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This paper is concerned with estimation of functionals of a latent weight func-
tion that satisfies possibly high-dimensional multiplicative moment conditions.
Main examples are functionals of stochastic discount factors in asset pricing,
missing data problems, and treatment effects. We propose to estimate the la-
tent weight function by an information theoretic approach combined with the �1-
penalization technique to deal with high-dimensional moment conditions under
sparsity. We study asymptotic properties of the proposed method and illustrate it
by a theoretical example on treatment effect analysis and empirical example on
estimation of stochastic discount factors.
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1. Introduction

1.1 Motivation

In applied research, economic or statistical information is commonly characterized by
moment conditions on observables. The generalized method of moments provides a
unified framework to analyze the moment condition models, and numerous extensions
have been proposed in the econometrics literature. This paper is concerned with the
following moment condition model with a multiplicative moment function:

E
[
ω(X )g(X )

] = r, (1)

whereX is a vector of observables,E[·] is expectation under the data generating measure
of X , ω : X → (0, ∞) is an unknown weight function, g is a vector of known functions
of X , and r is a vector of known constants or moments of observables (say, r = E[r(X )]
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for some known r(·)). We are interested in the situation where the observables X and/or
vector of functions g are high dimensional (possibly higher than the sample size).

In general, there exists a nontrivial set W of ω that satisfies (1). In this paper, we
introduce an information theoretic approach to select a particular element ω0 ∈W , and
define the object of interest as its linear functional:

θ0 = E
[
ω0(X )h(X , Y )

]
, (2)

where Y is another vector of observables and h is a vector of known functions of (X , Y ).
This paper develops a general estimation and inference method for the parameter θ0

under possibly high-dimensional moment conditions (1).
Interestingly, this setup can be motivated by somewhat distant empirical problems:

inference on stochastic discount factors (SDFs) and missing data problems including
treatment effect analysis. The latent weight ω plays the role of the SDF for the former
example, and the (reciprocal of) missing probability or propensity score for the latter.

Example 1 (Stochastic discount factor). In a discrete time economy with no arbitrage,
there exists a strictly positive SDF mt such that

E[mtRj,t ] = 1, (3)

where Rj,t is the short term return of asset j ∈ {1, � � � , K−1} between time t and t+1, and
E[· ] is the objective expectation operator. This equation says that any asset in the market
would share the same expected return when discounted by the SDF mt (see Cochrane
(2009) for a review). Suppose there also exists a risk free asset with return Rf ,t , which
satisfies

E[mtRf ,t ] = 1. (4)

Let Xt = (1, R1,t − Rf ,t , � � � , R(K−1),t − Rf ,t )′ be a K dimensional vector of the excess
returns and a constant. Since E[mt ] �= 0, (3) and (4) imply

E

[
mt

E[mt ]
Xt

]
= e1, (5)

where e1 = (1, 0, � � � , 0)′. Unless the market is complete, the SDF mt (and thus mt/E[mt ])
is generally set identified from the moment condition (5). That is, without further re-
strictions, any positive random variable mt satisfying (5) can be a valid SDF.1

In this example, we focus on the case where mt/E[mt ] is written as a function of Xt .
However, this is still not enough to pin down the (normalized) SDF, and there is a set W
of functions of Xt satisfying (5), that is,

E
[
ω(Xt )Xt

] = e1, for all ω ∈W . (6)

1Note that the moment condition (3) also holds conditionally on agents’ information sets (say,
E[mtRj,t |It−1] = 1 for the information set It−1 at t − 1) whereas this example focuses on the unconditional
moment condition in (3). Thus, the identified set for mt by the unconditional moment in (3) is a super-
set of the one by the conditional moment E[mtRj,t |It−1] = 1. Furthermore, since any mt satisfying (3) also
satisfies (5), the identified set for mt by (5) is a superset of the one by (3).
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This setup can be considered as a special case of (1) with g(X ) = X and r = e1. In Sec-
tion 1.2, we present how our methodology can be used to estimate some particular ele-
ments in W .2

Inference on SDFs is one of the central topics in financial economics. For example,
Christensen (2017) investigated extraction of permanent and transitory components of
the SDF process, which requires estimation of E[mtb(St )b(St+1 )′] for a vector of known
basis functions b(·) and state vectors St and St+1. Christensen (2017) considered two
cases: (i) mt is directly observable and (ii) mt is replaced with a (parametric or nonpara-
metric) preliminary estimator. Our information theoretic approach will provide non-
parametric estimators for some particular choices of ω and alternative estimators for
E[mtb(St )b(St+1 )′] designed for possibly high-dimensional setups.

