluster parameters. Given

the conjugate Base distribution, it is possible to integrate over the cluster parameters to

increase efficiency. This yields the following two steps:

(a) Draw from the conditional of the assignment variables p(cit|Y, ξ−{cit,θ⋆}) for t =

1, . . . , T . These are discrete probability distributions given by:

P (cit = cij, j = 1, . . . , ki|ci,−t, εt) = b
n−t,cij

T − 1 + αi

∫
F (εit|θ)dH−t,cij(θ), (11)

P (cit ̸= cij for all j ̸= t|ci,−t, εt) = b
α

T − 1 + αi

∫
F (εit|θ)dG0(θ), (12)

where ci,−t = {cij, j ̸= t}, cij, j = 1, . . . , ki are the unique values in ci,−t each of

count n−t,cij . Furthermore, b is a normalizing constant and H−t,cij is the posterior

distribution of θ based on prior G0 and all shocks of εi,−t = {εij, j ̸= t} assigned to

cluster cij. Given the conjugate Base distribution G0, both integrals are tractable

and given in closed form. Hence, drawing from the distribution is straightforward.

(b) Conditional on the assignment variables, the second step is to draw the (active)

cluster parameters p(θ⋆ij|Y, ξ−θ⋆ij
), j = 1, . . . , ki, which are given by:

σ⋆
ij
2 ∼ iG

(
aij, bij

)
µ⋆
ij ∼ N

(
mij, σ

⋆
ij
2V ik

)
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with moments defined as follows:

aij =
si + Tij

2
, with Tij =

T∑
t=1

1{cit = j},

bik = 0.5

(
Si +

m2
i

τi
+
∑

t:cit=j

εit
2 −

m2
ij

V ij

)
,

V ij =

(
1

τi
+ Tij

)−1

,

mij = V ij

(
mi

τi
+
∑

t:cit=j

εit

)
.

2. The next step is to sample the hyperparameters {αi,mi, τi} (i = 1, . . . , K) from their

conditionals, which exactly follows Escobar & West (1995).

(a) With respect to αi, the procedure is given as follows. First, draw an auxiliary variable

di and conditional on di, the concentration parameters αi for i = 1, . . . , K:

p (di|αi) ∼ Beta(αi + 1, T ),

p (αi|Y, ξ−α, di) ∼ πdiG (aαi
+ ki, bαi

− log (di))

+ (1− πdi)G (aαi
+ ki − 1, bαi

− log (di)) ,

where πdi is defined as:
πdi

1− πdi

=
aαi

+ ki − 1

T (bαi
− log (di))

.

(b) Draw p (mi|Y, ξ−mi
) ∼ N (mm,i, V m,i) where V m,i = τixσ⋆

i
Vσ⋆

i
, mm,i = (1−xσ⋆

i
)mmi

+

xσ⋆
i
Vσ⋆

i

(∑ki
j=1 σ

⋆
ij
−2µ⋆

ij

)
for V −1

σ⋆
i

=
∑ki

j=1 σ
⋆
ij
−2, and xσ⋆

i
= Vmi

/
(
mmi

+ τiVσ⋆
i

)
(c) Draw p (τi|Y, ξ−τi) ∼ G(aτ,i, bτ,i) where aτ,i = aτi+

ki
2
and bτ,i = bτi+

∑ki
j=1(µ⋆

ij−mi)/σ⋆
ij

2

2
.

3. The third step involves drawing from each row in A via an independent Metropolis

Hastings step which is exact under a uniform prior. Recall that each row is given by

A
′
i• = wi+Wiai, where ai is a vector of ri free elements, Wi a K× ri selection matrix and

wi an K × 1 vector containing constrained values. To develop a proposal distribution, I

assume a uniform prior that is p⋆(ai) ∝ c. Let U = [u1 : . . . : uT ]
′ for ut = yt − A+xt,

µi = [µi1, . . . , µiT ]
′ and Σi = diag ([σ2

i1, . . . , σ
2
iT ]). Then, the conditional posterior is pro-

portional to:

p⋆(ai|Y, ξ−ai) ∝ |A|T exp

(
−T

2
(ai − µai)

′ Ω−1
ai

(ai − µai)

