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APPENDIX A: PROOFS FOR THE LOW-DIMENSIONAL CASE

Recall g,(X) = E[g(X)g(X)T{X € X,}]"2g(X)[{X € X} and r,(X) = E[g(X)g(X)' x
I{X € X317 2r(X)I{X € A,}. Define A = argm/\inIEn[¢*()\’gn(X)) — Nru(X)).

A.1 Lemmas

LEmMmA 1. Let f(x) = (f1(x), ..., fk(x))’ be a K-dimensional vector of functions, and
M, = max) << {E|f;(X)|9}Y/4. Suppose {X;}*_, is a-mixing with mixing coefficient
{am}men satisfying KM»(M> + M, > ain/z_l/q)/n — 0 for some q € (2, >0]. Then

EA[f(X)] —E[f(X)]| =0, (J KMy (Mg +M, Z a%“”)).

n m=1
LeMMmA 2. Suppose Conditions D, S, and I hold true. Then

(i) for all x € X and n large enough, \,g,(x) € C, where C is a compact set in
(¢11(0), oV (+00)),

(i) supyer, |wo(x) — ¢ (X ga(x))| = O(mk, ).

LeMMA 3. Suppose the conditions for Theorem 1 hold true. Then
(i) if we additionally assume that {X;};_, is iid and glz(ynlogK/n — 0, then |E, x
(8n(X)gn(X)'] — I| = Op(y/ 512<,n10gK/”), and thus Amin(En[gn(X)gn(X)']) is
bounded away from zero and from above with probability approaching to one,

(i) |En[rn(X) - wO(X)gn(X)]l = Op(\/ Kupg, n/n),
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(i) [En[{wo(X) — ¢ (A} 81 (X))}gn(X)]| = Op(Bk,n),
(v) |A = Ap| =0y (Kpk,n/n+ Bk,n).

Proof of Lemma 1
Let W(X) = f(X) — E[f(X)]. Note that

E[|E[W (X1)]|” 2ZZ]E [W;(X)?] +—ZZZE Wi (X)W (X))]-
=1 j=1 i#l j=1

The first term is bounded as n—12 >, Zf-il ]E[Wf(X,-)] < KM3/n. For the second term,
Hall and Heyde (2014, Corollary A.2) implies

B[ w0 ]| < (E[W; 0BV (p2]ai i < MgMaai 57,

and thus niz Z;’# Zf-il EWj(X)Wj(X))] S KMgM2 Y~y a},{z_l/q. Therefore, the con-
clusion follows by Markov’s inequality.

Proof of Lemma 2(i)

By boundedness and positivity of g (Condition D(3)) and continuous differentiability
and strict convexity of [, D11y on (0, +oo) (Condition D(4), since [¢V]171(:) = ¢V ()
on (0, +00)), both ¢ (0) < y = infyex (¢ (wo(x)) and ¥ = sup, .y [ 17 (wo(x))
are finite. Thus, by (15) in Condition S, there exists C; > 0 such that

Ap8n(x) € [y — C1mk,n, ¥ + C1mk ), 37
for all x € &),. The conclusion holds for all x € X by the requirement 7k, , — 0 and

¢ (0) < 0 from Condition D(4).

Proof of Lemma 2(ii)
Note that (37) also guarantees
00(x) — D (X, gn (1)) € [6D (X, gu(x) — Crnk.n) — 6L () ga(x)),
O (X 8n(x) + Crng,n) — 6L (A 8n(1))],

for all x € &, and n large enough. By applying the mean value theorem to the upper and
lower bounds under Condition I, there exist c1, ¢z > 0 such that

dM (M,gn(x) + Crmi,n) — L (Apgn (%)) < c1Cimk, s
dM (N80 (x) — Cimi,n) — ¢V (Apgn(x)) = —c2C1mK, n»

for all x € X, and n large enough. Combining these results, the conclusion follows.
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Proof of Lemma 3(i)

This follows directly from Belloni et al. (2015, Lemma 6.2) or Chen and Christensen
(2015, Lemma 2.1).

Proof of Lemma 3 (ii)

Let f(x) =ry(x) — wo(x)gn(x). By (1) and the Cauchy-Schwarz inequality, we have

E[f(X)]] £ [E[{wo(X)g(X) — r(X)}I{X ¢ X},

< VE[Jwo(X)g(X) — rX) P |VPIX ¢ X} = o(VK/n), (38)
where the equality follows from Condition S. Condition S guarantees 1m'axK{]E X
<j<
[1f;(X)]|91}1/4 < M . Thus, Lemma 1 implies

EA[f(X)] —E[f(X)]]| = Op(VKpk,n/n). (39)

The conclusion follows by (38) and (39).

Proof of Lemma 3(iii)
Let
£X) = [wo(X) — oW (Nga(X))}, = (Eufgn(X)gn(X)]) ™ Enfgn(X)EXN)].