Example 2 (Missing data). Consider the problem of estimating a population mean
from incomplete outcome data (see Little and Rubin (2002) for a survey). For each unit
i = 1, � � � , N , we observe an indicator variable Di (Di = 1 if unit i responds and Di = 0
otherwise), outcome variable Yi = DiY

∗
i (Yi = 0 means that Y ∗

i is missing), and vec-
tor of covariates Xi. We are interested in the population mean θ = E[Y ∗

i ]. Under con-
ditional independence of Y ∗ and D given X and certain overlap assumptions, the pa-
rameter of interest is identified as θ = E[ω(X )YD], where ω(X ) = 1/P{D = 1|X}. In this
setup, many estimation and inference methods for θ have been proposed (see, e.g., Tsi-
atis (2006)), including the inverse probability weighted estimator n−1 ∑n

i=1 ω̃(Xi )YiDi,
where ω̃(x) is a nonparametric estimator of 1/P{D = 1|X = x}.

Our information theoretic approach can be applied in this setup to develop an alter-
native estimator of θ. By the law of iterated expectations, the moment conditions in the
form of (1) may be given by

E
[
ω(X )g(X )D

] = E
[
g(X )

]
, (7)

for any vector of known functions g. Then the estimation problem of θ can be formu-
lated as a special case of ours by replacing the expectations in (1) and (2) with the con-
ditional expectations given D = 1 and setting r = E[g(X )] and h(X , Y ) = Y . In the re-
cent literature of missing data analysis and causal inference, the covariate balancing
approach explores the moment conditions in (7) to find suitable weights used for esti-
mation of θ (see, e.g., Zubizarreta (2015) and Chan, Yam, and Zhang (2016)). This paper
proposes an alternative estimation method that may be considered as an extension of
those papers toward high-dimensional setups.

1.2 Methodology

In this paper, we propose an information theoretic approach to select some element ω0

satisfying (1) and to estimate the parameter θ0 in (2) based on ω0. Our approach allows

2Based on the framework in Hansen (2014) (see also Chen, Hansen, and Hansen (2020)), the SDF and
belief distortions cannot be disentangled. In this context, the object mt could be interpreted as the belief
distortion required to rationalize an SDF that takes the value 1 almost surely.
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high-dimensional observables and/or moment functions (possibly higher than the sam-
ple size). This feature is particularly desirable for our motivating examples. For Exam-
ple 1, the number of assets may be very large. For Example 2, the number of covariates
tends to be large so that the conditional independence assumption (unconfoundedness
or ignorability in causal analysis) is likely to be satisfied.

More precisely, we regard the latent weight function as the Radon–Nikodym deriva-
tive ω = dQ/dP, whereP is the data generating measure of X and Q � P is a tilted model-
based measure. Since the first elements of g and r in (1) are assumed to be 1 (Condi-
tion D(3) in the next section), we guarantee that E[ω(X )] = ∫

dQ = 1. Letting EQ[·] be
expectation under Q, the moment condition (1) is written as EQ[g(X )] = r.

In general, there are infinitely many possible choices for the tilted measure Q. As
a rule to select a particular Q, we introduce the information projection based on the
φ-divergence in the Orlicz space (see, e.g., Csiszár (1995) and Komunjer and Ragusa
(2016)). Let φ : R → R ∪ {+∞} be a convex and lower-semicontinuous divergence func-
tion.3 We consider the following minimization problem:

min
Q

E

[
φ

(
dQ

dP

)]
, s.t. EQ

[
g(X )

] = r, E

[
φ

(
1 + c

∣∣∣∣dQdP
∣∣∣∣
)]

< ∞ for some c > 0. (8)