)
,
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where Ω−1
ai

= T−1W ′
iUΣ−1

i UWi, µai = (W ′
iU

′Σ−1
i UWi)

−1W ′
iY

′(µi − Uwi). Chan, Koop &

Yu (2021) derive an efficient way to sample from p⋆(ai|Y, ξ−ai) for wi = 0, which builds

on previous work of Waggoner & Zha (2003) and Villani (2009). In the following, I

generalize the sampling scheme for wi containing non-zero elements. Hereby, I closely

follow the exposition and notation of Villani (2009):

Definition 1. A random variable X follows the generalized absolute normal distribution

GAN(a, b, µ, ρ) if it has density function:

pGAN(x; a, b, µ, ρ) = c|a+ bx|
1
ρ exp

(
− 1

2ρ
(x− µ)2

)
, x ∈ R

where c is a normalizing constant, ρ ∈ R+, a ∈ R, b ∈ R, and µ ∈ R

Note that for a = 0, the absolute normal distribution is obtained as defined in Villani

(2009).

In the following, denote B−i the matrix B with the ith column deleted, B⊥ the or-

thogonal complement of B, and chol(B) the Choleski decomposition of B such that

chol(B)chol(B)′ = B. Also, denote by || · || the Euclidean norm and
d
= equality in

distribution.

Proposition 1. Under prior p⋆(ai), the conditional posterior p⋆(ai|Y, ξai) is given by:

ai
d
= Ri

ri∑
j=1

γjvj, (13)

where Ri = chol(Ωai), γ1 ∼ GAN(â, b̂, γ̂1, T
−1), γj ∼ N (γ̂j, T

−1) for j = 2, . . . , ri, γ̂j =

µ′
ai
R

′−1
i vj, v1 = RiW

′
i (A)−i⊥/||RiW

′
i (A)−i⊥||, (v2, . . . , vri) = v1⊥, â = det([A′

1•, . . . , wi, . . . , A
′
K•])

and b̂ = det([A′
1•, . . . ,WiRiv1, . . . , A

′
K•]).

Proof. For the decomposition ai = Ri

∑ri
j=1 γjvj, Waggoner & Zha (2003) shows that:

p⋆(ai|Y, ξai) ∝ |A|T exp

(
−T

2

[
ri∑
j=1

(γj − γ̂j)
2

])
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where γ̂j = µ′
ai
R

′−1
i vj. Next, note that the determinant A is given by:

|A| = det

[
A′

1•| · · · |wi +WiRi

ri∑
j=1

γjvj| · · · |A′
K•

]

= det [A′
1•| · · · |wi| · · · |A′

n•] +

ri∑
j=1

γj det

[
A′

1•| · · · |WiRi

ri∑
j=1

vj| · · · |A′
K•

]

= det [A′
1•| · · · |wi| · · · |A′

K•]︸ ︷︷ ︸
â

+det

[
A′

1•| · · · |WiRi

ri∑
j=1

v1| · · · |A′
K•

]
︸ ︷︷ ︸

b̂

γ1

where the last line follows by construction of (v2, . . . , vri) spanning the same space than

(A′)−i. The result follows that:

p⋆(ai|Y, ξ−ai) ∝ |â+ b̂γ1|T exp

(
−T

2
(γ1 − γ̂1)

2

) ri∏
j=2

exp

(
−T

2
(γj − γ̂j)

2

)

In order to sample efficiently from p⋆(ai|Y, ξ−ai), I follow Villani (2009) and use a mixture

of two Gaussians to approximate γ1 ∼ GAN(â, b̂, γ̂1, T
−1). The motivation for the ap-

proximation follows from the fact that GAN(a, b, µ, ρ) is bimodal. Specifically, two roots

are given at:
bµ− a±

√
((a− bµ)2 + 4b(aµ+ b))

2b
,

Corresponding curvature is given by:

−
[
d2

dx2
ln pGAN(x; a, b, µ, ρ)

]−1
∣∣∣∣∣
x=x0

= ρ
(a+ bx0)

2

a2 + 2abx0 + b2x2
0 + b2

.