By the assumption |E,[g,(X)gn(X)']1-1| = op(1), itholds (E,[gx (X)gn(X)/])_l = Op(l)»
and then

IEa[g2(X)EX)]| < [Ealgn(X)gn(X)]151 S 151 S VEA[(5'8x(X))7], (40)

with probability approaching one, where the last inequality follows from Condition S.
Since p is the empirical projection coefficient from £(X) on g,(X), we have

En[ (/g0 (X))°] < [Ea[£(X)?] = E[£(X)?]} + E[£(X)?] = 0,(B% ), (41)

where the equality follows from (16) in Condition S and Lemma 1 (note that E[|£(X)[7] <

gi/‘fz under Conditions D and S). The conclusion follows from (40) and (41).

Proof of Lemma 3(iv)
Recall that & (X) = ¢!V (Vg(X)I{X € X,}) = oLV (X g, (X)), where A = arg mfo()\) and
ON) = NEu[ra(X)] — En[ b+ (N ga(X))]-

By Condition D, Q(A) is concave. Let 0V (1) and O (A) be the first and second deriva-
tives of Q(A), respectively, if they exist. The proof is split into several steps.
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Step 1: Show OV (A,) = O, (8,), where 8, = \/Kuk,n/n + Bk,,. Since 0D () =
Enlra(X) — ¢5" (A, £,(X))ga(X)], the triangle inequality yields

|0 (Ap)| < |En[ra(X) — 00(X)gn(X)]] + [En[{ @0 (X) — ¢P (X} g1 (X)) } g (X)]]

Thus, Lemma 3(ii) and (iii) imply Q) () = Op(8,).
Step 2: Show that for any C > 0, there exists some ¢ > 0 such that

= i 2)(y/
ne= |A—A,,|é%f3mxex¢* (Ngn(x)) > c.

Pick any C > 0. Since 6,,{x,, = 0(1), we have
[N gn ()] < [A8n ()] + 1A = Apl[gn ()| < [N, 8n(X)] + C81 Lk, n,

for all A satisfying |A — Ap| < C8,. Thus, by Lemma 2(i), A’g,,(x) lies in some compact set
Cin (¢ (0), ¢V (+00)) for all A satisfying |A — A,| < C6, and x € X. Condition I and the
Weierstrass theorem guarantee n¢ > ¢ = min,, i ¢5<2) (a) > 0.

Step 3: Show that there exists some C* > 0 such that Q(A) < Q(/\b) with probability
approaching one for all A satisfying |A — Ap| = C*$,,. Pick any € > 0. By Step 1, we can
take C* > 0 such that

POV (Ap)] < cC*8,/4) = 1 — ¢, (42)

for all n large enough, where ¢ > 0 is chosen in Step 2. An expansion of Q(/\) around
A= Ap yields

. . A 1 Aoy
Q) = QAp) = 0V (M) (A = Ap) + 5 (A = 1) QP (M (A = M),
for some A on the line joining A and A,. By Step 2,

0@ (A) = ~En[® (N gn(X))gn(X)gn(X)'] <psd —CEn[gn(X)ga(X)],

and Condition S(1) implies
1 1AR) (3 ¢ 2
5(/\ —Ap) O (M) (A= Ap) < _ZM — Apl%,

with probability approaching one. Combining these results, for all A satisfying |A — Ap| =
C*8p,

R n ~ ~ C*5,
ON) = OAp) < | O (Ap)[IA = Ap| — gm—mz < (|Q“>(Ab)\ - . )M—m.

Thus, (42) implies that O(A) < Q(\,) with probability approaching one.

Step 4: By continuity of Q(A), it has a maximum on the compact set {A : [A = Ap| <
C*8,}. By Step 3, the maximum Ac+ on set {A: |A — Ap| < C*8,} must satisfy |Acx — Ap| <
C*6,. By concavity of Q(/\), Ac+ also maximizes Q()\) over R¥. The conclusion follows by
the same argument used at the end of the proof of Newey and McFadden (1994, Theo-
rem 2.7).
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A.2 Proof of Theorem 1
Proofof (17)

Let wp(x) = ({)Sﬁl)()\}?gn(x)). Pick any C > 0. From Step 2 in the proof of Lemma 3(iv),
X gn(x) lies in some compact set C in (¢ (0), ¢V (+00)) for all x € X and A satisfying
A — Ap| < C8,. Let £, be the event that A'g,,(x) € C for all x € X. Lemma 3(iv) guarantees
P{&,} — 1. On event &,, an expansion around A=\p yields

& (x) — 0p(x) = P (X g0 (X)) (A = Xp) gn (), (43)

where A is a point on the line joining A and Ap, and X; gn(x) e C for all x € X. The Weier-
strass theorem and Condition I imply

sup d)sz)()\/gn(x)) < C1 < 00, (44)
[A=Ap|<C8y,xeX

for some C; > 0. Furthermore, observe that

Ea[{@(X) = 0p(X)}*] = (X = 1) En[{$ (Ny 80 (X))} gn(X)gn(X)](X = Ap)
< C1IA = 2P| En[gn(X)gn(X)]|
=0p(1A — Apl?), (45)
where the inequality follows from (44) and P{£,} — 1, and the second equality follows

from Condition S and Lemma 3(iv). Now, the same argument in the proof of Lemma
3(iii) for (41) yields

En[{wp(X) = 00(X)}*] = Op(B%.,)- (46)

The conclusion follows by (45), (46), and the triangle inequality.