Under Condition D(4) in the next section, Theorem 3 in Komunjer and Ragusa (2016)
implies that the solution of (8) exists and is unique, and by Komunjer and Ragusa (2016,
Lemma 5), the primal problem (8) has a well-defined dual problem

min
λ

E
[
φ∗

(
λ′g(X )

) − λ′r
]
, (9)

where φ∗(a) = supb∈R{ab − φ(b)} is the convex conjugate of φ. Furthermore, let λ∗ be
the solution of (9). Under Conditions D(3) and D(5) in the next section, we can apply
Borwein and Lewis (1993, Corollary 3.6 and primal constraint qualification) implying
that the solution Q∗ of (8) can be characterized as

dQ∗
dP

(·) =φ(1)∗
(
λ′∗g(·)), (10)

where φ(1)∗ is the first derivative of φ∗.
We now define the weight function ω0 satisfying (1) of our interest. Since the dimen-

sion of g, denoted by K, grows as the sample size increases, we define ω0 as follows: for
each x in the support X of X ,

ω0(x) =
⎧⎨
⎩
ω(x), if ω is point identified,

lim
K→∞

dQ∗
dP

(x) = lim
K→∞

φ(1)∗
(
λ′∗g(x)

)
, if ω is set identified.

(11)

That is, if the underlying model that implies (1) uniquely identifies ω as K → ∞ (as in
Example 2), ω0 is considered as this identified ω. If the underlying model that implies (1)
partially or set identifies ω even when K → ∞ (as in Example 1), we define ω0(x) as the

3For convenience, we view φ as an extended real valued function defined on R. This means: for φ defined
a priori on (0, +∞), we extend it outside its domain by setting φ(u) = +∞ for all u ∈ (−∞, 0) and φ(0) =
limu→0+ φ(u).
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pointwise limit of dQ∗
dP (x) in (10) for each x ∈ X . Based on ω0 defined above, our object

of interest is defined as

θ0 = E
[
ω0(X )h(X , Y )

]
. (12)

Our estimation methods for ω0(·) and θ0 are presented as follows. Let En[·] be the
sample mean, ‖ · ‖1 be the �1-norm for a vector, and I{x ∈ Xn} be a trimming term for an
increasing sequence {Xn} to the support X of X to deal with technical problems when X
is unbounded (see Chen and Christensen (2015)). By taking sample counterparts for the
trimmed moment functions, our information theoretic estimator of θ0 is obtained as

θ̂ = En
[
φ(1)∗

(
λ̂′g(X )I{X ∈ Xn}

)
h(X , Y )

]
, (13)

where

λ̂ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arg min
λ

En
[
φ∗

(
λ′g(X )I{X ∈ Xn}

) − λ′r(X )I{X ∈ Xn}
]

(low-dimensional case),

arg min
λ

En
[
φ∗

(
λ′g(X )I{X ∈ Xn}

) − λ′r(X )I{X ∈ Xn}
] + αn‖λ‖1

(high-dimensional case),

(14)

αn is a penalty level chosen by the researcher, and r(X ) may be a vector of known con-
stants (as in Example 1). The �1-penalty term for the high-dimensional case is intro-
duced to regularize behaviors of λ̂. Although this paper focuses on the �1-penalization
(Tibshirani (1996)), other penalization methods (such as the smoothly clipped absolute
deviation by Fan and Li (2001), and minimax concave penalty by Zhang (2010)) may be
applied as well.

Popular choices of the divergence φ that will satisfy our regularity conditions are: (i)
Kullback–Leibler (KL) divergence (or relative entropy)

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩
x logx− x+ 1, x > 0,

1, x= 0,

+∞, x < 0,

with φ∗(y ) = ey − 1, (ii) Pearson’s χ2 divergence without truncation at zero (PSN1)

φ(x) = 1
2
x2 − x+ 1

2
,

with φ∗(y ) = 1
2y

2 + y, (iii) Pearson’s χ2 divergence with truncation at zero (PSN2)