Hence the following normal approximation:

pGAN(x; a, b, µ, ρ) ≈ wN (x, µ1, σ
2
1) + (1− w)N (x, µ2, σ

2
2),

where µ1 =
bµ−a+

√
((a−bµ)2+4b(aµ+b))

2b
, µ2 =

bµ−a−
√

((a−bµ)2+4b(aµ+b))

2b
, σ2

i = ρ (a+bµi)
2

a2+2abµi+b2µ2
i+b2

,

i = 1, 2 and w = pGAN (µ1;a,b,µ,ρ)∑2
j=1 pGAN (µj ;a,b,µ,ρ)

is set to take into account different heights of the

density at the modes. Similar to Villani (2009), I find that this approximation work

extremely well in practice and can be taken as exact. If desired, however, one might

obtain an exact sampler by correcting for the approximation error in the Metropolis

Hastings step.

Such a step is necessary when working with a more general prior for p(ai) than the

uniform used to derive p⋆(ai|Y, ξai). In most cases, it will suffice to use a Metropolis
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Hastings step that corrects for the fact that p⋆(ai|Y, ξai) is missing the information from

a non-uniform prior p(ai). Denote by a
(l−1)
i the current state of the Markov chain and

by a′i ∼ p⋆(ai|Y, ξai) the proposed value under a uniform prior. Then, the MH algorithm

proceeds setting a
(l)
i = a′i with probability αMH = min

{
1,

p(a′i)
p(a

(l−1)
i )

}
. If the proposed draw

is not accepted, a
(l)
i = a

(l−1)
i .1

Finally, a researcher might prefer formulating a prior distribution for parameters that are

non-linear functions of ai, say zi = H(ai). In the empirical application of this paper,

for example, the last row of A is parameterized by A5• = [0, 0, 0, a54, a55] where a54 =(
ρ⋆

1−ρ⋆
χ−2ω̂3

)−1/2

and a55 = −χ
(

ρ⋆

1−ρ⋆
χ−2ω̂3

)−1/2

and prior distributions are spelled out

for ρ⋆ and χ instead of a54 and a55. In this case, the uniform prior underlying the

proposal distribution p⋆(ai|Y, ξai) implies a non-uniform prior for zi. Hence, the MH step

also needs to correct for the change of variables implicit in the proposal distribution. More

formally, let zi = H(ai). Let the Jacobian Matrix evaluated at zi be J(zi) =
dH−1(x)

dx
|x=zi .

Then, the density for zi implied by the proposal distribution (equation (13)) is given by:

p⋆(H−1(zi)|Y, ξ−zi) × | det(J(zi))|. Noting that the target posterior distribution is given

by p⋆(H−1(zi)|Y, ξ−zi)p(zi) the MH acceptance probability is then given by:

αMH = min

{
1,

p (z′i) | det(J(z
(l−1)
i )|

p(z
(l−1)
i )| det(J(z′i))|

}

4. The forth block draws from the conditional distribution of the VAR autoregressive pa-

rameters. Let µt = [µ1t, . . . , µKt]
′ and Σt = diag ([σ2

1t, . . . , σ
2
Kt]) The conditional posterior

of α+ is given by:

p(α+|Y, ξ−α+) ∼ N
(
µA, V A

)
, (14)

where

V α+ =

(
V −1
α+

+
T∑
t=1

(xt ⊗ IK)
(
A′Σ−1

t A
)
(x′

t ⊗ IK)

)−1

, (15)

µα+
= V α+

(
V −1
α+

mα+ +
T∑
t=1

(xt ⊗ IK)
(
A′Σ−1

t A
)
ỹt

)
, (16)

for ỹt = yt − A−1µt.

1The average acceptance probability varies with the strength of the prior. For priors of the type considered
in the empirical application, the probability is between 0.88− 0.98, depending on the row.
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A.2 Adjustment for the oil market model

The algorithm outlined in Appendix A.1 is not directly applicable to the oil-market model

outlined in section 3. The reason is that ui⋆

t , the forecast error of the scaled up oil inventories,

is an unobserved latent variable. To get around this problem, I include ui⋆

t into the set of latent

variables and infer it from the data within the MCMC algorithm. Specifically, the forth block

is altered as to draw from p(α+, u
i⋆|Y, ξ{−α+,−ui⋆}), where ui⋆ = [ui⋆

1 , . . . , u
i⋆

T ]
′. Specifically, I

make use of the possibility to marginalize over ui⋆ when sampling α+. The adjusted forth block

of the MCMC algorithm draws from:

p(α+, u
i⋆ |Y, ξ{−α+,−ui⋆}) = p(α+|Y, ξ{−α+,−ui⋆})︸ ︷︷ ︸

normal

p(ui⋆t |α+, Y, ξ{−α+,−ui⋆})︸ ︷︷ ︸
normal

.