Proof of 6 £ 0o
Observe that
16— 60| < [Ea[0(X)R(X,Y)] = Ep[wo(X)A(X, V)]| + [Ex[wo(X)A(X, Y)]
— E[wo(X)h(X, Y)]|

< VE[{60X) — w02 EL[AX, Y)2] + [Ea[w0(X)A(X, V)]

— E[wo(X)h(X, Y)]|
= Op(VKpk,n/n+ Bk,n) +0p(1),

where the first inequality follows from the triangle inequality, the second inequality fol-
lows from the Cauchy-Schwarz inequality, and the final equality follows from the law
of large numbers (under Condition D) for stationary and ergodic processes and (17) in
Theorem 1.
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Proofof (18)

By the triangle inequality,

sup |@(x) — wo(x)| < sup [@(x) — wp(x)| + sup |wp(x) — wo(x)]|.
xeX, xeX), xeXy

From the proofof (17), itis easy to see thatsup, .y |®(x) —wp(x)| = Op({k,n(/Kpk,n/n+
Bk ,»)). Thus, the conclusion follows by Lemma 2(ii).

A.3 Proof of Theorem 2

Let
hi=h(X;,Y;), X =E[hi| X)), wo; = wo(X;), 8ni = &n(Xi),

' (47)
a)b,'=(,‘b>(k1)( ;)gm'), &)[=¢Ekl)()\/gni), Fni = rn(X;), ",' =r (Xl)

By an expansion of § = 1 3™ »V (X g,i)hi around A = A,, we decompose
1 n
Vn(6— 6o) = EZ(wo,-h,- —00) + T1 + T2 + Ts + T4,

where

= E[(biZ) (/\;)gni)hig;,i]«/ﬁ(;\ —Ap),
1 & i
To = —= 3 {91 (Ngu)higy = E[6 (Nygn)higy ]} (3 = ),
i=1

1. -
T3=§(A—Ab)< ZQS(S) A'gni) lgnig;i>(A—Ab),

1 n
=7 D (@pihi — woihy),
i=1

and A lies on the line joining A and A,.
First, we consider 7». Since Lemma 2(i) and Assumption N imply [max {]E[|d>(2)
<j<

(A, gn)hgni 1} S 1 and max {IE: (|62 (X} gw)hgnj| 11 1}V/9 < Mk, Lemma 1 yields

1 / Ruux,
_Z ¢(2) (Ap8ni)hign; — [¢§<2)(/\;7g"i)hig”i]}‘ :Op<@>.

i=1

N

Thus, the Cauchy-Schwarz inequality and Lemma 3(iv) imply 7> = O,(/Kuk,n ¥

(\/ KMK,n/n + BK,n))«
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Next, we consider 73. The definitions of {x , and matrix L-norm, Lemmas 2(i) and
3(iv), and Condition I imply |% Y ¢fk3)()\’gm-)h,-g,,,-g;li| = 0p(§12<,n)' Thus, the Cauchy-
Schwarz inequality and Lemma 3(iv) imply

T3 = Op(Vnig (Kuk n/n+B% ).

Third, we consider 7. From the proof of Lemma 3(iii) and the law of large numbers,
we have Ty = O, (/nBg ).
We now consider T;. By expanding the first-order condition of A,

1l
OZZZ{(b 1)( gm)gm_rm}
i=1 (48)

1 & 1 & - -
= Z(wbigni —rpi) + o Z ) (X' 8ni) ni&ni(A — Ap),

i=1 i=1

where A lies on the line joining Xxand Ap. Let ¢y = E| )()\ gn,)h,gm] 3= ]E[d)m (A} gni) X
gni&,;l,and 2 = % Y q&iz) (/_\/gni)gnig;“-- By solving this for A —Ap and inserting to 77, we
have

- 1 X
h=—y3'— Z(wbigm' —ri) =Tu + Tz + T3,
Vs

where
Th=-y(E" - 2_1)% g(wbigm' —Tni),
T2 = _(/,2—1% g(wbi — @0i)8ni»
T3 = —1112_1% izn;(wmgnt — Ini)-

For Ti2, note that

|Th2| < WI

i (E) Z(wbt ®0;)&ni|-

It is easy to see that || = O({k,,) due to the definition of {,,. Lemma 3(iii) yields
|ﬁ Yo (wpi — 00i)&nil = Op(/nBk, ). Since Amin(2) is bounded away from zero by
Condition D and Lemma 2(i), we have T1» = O,(y/nik,nBk,»). For T11, note that (48)
implies

T =Vagp(E71 =3 DS = Ap) = VS 7HE = 3)(A - Ap),
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which can be bounded as |T11| < /n|¥| /\#(E) | —3|-|A — Ap|. By the triangle inequality
and Condition N(2),

IS — 3] < [E.[(6® (Ngn) — ¢2 (X, 8n))gngl]| + Op(Tk )

By an expansion of qSiz)(/_\’gm') and Lemmas 2(i) and 3(iv), we have |En[(¢i2)(/_\’g,1) —
d)sz) (A,8n))&ngnll = 0p(§l3’<(‘/KMK,n/n + Bk, n)). Therefore, we obtain

IS =3 = 0p(&%. o (VK k,n/n+ Bk,n) + Tk n).-

Also by || = O({k,,) and Lemma 3(iv), we have

|T11] = Op(x/ﬁﬁ(,n(KMK,n/” + B?(,n) + ik wlk,n(VKpk n/n+ Bk n)).