In words, first a draw of α+ is generated from the conditional posterior marginal of ui⋆ . The

second step draws ui⋆ conditional on α+. To derive both steps, note that one may readily

marginalize out ui⋆

t to obtain the likelihood function of the observed forecast errors. Conditional

on auxiliary mixture parameters in Θ, the model is given as:

A

(
yt − A+xt

ui⋆

t

)
= εt, εt ∼ N (µ̃t, Σ̃t).

Since the measurement error ε5t ∼ N (0, σ2
5) is Gaussian, we have that µ̃t = [µ′

t, 0]
′, and Σ̃t =

diag ([v′t, σ
2
5]

′). Manipulating the equation, the reduced form can be obtained:(
yt

ui⋆

t

)
=

(
A+xt

0

)
+A−1µ̃t + η̃t, εt ∼ N (0,A−1Σ̃tA

−1′), (17)

which defines the joint likelihood of Y and ui⋆

t . Define J s.t. ut = Jũt. Then, using standard

results of multivariate Gaussian densities, the marginal likelihood is simply given:

p(Y |α+, ξ{−α+,−ui⋆}) ∝ |Ωt|−T/2 exp

(
T∑
t=1

(ỹt − A+xt)
′Ω−1

t (ỹt − A+xt)

)
(18)

for ỹt = yt − JA−1µ̃t and Ωt = JA−1Σ̃tA
−1′J ′. Given the likelihood, its straightforward to

obtain the conditional posterior p(α+|Y, ξ{−α+,−ui⋆}) ∼ N (µA, V A)

V A =

(
V −1
A +

T∑
t=1

(xt ⊗ IK) Ω
−1
t (x′

t ⊗ IK)

)−1

, (19)

µA = V A

(
V −1
A mα+ +

T∑
t=1

(xt ⊗ IK) Ω
−1
t ỹt

)
, (20)
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The second step involves drawing from p(ui⋆t |α+, Y, ξ{−α+,−ui⋆}) which can be obtained using

standard results for multivariate normal distributions. Define

A−1Σ̃tA
−1′ = Ω̃t =

(
Ω̃t,11 Ω̃t,12

Ω̃t,21 Ω̃t,22

)
,

and J2 a 1× (K +1) vector s.t. J2ũt = ui⋆

t . Then, for t = 1, . . . , T , this conditional is given as:

p(ui⋆t |α+, Y, ξ{−α+,−ui⋆}) ∼ N (ui⋆

t , V ui⋆
t
)

ui⋆

t = J2A
−1µ̃t + Ω̃t,21Ω̃

−1
t,11(ỹt − A+xt − JA−1µ̃t)

V ui⋆
t
= Ω̃t,22 − Ω̃t,21Ω̃

−1
t,11Ω̃t,12

A.3 Adjustment for the oil market model - Gaussian model

To keep results simple and comparable, the same MCMC algorithm for the Gaussian model

is used, with one alteration. Specifically, instead of drawing from the DPMM auxiliary pa-

rameters, a simple Gibbs update is used for each shock variance. Given inverse Gamma priors

σ2
i ∼ iG(aσi

, bσi
), the Gibbs Sample steps are p

(
σ2
i |Y, ξ−σ2

i

)
∼ iG(aσi

, bσi
) where aσi

= aσi
+ T

2

and bσi
= bσi

+
∑T

j=1 ε
2
ij

2
. The result of the algorithm can proceed as in section A.1 and A.2,

simply setting µit = 0 and σ2
it = σ2

i for i = 1, . . . , K and t = 1, . . . , T .

B Convergence Properties MCMC

To study the convergence properties of the MCMC, I simulate artificial data of size T = 500

from the following stylized bivariate model of supply and demand:

qt =αqppt + σ1ε1t

qt =βqppt + σ2ε2t

where εt ∼ (0, I2). Regarding the error term, I set εit =
√

ν
ν−2

ε̃it, i = 1, 2 for ε̃it ∼ tη where tη

is the student-t distribution with η degrees of freedom. The values of the parameters are set

to αqp = 0.05, βqp = −0.35, σ1 = 1 and σ2 = 0.5. When estimating the model, the following

prior is used for A: p(αqp) ∼ t0,∞(0.1, 0.2, 3) and p(βqp) ∼ t0,∞(−0.1, 0.2, 3), that is truncated

t distributions with modes at 0.1 and −0.1, scale of 0.2 and 3 degrees of freedom. In this

scenario, generating 1000 random draws from the MCMC algorithm takes about 3 seconds

using a standard i5 Laptop processor.2 To contrast the results to those of a Gaussian model,

the model is also estimated using the methodology of Baumeister & Hamilton (2015).

2For the computations in this paper, a Intel(R) Core(TM) i5-6300U CPU with 2.40GHz was used.
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B.1 Strong identification via non-Gaussianity

I start with simulating data using η = 3 degrees of freedom, which corresponds to strong

identification from non-Gaussianity. First, Figure 1 shows the simulated structural shocks (top

panel) along with estimated 90% posterior credibility sets for the corresponding predictive

density obtained in the non-Gaussian model. The latter, highlighted by red dashed lines,

demonstrate that the DPMM-SVAR can capture well the strong non-Gaussian shape in the

data. Particularly the second shock has strong outliers leading to very heavy tails.

Second, Figure 2 shows a Markov chain of length 100000 for αqp and βqp obtained by saving

every 10th draw. For both models, Gaussian and Non-Gaussian, visual inspection indicates that

the MCMC seems to have converged reasonably well. As a summary statistic of the underlying

autocorrelation, Gewekes Relative Numerical Efficiency (RNE) statistics are printed into each

subplots title. As described in Geweke (1992), the RNE carries the interpretation of the ratio

of number of replications required to achieve the same efficiency than drawing iid from the

posterior. The RNE values documented for the Algorithm suggest a fairly high autocorrelation

in the draws even after the thinning of the Markov Chain by factor of 10. This suggest that

similar to the algorithm of Baumeister & Hamilton (2015), one should consider a relatively

large Markov chain of 100000 to obtain comparably precise results of at least 1000 iid draws.

Finally, Figure 3 compares the priors used to the posterior distribution obtained in the

Gaussian (top panel) and non-Gaussian model (bottom panel). In the Gaussian model, the

data seems to be totally uninformative about the value of αqp, while the value of βqp is estimated

fairly precisely. As expected, once non-Gaussianity is taken into account, posterior mass shifts

towards the true value of αqp, and further narrows down the value of βqp.
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Figure 1: Simulated structural shocks (top panel) and estimated posterior predictive densities
under the non-Gaussian model. Red dashed lines indicate 90% posterior credibility sets, the
black line that of a unit variance standardized t3 distribution, and the blue line gives the
standard normal density.
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Figure 2: Markov Chain Monte Carlo output of length 100’000. Top panel: Gaussian model
with MCMC as in Baumeister & Hamilton (2015). Bottom panel: MCMC of non-Gaussian
model as described in Appendix A.1.
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Figure 3: Prior (orange line) and posterior density of the two structural parameters αqp and
βqp. Top panel: Gaussian model. Bottom panel: non-Gaussian model.

B.2 Weak identification via non-Gaussianity

In the second case I use η = 10 degrees of freedom, which should yield considerably less

identifying information from non-Gaussianity. As evident in Figure 4, the simulated shocks

are closer to normality and estimated 90% posterior credibility sets of the posterior predictive

distribution includes the Gaussian bell curve. Regarding MCMC efficiency, visual inspection of

the Markov Chains printed in Figure 5 suggests no apparent problem with the MCMC. However,

the RNE values deteriorates somewhat, which is to be expected for Gibbs sampler type MCMC

algorithms under weak identification. Finally, Figure 6 shows that under weaker identification

by non-Gaussianity, the posterior is naturally less informative about the structural parameters.