Now consider T;3. Note that

n

1 1 &
Ti3 = ——— )79, QU ) S TCarmsor s — ) — X _ph
13 ﬁ;(a)m i rl) \/ﬁg{ﬁ (0igni — T'ni) (wOI i rz)}
1 &
=—ﬁi=1(w0ihf—ri}’)+op(1)»

where the second equality follows from Lemma 1 and the condition (19).
Combining these results, we obtain

Vn(d—6g) = % ;{wmhi — 00 — (w0ihi =)} + Op(ra),

where r, = (\/ﬁ(génKﬂK,n/n + {k,nBk,n + Kk, n/nlk,nl'k,n))- Since r, — 0 by the
assumption, the central limit theorem for a-mixing processes (e.g., Theorem 0 in Bradley
(1985)) yields the conclusion.

A.4 Proof of Proposition 2

Proof of (i) In this case, r(X) is a constant vector r = E[w¢,g;]. We set r"(X) as a con-
stant vector 1" = E[woith]. Observe that

E[B' (00igni — ni) — (woih¥ — E[w()ih,X])]z < N1+ N2+ N3,

where

N1 =E[B/(w0igni — El@0ignil) — (woihX — E[w()ih,x])]z,

N =E|[B'(E[woignil — ]E[”ni])]z'

N3 =E[B'(Elrn] — rni)]2~
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For Ny,

2
N <E Z.hX_/m-2<(suw0—(x)
' [th( ' Pe ) ]_ xeg d)sz)()\;gn(x))

where h; = /P (N gni) X, i = /637 (X} gni)gnir and B = E[gnig,;) 'Elgnifi]. Since

B is the projection coefficient that solves min,, E[(h; — b’ g,:)?], the assumption in (21)
guarantees N = o(n~1). For N>, (38) implies |B| = O(1) (because B is a projection coef-
ficient). By (21), we have

)E[(ﬁi — B,an)’),

Ny SE[|wo(X)g(X) = r(X)[*JPLX ¢ Xa} = o(n7Y).
For N3, the definition of r,;, | 3| = O(1), and (21) imply
Ng =E[B (i — Elrul)]* S |BPKPLX € XIP(X ¢ X} = o(n).
Combining these results, the conclusion follows.

Proofof (ii)) This follows by a standard projection argument and thus the proofis omit-
ted.

APPENDIX B: PROOFS FOR HIGH-DIMENSIONAL CASE
B.1 Proofof Theorem 3

By the mean value theorem, there exists ¢, € [0, 1] such that
B(x) — 0o (x) = ¢ (Apg(x) + (A — Xo) g(x)) (A — Ao) g (x), (49)

foreach x € X.
First, consider the case (i) when 7k ko,n S 1. Holder’s inequality and Lemma 4(ii) im-
ply
sup|tx (A = X0)'g(x)]| < 1A = Aoll1k = Op(IkKo,n) = Op(1). (50)
xeX
The assumption sup, .y |we(x) — wo(x)| < 1 and (50) imply P{£,} — 1, where &, is the
event that qbff) (Apg8(x)+ t(A— Ao)'g(x)) lies in a bounded set for all x € X'. On the event
En, (49) and (50) imply
Ea[{6(X) — 00(X)}*] S (A = 10) Eag(X)g(X)](A — Ao)
< 1A = AollF[| En[g(X)g(X)]
= OP(K%ngn)'

oo

where the second inequality follows from Holder’s inequality and the equality follows
from Lemma 4(ii) and the definition of &,,.

Now consider the case (ii) when d)sz) is bounded from above and away from zero. In
this case, it is easy to see that we still have E, [{&(X) — wo(X)}?] = Op(x2,&,) from (49).
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Therefore for both cases, on the event &,, the triangle inequality, the result
Enl{&(X) — wo(X)}*] = Op(«§,&n), and the assumption vE[{wo(X) — wo(X)}?] S So,n
yield the conclusion in (23).

Proofs of § 5 09 and (24) are similar to those of Theorem 1, and thus omitted.

B.2 Proof of Theorem 4

We employ the notation in (47). By the Karush—-Kuhn-Tucker (KKT) condition of Ain (14)
for the high-dimensional case, an expansion around A = A, yields

0=0" (A) + ank = O (Ao) + e, En[g(X)g(X) (A — Xo) + ank,

where 0,(1) = Eq[¢.(Xg(X)) — Xr(X)] and Q' (V) = E[¢1" (N g(X))g(X) — r(X)]
is its first derivative. Since weo(:) = d)il)()\og( )), an expansion of %Z?:l d)fkl)()\’gi)hi
around A = A yields

. 1< 1< « AL
GDBZEz;wmhi+ﬁ;C*h"g;{()‘—"o)+“"®K}'
1= 1=

By plugging in the form of «;, x from the KKT condition to the above equation, we obtain

1 < . .
- > ehigi{ (A — o) + 2, Ok}
i=1

ch* i8H{ (A = 20) = O[OV (Ao) + En[g(X)g(X)](A — A0)]}
i=1

= «/_ZC* l&@E [wo(X)g(X) —r(X)]+ Ta,

where Tx = ﬁ Y cxhigi(I — ]En[g(X)g(X)’](:))(/A\ — Ao). Combining these results and

the definition of Bpg, we obtain the following decomposition:
1 n
Vn(pg — 6o) = EZ{r{l — 00 + woi(hi — W)} + Ty + T+ T3 + Ty + T + T,

where

~h

1 s -
I = _C*ﬁ ;[Bi)B(WOigi — 1) — (woiy —7)],
T, = \/_ Z(woz w0 ( - BDBgl)

I3 = \/_ Z(woz wo; (h - hX)
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1 n
Ty = T ;(woi — o)) (hi — 1),

Ts = % ;[wm(hf( — )+ (7! = r])).