However, given a more concentrated posterior of αqp near zero, some additional information is

contained in the likelihood if compared to the Gaussian model.
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Figure 4: Simulated structural shocks (top panel) and estimated posterior predictive densities
under the non-Gaussian model. Red dashed lines indicate 90% posterior credibility sets, the
black line that of a unit variance standardized t10 distribution, and the blue line gives the
standard normal density.
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Figure 5: Markov Chain Monte Carlo output of length 100’000. Top panel: Gaussian model
with MCMC as in Baumeister & Hamilton (2015). Bottom panel: MCMC of non-Gaussian
model as described in Appendix A.1.
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Figure 6: Prior (orange line) and posterior density of the two structural parameters αqp and
βqp. Top panel: Gaussian model. Bottom panel: non-Gaussian model.

B.3 Empirical application

As a last exercise, Figure 7 provides a plot of the Markov Chains corresponding to each element

of A in the empirical application (section 3). It is fair to say that one might expect a slightly

slower convergence given the additional complexity that comes with inferring the latent inven-

tory series. Visual inspection suggest good convergence of the algorithm, however. Still, large

RNE suggest a fairly high autocorrelation in the draws justifying the use of very long Markov

Chain.
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Figure 7: Markov Chain Monte Carlo output of each element of A obtained under the non-
Gaussian model of section 3.

C Illustration Marginal Likelihood

To illustrate the use and reliability of the Marginal Likelihood estimator, I use simulated data

of size T = 500 from the bivariate static model outlined in the previous section of the appendix:

qt =αqppt + σ1ε1t,

qt =βqppt + σ2ε2t,

where εt ∼ (0, I2), αqp = 0.25, βqp = −0.35, σ1 = 1 and σ2 = 0.5. Regarding the error term, say

that εit =
√

ν
ν−2

ε̃it, i = 1, 2 for ε̃it ∼ tη where tη is the student-t distribution with ν = 3 degrees

of freedom.

Assume the goal is to test the wrong hypothesis that the supply is price inelastic, that is

αqp = 0. Given that the shocks are clearly non-Gaussian, it is possible to test the hypothesis

using Bayes factors outlined in section 2.5. To this end, let modelM1 be un unrestricted DPMM-

SVAR with weakly informative priors p(αqp) ∼ t0,∞(0.1, 0.2, 3) and p(βqp) ∼ t0,∞(−0.1, 0.2, 3).

On the other hand, for the restricted model M0 it holds that αqp = 0.3

For the cross entropy method outlined in section 2.5, I set G = 50 and M = 5000

which corresponds to the number of replications used to evaluate the likelihood (G) and the

3Furthermore, for both shocks i = 1, 2, set αi be such that E(k|T, αi) = 3. With respect to the Base
distribution, set uninformative values mi = 0, τi = 5, si = 1/2 and Si = 4. Furthermore, although the true
model is static, the number of lags is set to p = 1 with weakly informative prior p(α+) ∼ N (0, 100× I4).
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marginal likelihood (M) respectively. Estimated log Marginal Likelihoods are then given by
̂ln p(Y |M1) = −1406.09 for the restricted model and ̂ln p(Y |M0) = −1412.55 for the unre-

stricted model. Standard errors for these estimates can be readily obtained by the batch means

method. Splitting the importance sampling simulation output into 10 equally sized buckets

yields a standard error of 0.22 and 0.44 respectively, suggesting fairly accurate estimates.

The (log) Marginal Likelihood of the unrestricted model M1 is clearly higher than that

of the restricted model M0. This should be no surprise given that the true supply curve is

not inelastic. In order to interpret the magnitudes, it is common to look at twice the natural

logarithm of the Bayes factor B10 = p(Y |M1)/p(Y |M0) which operates on the same scale than

the more familiar likelihood ratio test statistic. For the simulated data above, this yields a

value of 2 ln(BF10) = 12.93. One then can make use of the popular reference point categories

provided in Kass & Raftery (1995) to interpret the exact magnitude. As suggested by Table 1,

the evidence against the null hypothesis is very strong.

Table 1: Categories of interpretation according to Kass & Raftery (1995)

2 ln(BF10) B10 Evidence against M0

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very Strong
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D Oil market model: supplementary figures
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Figure 8: Oil market dataset
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Figure 9: Prior (orange line) and posterior density of the remaining structural parameters. Top
panel: Gaussian model. Bottom panel: non-Gaussian model.
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E Oil market model: on the relationship between elas-

ticities and variance decomposition

In this part of the Appendix, I demonstrate the link between restrictions on αqp and resulting

estimates of the demand elasticity βqp, and the variance decomposition of the real oil price.

Using the (Gaussian) baseline model, I fix αqp at values between 0 and 0.15, and estimate

the remaining parameters by maximizing the posterior. Note that the resulting maximum-a-

posteriori (MAP) estimates will reflect a combination of prior and covariance structure in the

data, but do not further rely on independence and non-Gaussianity. For a similar exercise, see

also Caldara, Cavallo & Iacoviello (2019).

Figure 10 displays MAP estimates of the demand elasticity (left) and the forecast error

variance decomposition of the real oil price (right), both obtained after fixing αqp (x-axis).

First, note that the smaller the short-run elasticity of supply, the larger are estimates of the

demand elasticity βqp (in absolute terms). This is well in line with the empirical results of

section 3. Here, the posterior of the non-Gaussian model (red) concentrates at very small

values of αqp, and relatively high values for |βqp|. On the other hand, the model identified as

in Baumeister & Hamilton (2019) (BH19) suggests relatively high estimates of αqp and a less

steep demand curve.

The right panel shows the implication of varying αqp for the variance decomposition of

the real oil price, calculated at the h = 16 month forecast horizon. Low values for the supply

elasticity come with a very small contribution of supply shocks εst to the variance, while demand

shocks εcdt are very important. On the other hand, larger values for the supply elasticity imply

a substantial role for supply shocks in driving oil price, and hence less importance of demand

shocks.
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Figure 10: Maximum a posteriori (MAP) estimates obtained under the Gaussian model when
the short-run supply elasticity αqp is fixed at the values shown on the x-axis. Left panel: MAP
estimates obtained for βqp. Right panel: MAP estimates for the contributions of supply- and
consumption demand shocks to the variance of the real oil price (at h = 16 months forecast
horizon).

Figure 11 repeats the exercise excluding the earlier years of the sample, covering only data

from 1985M1 − 2019M12 (robustness exercise R2). The results suggest that the trade-off

between a low supply- and high demand elasticity is less pronounced. As reported in table 4,

the non-Gaussian model arrives at posterior median estimates of around −0.3 for βqp while αqp

is still very low (0.03). On the other hand, the implications of varying αqp for the variance

decomposition of the real oil price remains the same. Models that estimate a inelastic supply

curve, such as the non-Gaussian SVAR, estimate a minor role of supply shocks for fluctuations

in the oil price.
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Figure 11: Maximum a posteriori (MAP) estimates obtained under the Gaussian model when
the short-run supply elasticity αqp is fixed at the values shown on the x-axis. Here, the esti-
mation sample is shorter and covers 1985M1− 2019M12 (robustness exercise R2). Left panel:
corresponding estimates obtained for βqp. Right panel: estimated contributions of supply- and
consumption demand shocks to the variance of the real oil price (at h = 16 months forecast
horizon).

F Oil market model: robustness to error specification

In the following, two more robustness exercises are conducted to assess the sensitivity of the re-

sults to the error specifications used to exploit the combined (non-Gaussian) identification strat-

egy. The first, labelled as R3, uses parametric student-t distributions for the shock marginals

instead of non-parametric DPMMs.4 Here, the goal is to to understand if there are any practical

gains from using the more involved DPMM machinery in the empirical analysis. The second

robustness check assesses the sensitivity to αi, setting it to more conservative values which

favour one mixture component, and hence Gaussian shocks. I set αi such that E[ki|T, αi] = 1

for i = 1, . . . , 4, which also implies a very low a-priori standard deviation for the number of

mixture components given by Var[ki|T, α]1/2 = 0.02. In this model, a shock must display strong

4Specifically, I assume εit = σiε̃it, ε̃it ∼ tνi for i = 1, . . . , 4. The scales are given the same priors than in
the Gaussian model (see Table 1). The degrees of freedom parameters are given a uniform prior between 2 and
100. Posterior sampling of η is implemented via an independence-chain MH algorithm, see e.g. Chan (2020).
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non-Gaussianity to overrule the prior and become informative about the underlying structural

parameters. Corresponding results will be labelled as R4.