Condition DB guarantees T} £o. By the Cauchy-Schwarz inequality,

i=1

1 15 . N
1T2] < \/EJ n Z(“’oi - wOl')ZJ n Z(hx - Bngi)Z 50,
i=1

where the equality follows from Chebychev’s inequality for the term % S (wei — woi)?
and Condition DB.

For T3, the Cauchy-Schwarz inequality and the assumptions in the theorem im-
ply E[T3] < /ns,7, — 0. Also, Chebychev’s inequality implies 75 — E[T3] £ 0. Combin-
ing these results, we obtain T3 £ 0. Note that both T4 and T5 have zero mean. Thus,
Chebyshev’s inequality implies Ty = O,(s,) = 0,(1) and T5 = Op(7,) = 0,(1). Finally,
by Hélder’s inequality, we have

1 n
p Z higi
i=1

under the assumptions of this theorem.
Combining these results, we obtain

Ta S/n |7 —Ea[g(X)8(X)]O], 1A = Aoll1 = 0,(1),

o0

A 1 &
Vn(6pp — 6p) = 7 Z{r,h — 00+ woi(hi — i)} + 0,(1),
i
and the conclusion follows by a central limit theorem.

B.3 Proofof Theorem 5

First, we show |A — Ay| = Op(yn), where y, =/ £2/n. Recall A= arg maxacgs QS(A),
where

Os(A) = E[A'r5(X) — i (N'gs(X))].

By Condition I’ Qs(A) is strictly concave in A. By taking the derivative, we have
OV (A = Enlrs(X) — ¢l (ALgs(X))gs(X)]. Also note that E[rg(X) — ¢ (AL x
gs(X))gs(X)] = 0 because A, minimizes E[A'rs(X) — ¢«(A’gs(X))]. Thus, by Assump-
tion S’ and Chebyshev’s inequality, we have Qél) (A) =0,/ [2/n). The rest of the proof
is similar to steps 2—4 in Lemma 3(iv), and thus is omitted.
Next, by an expansion of § = % > d)il) (A/gsi)hi around A = A,, we obtain

- 1 &
ﬁ(9—90+b)=—f E (®;+vy;+v2; +v3) +T1 + T2+ T3,
n -
i=1
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where

_E[d)g)(A;gsi)higsi]/\/_(A A+ —Z (wiihX —Fh
T = < Z¢ gsz higsi — [¢(2 ( *gsz) zgsz]) (A Ay),

1 - o
I3 = E(A_A*) ( Z(l’)(s) gsz zgsig/s,') (A-Ay),

and A is on the line joining A and A,. By Condition I’ and Chebyshev and Cauchy-
Schwarz inequalities, we have

Z ¢(2) gsz higsi — E[d’iz) (A;gsi)higsi] |]\ — Al = Op(Lsyn)-

For T3, similarly we have

2

T3] < V/nlA — A2 Z¢(3)Agw higsigs| = O0p(VnLsvy)-

We now consider 7;. By expanding the first-order condition of A,

n

1
OZZZ{ (1)<Ags,)gs, "si}

i=1

1 1 . "
= Z(w*igsi —rsi) + 7 Z ¢§<2)(A/gsi)gsig;,~(A —Ay),

i=1 i=1

where A lies on the line joining A and A,. Denote 3¢ = E[d)(z)(A’ gsi)gsigy;] and Se =
% Y d)iz) (N gsi) s gs;- By solving the above equation for A—A, and inserting to 77, we
have

-1 & 1 & -
= —E[d@ (A 0 Vhioe ] STL o *.h?f_~ﬁ
[d’* ( *gsz) zgst] s NG i§=1(w*1gsz Isi) + Jn i§=1:(w irn; rl)
=Tn + Tz + Ts,

where

/ - 1 -
I = _E[¢S<2)(A*gs1) thl] (2 s l)ﬁ § :(w*igSi —7si)y
i=1

- 1 & .
Tio = —E[6P (N, gei) higsi] S5 ' —= ) (woigsi —1si) + —= Y _(woilt] —7),
12 [¢ ( gsz) zgsz] s NG L 0i8si — T'si N iZI( 0i11; i )
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1 & -
T3 = _E[d’g) (A:kgSl) thl Z(w*z wOI)gSl n Z(w*i - wOi)th-
i=1

For 711, we apply a similar argument used to bound 77; in Theorem 2 but for iid
data, which yields |T11| = O,(V/n n¢sy2). Note that E[T;2] = 0. By Condition N’(2) and
Chebyshev’s inequality, we have T2 = 0p(1). Also, the definition of th implies T3 =

ﬁ Y (wwi — w0i) (fzf‘ — B48si) = 0. Combining these results, we have

V(0 — 6o +b) = IZ(@ i+ 1+ v2i + v30) + 1,
i=1

where r,, = op(gg /+/n) = 0,(1) under the assumptions in this theorem. The conclusion
follows by applying a central limit theorem for iid data.