First, I provide details on the estimated predictive distributions obtained under R3 and

R4. Table 2 displays posterior quantiles for ηi, the underlying degree of freedom parameter

of the student-t marginals (R3). Similar to the baseline results, strong non-Gaussianity is

documented for the supply- and economic activity shocks. For the consumption demand shock,

the predictive seems slightly less heavy tailed, while there is little evidence for non-Gaussanity

in the inventory demand shock.

Figure 12 show the posterior predictive distributions alongside 90% confidence sets for each

shock obtained when the DPPM is set up such that it strongly favours Gaussian marginals

a-priori (R4). The results suggest that the data still favours non-Gaussian marginals for the

first two shocks (εst and εeat ). The posterior predictive distribution of the consumption- and

inventory demand shock coincide with that of a Gaussian.

Table 2: Posterior distribution ηi (R3)

5% 50% 95%

η1 2.1 2.6 3.3
η2 3.9 5.7 9.4
η3 3.6 6.0 13.8
η4 11.5 54.0 95.0
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Figure 12: Posterior predictive densities (90% credible interval) of standardized structural

shocks ε̃i,T+1 = σ
− 1

2
i (εi,T+1 − µi) obtained in R4.

Proceeding with structural analysis, Table 3 revisits the posterior distribution of αqp, βqp,

and the estimated importance of supply shocks for real oil price variation. Comparing the

baseline DPMM results with that of R3 and R4, there is little difference in the posterior of

the supply elasticity αqp, concentrating most of the mass near zero. With respect to βqp, the

model using student-t errors implies a larger median estimate (−1.22) in absolute terms, than

obtained in the baseline results (−0.94). Also, posterior uncertainty measured by the distance

between the 5% and 95% quantiles is somewhat larger. On the other hand, for model R4, the

posterior median elasticity is smaller (−0.79) compared to the baseline. This is to be expected,

as it effectively shrinks the posterior towards that obtained under the Gaussian (BH19) model,

which peaks near −0.3 (see Figure 5).

With respect to the variance decomposition of the real oil price, the model using student-t

distribution instead of the DPMM (R3) points towards a similar importance of supply shocks

than the baseline estimates. However, once more the uncertainty is considerably larger. 95%
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quantiles of 0.19 (h = 4) and 0.22 (h = 4) are twice as large than obtained by the baseline

model. Hence, although the proposed SVAR-DPMM is non-parametric, there seem to be

efficiency gains over the parametric student-t alternative.5 Finally, the model strongly favouring

Gaussian shocks a-priori (R4) yields very similar results to the baseline results. This suggests

that the variance decomposition robust results are robust with respect to the choice of αi.

Table 3: Further Robustness analysis for the main empirical findings.

Panel A: Posterior αqp

5% 50% 95%

Baseline 0.002 0.013 0.027
R3 0.001 0.010 0.023
R4 0.003 0.015 0.030

Panel A: Posterior βqp

5% 50% 95%

Baseline -1.58 -0.94 -0.63
R3 -1.88 -1.22 -0.75
R4 -1.22 -0.79 -0.55

Panel C: Contribution of εst to the FEVD of the real price of oil

h = 4 h = 16

Baseline 0.05 0.06
(0.02, 0.10) (0.03, 0.11)

R3 0.06 0.07
(0.02, 0.19) (0.03, 0.22)

R4 0.07 0.08
(0.03, 0.13) (0.04, 0.13)

For robustness check R3, the non-Gaussian model is estimated with parametric student-

t errors instead of non-parametric DPMM’s. For robustness check R4, the non-Gaussian

model is estimated with αi = 1.0563E − 04 such that E[ki|αi, T ] = 1 and Variance

Var[ki|T, α]1/2 = 0.02, placing a strong prior weight on Gaussian marginals.
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