B.4 Proof of Theorem 6

Recall wg(x) = il) (Ays80s(X)). By an expansion of the debiased estimator,

n
brp = Z o (Mopgi)h Z oD (Aggsi)hi

i:l

around f\s = Ags, We obtain
- 1 2
Vn(8tp — 60 + b) = 7 D @i+ D1+ U2+ 030) + T+ T2 + T3,
where

T = \/EE[(l')SkZ)(/\:)sgsz) zgSt] (As — Aos) + T Z wSlhTDl r{EDl)

/
1 « .
1 = |:E Z{d’iz) (A;sgsi)higsi - E[¢5<2) ()\;sgsi)higsi]}:| (As — Aos),
i=1

J 1 & - .
TS = E(As - )\os)/(ﬁ Z ¢Sk3)(Aégsi)higsig;i> (As - )\os);

i=1

and Agison theline joining As and Ags. Since Condition TD(3) implies E[gbg) (Aos gs)hl? =
O(1), Chebyshev’s inequality yields

P (Nosgsi)higsi — E[¢ (A:,sgs,-)h,-gsi]}‘ =0,(y¢&/n).

Thus, by the Cauchy-Schwarz inequality and Lemma 5(ii), it follows

1 n
ZZ{‘J[’(Z)( osgSl) i8si — [¢(2)( sgsz) zgsz]}

i=1

|T2] </n |A — Aos| = Op(Ls¥n)-
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For T3, note that

. 1< ~
T3] smgsms—m,sﬁl ;Zcﬁﬁf")(A’sgsz J th Vi),
i=1

where the first inequality follows from Cauchy-Schwarz inequality, and the equality fol-
lows from the law of large numbers, Condition TD(3), and Lemma 5(ii).
Now we consider 7;. By Lemma 5(i), we have

R A 1< .
As — dos = —G)s; Zl:(wsigsi —rsi) + A,
1=
where A = (I — 05017 (As))(As — Aos) and O (As) = En[¢{? (A;gs)gsgsl. Also let
0@ (Ags) = E[({)(z) Ags8s)8s8s]- Note that T is decomposed as 71 = T11 + - - - + T14, where

L1
T = —/nE|[ (2)( 0s8si)h igsi]/Q(z)()\os) 1; Z(wOigsi_rsi)
i=1

1 & - .
+ Tn Z(wOih%(Di — Fini),

i3

a1l
Tiz = —vnE[¢ (Apsgsi) higsi] @ (Xos) 1; Z(wsi — w0;)&si

i=1
1 & -
+ 7 ;(wsi — wo) ¥,
;o 1 &
T3 = _\/EE[ (2)( osgsz)higsi] (G) - Q(Z)(/\os)_l)z Z(wsigsi —TIsi),
Tig = VnE[6{?) (Aps8si) higsi] &

For T11, Condition TD and Chebychev’s inequality imply

Tll__T Z{Bs(wmgsz Fsi) — (wOI X_;,'h)_p>0-
i=1

By the definition, we have 773 = —ﬁ Y (wsi — wOi)(B’sgsi — leX) = 0. To bound T3,

note that E[qb(z) Aos8si)higsil = Op({s). By the Cauchy-Schwarz inequality, Lemma 5(iv),
and Condition TD(2), we have

R 1
Tis| = [VRE[¢'P) (Apsgsi)h¥ gsi] (© — Q(Z)U\os)*l); Z(wsigsi — Isi)

= Op(\/ﬁfsQn';’nL
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Similarly, by the Cauchy-Schwarz inequality, Lemma 5(ii) and (v), and the relation be-
tween ¢; - and ¢,-norms, it holds

ITial = |VAE[$2) (Nosgsi) 1 8si] (Is = OOP (A6)) (As — Aos)|
< VnE[¢{? (Npsgsi) hE gsi] [Is — OOP (As)[IIAs — Aosln
= OP(‘/EK(Z),ng;1 + \/ﬁszO,nQn)u

Combining these results, we obtain
n
N ~ 1 N - -
Vn(8rp — 60 + b) = N D (@i + i+ Doi + T3i) + 7
i=1

where r, = 0, (V/1K3, , {8 + /N ls0n + V/n{Z93) = 0, (1) under the assumptions of this
theorem. The conclusion follows by applying a central limit theorem.

B.5 Lemmas

LeMMA 4. Under the conditions of Theorem 3, it holds

16025

() Pri3€() +anllA = Aol <46(ho) + ) = 1 — &,

Sho

(ii) €(A) = Op(rony/logK/n) and A — tolli = Op(kon)-

LEMMA 5. Let Q(As) = E[d«(Agg8s) — Agrs] and Qn(As) = Eyldx(Ag8s) — Agrsl. Under the
conditions of Theorem 6, it holds

M /_A\s —Aos = _6% Z?:l(wsz;gsi —7rsi) + A» where A = Is— ésQEzz)(}\s))(}\s — Aos), and
s is on the line between As and \gs,

(i) |As — Aos| = Op(Fn), where 3, = ko, v v/slogK/n,
(iil) |Q (As) — Q@ (Aos)| = Op(Ko,nld),
(iv) |% Zyzl(wsigsi - rsi)l = Op('?n);

W) s — Os0P (As)| = Op(ko,nl3 + 0n)-

Proof of Lemma 4(i)
Pick any ¢ > 0 small enough and »n € N large enough to satisfy Condition H. Then set
M= zgo and take A = 1A + (1 — 1)Ao with ¢ = m Due to the definition of A in
&,n —oll1

(14) and convexity of its objective function, we have

En[d+(Xg(X)) = Xr(X)] + anllAlh
<En[ds(Ap8(X)) — Agr(X)] + anllAoll1,
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and thus

EN) + anllAlll < —{ra(X) — v4(Xo)} + E(Xo) + anllXoln

58()\0)+an”)\0”1+%, G2Y)

with probability at least 1 — &, where the second inequality follows from Condition H(1)
M|A=Aoll
. o M-+[A=Aolly
true with probability at least 1 — &.
Note that A = Ag,  + /\sg » Ao,5), = Ao, and Aq, sc = 0. Thus, (51) and the triangle

inequality imply

combined with |[A — Ao = < M. Hereafter, all inequalities involving A hold

: ) ) 0
EN) +anlds; I = € o) +anllhs,, — Aol + =

< Qo + anliAs,, — Aoll1, (52)

where the second inequality follows from & (Ae) < % (due to the definition of Q). Thus,
the triangle inequality yields

E(A) + anllX — Xoll1 < Qo + 2a4llAs,, — Aol (53)

In order to bound the right-hand side of (53), we consider two cases: (I) 201n||)_\SA0 -
Xolll < Qo, and (ID 2ax | As,, = Aell1 = Qo-

Case (I) 2a,|As,, — Aoll1 < Qo-

In this case, (53) and Condition H(3) imply

anM

E(A) + anllA — Aol1 <2Q0 < 5 (54)

and thus |A — Xoll1 < ¥.
Case (II) 2ay || As,, — Aoll1 = Qo-
In this case, (52) and A, s¢ =0 guarantees
IAs; = Ao,sg_ Il = llAss [

<3llAs), — 0,5, 11

=<

¢

where the last inequality follows from Condition C. Observe that

4an\/§
¢

Sro

3 = =
f J = A E[g(X)g(X) (R~ Ao),
Ao

€(A) +anllA = Xoll1 < 4anlAs,, — Aol < V= Ao)E[g(XN)g(X)] (A~ Ao),

where the first inequality follows from (53) and the condition of Case (II), and the second
inequality follows from (55) (note A¢ = Ao,s,,,)- Now by using xy < X2+ y4—2 foranyx, y e R,
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we obtain

dap \/E

Sro

A= ) E[g(X)g(X)] (A~ A0)

1/ - _ 16ay,
< 5(9()\ — 2o)E[g(X)8(X)](A = Xo) + — s)

S)\OQ
<1 (8(50 + 16a”s)
=9 (f)%)\og y

where the second inequity follows from Condition H(2). Combining these results with
the definition of Qg,

2

_ - 1 - 8a;s 1 -
EN) +anllA = Aol = 56N+ — < -&(A) + Qo, (55)
2 d)S)\OQ 2
_ . . = 200M _ M
which implies (by Condition H(3)) [|A — Ae|l1 < e =7

Therefore, for both cases, it holds ||A — Aoll1 < % and also |A — Aell1 < M, thatis, A is
close enough to A, to invoke Condition H(1).

Repeat the proof above by replacing A with A. Then we obtain the counterparts of
(54) and (55) with replacements of A with A, that is,

1 - A
58()\) + anllA = Aoll1 = 2Qo,

with probability at least 1 — . Therefore, the conclusion follows.

Proof of Lemma 4(ii)

log K
n

1 < logK slog K
58()\)+\/—g ||)\—)\o||1=0p(8(/\o)\/ & >,
n n

and the conclusion follows.

By setting a;, o«

, Part (i) of this lemma implies

Proof of Lemma 5(i)

By the KKT conditions for As, an expansion around Aes yields
05 = f(wsigsi — 1) + Gnit = = f(wsigs,- —rsi) + OF (As) (As — Aos) + anks,  (56)
3 3
where As is on the line between Ag and A¢s. Thus, we have
As — Xos = As — Aos + Ogary ks

. A1 A
=As — Aos — ®s|:; Z(wsigsi —rsi) + Q,&z)(/\s)()\s - /\os):|»
i=1
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where I is an s x s identity matrix, the first equality follows from the definition of As,
and the second equality follows from (56). The conclusion follows by the definition of A.

Proof of Lemma 5(ii)

By the definition of As,

|As — Aos| = |;\s — Aos| + |®sanks|

< lAs — Aosll1 + |®san;<s|

slog K
Sont )7

where the first inequality follows from the triangle inequality, the second inequality fol-
lows from the relationship between the ¢;- and ¢>-norms, and the third inequality fol-
lows from Lemma 4(ii) and the assumption |Os| = O, (1).

Proof of Lemma 5(iii)

Note that
Q(Z)()\os) = E[qbiz) ()\:)sgs)gsg;]» lez)(/_\s) = En[ iZ) (X;gs)gsgé],

and further denote Qﬁlz)()\os) = En[d)f)()\gsgs) 8s8s]. By Lemma 5(ii) and Condition
TD(3), we have

|0 (As) — 0P (Aos)|
= }E"[{ iZ)(A;)sgS) - iz)(}\/sgs)}gsg/s”

n

1/2
1
<4 sup —Zcbff)()\;gsi)?‘} {

Al A=Dosli S0 iy

n

S|~

1/2
{(Xs - /\os)/gs}z}
i=1

= Op(Ko,n{S).
Thus, the triangle inequality and Lemma 3(i) imply
|02 (As) — 0P (Aos)| < [0 (As) — QP (Aos)| + |OF (Aos) — QP (Aos)|

[ #2
= OP(Ko,ngg) + Op< gs lnogs>

ZOP(Koynfg)-
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Proof of Lemma 5(iv)
By (56), we have

1< A . - s .
=D (sigsi = 15i)| =[O he)(As = Aos)| + lenits| < [P (As)[IAs = Aosll1 + latuis|
i=1

S IAs — Aosll1 + |anks| = Op (Ko,n \%

where the second inequality follows from the definition of the matrix norm | - | and the
relationship between the ¢;- and £2-norms, and the third inequality uses Lemma 4(iii)
and Condition TD.

Proof of Lemma 5(v)

By triangle inequality, we have
|Is — 0502 (A6)| < [{OP (Aos) ™t = B5} 0P (Aos)| +|Os] 0P (Aos) — 0P (As) }].

Condition TD guarantees Q®) (Aos) = O(1) and @s = 0,(1). Thus, the conclusion follows
by Lemma 5(iii).

APPENDIX C: ADDITIONAL TABLES

TABLE 5. Cross-sectional regression for other low-dimensional portfolios.

Intercept ASDF ARM ASMB AHML Adjusted R?

Panel A: 10 momentum

KL: No penalty 0.752 —0.168 0.918
(21.715) (—10.056)
KL: @, =0.05 0.716 —0.129 0.908
(18.714) (—9.493)
3 Factors 2.365 —1.198 —0.068 —1.485 0.815
(1.576) (—0.754) (—0.057) (—1.615)
Panel B: 25 long term reversal and size
KL: No penalty 0.741 —0.215 0.505
(8.023) (—5.049)
KL: a, = 0.05 0.382 —0.180 0.785
(4.372) (—9.416)
3 Factors 0.702 0.219 0.111 0.633 0.754
(2.541) (0.833) (1.678) (5.051)

Note: The estimated SDF is derived in a rolling window out-of-sample fashion from July 1963 to December 2010. Panel A
presents results using 10 momentum portfolios, and Panel B is concerned with results using 25 long term reversal and size
portfolios. The second column is the estimated constant in each model, the last column records the adjusted R?, and the other
columns summarize estimated price of risk. Numbers in the bracket are the corresponding t-values. In each panel, the first row
is about the estimated SDF with KL when no penalty is imposed, the second row is the estimated SDF with KL when penalty
level is at 0.05, and the third row is the seminal Fama-French three-factor models.
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TABLE 6. Cross-sectional regression for intermediate dimensional portfolios.

Interceptm ASDF ARM AsMB AHML Adjusted R?

Panel A: 100 size and book-to-market

KL: No penalty 1.033 —0.926 0.581
(52.744) (—11.532)
KL: @, =0.1 0.725 —0.273 0.652
(20.435) (—13.367)
3 Factors 1.575 —0.639 0.190 0.439 0.627
(8.618) (—3.670) (5.577) (11.175)
Panel B: 49 industry
KL: No penalty 0.800 —0.129 0.329
(16.239) (—4.852)
KL: @, =0.1 0.686 —0.065 0.294
(0.686) (—0.065)
3 Factors 1.064 —0.008 —0.096 —0.109 —0.002
(6.229) (—0.047) (—0.923) (—1.151)
Panel C: 25 long term reversal+25 short term reversal4+-25 momentum
KL: No penalty 1.083 —1.919 0.605
(48.960) (—10.698)
KL: @, =0.1 1.130 —0.484 0.441
(43.162) (=7.705)
3 Factors 1.416 —0.432 0.293 0.012 0.153
(4.489) (—1.454) (3.370) (0.064)

Note: Cross-sectional regression results in the intermediate case. The estimated SDF is derived in a rolling window out-of-
sample fashion from July 1963 to December 2010, using portfolios in each corresponding panel. Panel A presents results using
100 size and book-to-market portfolios, Panel B presents results using 49 industry portfolios, and Panel C presents results
using 75 portfolios listed in the beginning of the panel. The second column is the estimated constant in each model, the last
column records the adjusted R2, and the other columns summarize estimated price of risk. Numbers in the bracket are the
corresponding t-values. In each panel. the first row is about the estimated SDF with KL when no penalty is imposed, the second
row is the estimated SDF with KL when penalty level is at 0.1, and the third row is the seminal Fama-French three- factor
models.
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