φ(x) =
⎧⎨
⎩

1
2
x2 − x+ 1

2
for x≥ 0,

+∞ for x < 0,

with φ∗(y ) = 1
2 (max{y, −1})2 + max{y, −1}.4

4In our empirical illustration in Section 5, we present results using both versions of Pearson’s χ2 diver-
gence, and find PSN1 performs slightly better in finite samples. A drawback of PSN1 is that the resulting
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We emphasize that although the construction of λ̂ in (14) is reminiscent of the gen-
eralized empirical likelihood estimator for overidentified moment condition models
(Newey and Smith (2004)), our setup and properties of the estimator are significantly
different for three reasons. First, our moment conditions in (1) involve the latent weight
function ω, and the information projection is applied to pin down ω0. Second, the in-
terpretation and property of λ̂ are different from theirs. In the conventional generalized
empirical likelihood estimator, λ̂ plays the role of the Lagrange multiplier or shadow
price for the moment conditions, and converges to zero as the sample size increases if
the model is correctly specified. On the other hand, in our approach, λ̂ is an estimator
for the dual parameter λ∗ and typically does not converge to zero (even though the mo-
ment conditions (1) are correctly specified). With this respect, our method is more in
line with the sieve estimation methodology. Finally, we allow the moment conditions (1)
to be high dimensional, where λ̂ has to be regularized as in (14).

1.3 Choice of divergence

To implement our information theoretic estimator θ̂ in (13), we need to choose the di-
vergence φ. When ω is point identified by the underlying model implying (1) (as in Ex-
ample 2), any choice of φ satisfying the regularity conditions in the next section yields a
consistent and asymptotically normal estimator for θ0.

If ω is set identified by (1) (as in Example 1), different choices of φ typically select
different elements in the identified set W for ω. In this paper, we do not advocate any
particular choice of φ since its choice usually differs by motivations of researchers.

For instance, in Example 1, choosing a quadratic divergence (e.g., φ(x) = 1
2x

2) picks
off the best linear approximation of the projected SDF ωp(·) = E[mt|Xt = ·]/E[mt ]. On
the other hand, the use of the KL divergence has been motivated by several papers in
the literature (Stutzer (1995) and Ghosh, Julliard, and Taylor (2016)): it has a quasi- max-
imum likelihood interpretation, is consistent with the maximum entropy principle in
Bayesian methods, and adds minimum amount of information for the moment condi-
tions to hold. The KL divergence offers a closed-form solution that automatically inte-
grates to 1 and is nonnegative. Moreover, in Example 1, the SDF estimated by the KL
divergence is particularly attractive since it is adapted to the popular log-linear mod-
eling of the SDF (e.g., Vasicek (1977)), and consistent with the optimal portfolio choice
with an expected utility maximizing investor who has constant absolute risk aversion
utility. See Backus, Chernov, and Zin (2014) and Hansen (2014) for further details.

Although a formal discussion of the optimal choice of φ is beyond the scope of
this paper, we note that the KL divergence requires more stringent regularity condi-
tions (such as existence of higher moments of g in Condition D(4) below), so it may
not be suitable for heavy-tailed data. Therefore, as a general rule of thumb, if some
higher moments of g do not exist, then divergences that impose less stringent condi-
tions for moments (such as the Pearson’s χ2 divergence) would be more appropriate. In

estimate for ω0 may take negative values. Christensen and Connault (2019) developed a hybrid divergence
that smoothly pastes together KL divergence with a quadratic function. Their hybrid divergence also satis-
fies our regularity conditions, ensures that the estimate for ω0 will always take positive values, and requires
weaker moment conditions (see Condition D(4)) compared to the KL divergence.
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Section 5, we apply the Pearson’s χ2 and KL divergences to estimate the SDF and com-
pare their cross-sectional predictability. Both of these estimated SDFs show better pre-
dictability than Fama–French’s three factors, but exhibit rather different shapes. In the
low-dimensional scenario, the SDF estimated by the KL divergence is highly positively
skewed and leptokurtic. On the other hand, the SDF estimated by the Pearson’s χ2 diver-
gence is more symmetric and has low kurtosis. We also find that the performance of the
KL divergence is better than the Pearson’s χ2 divergence in the low-dimensional case
in terms of out-of-sample cross-sectional predictability.5 On the other hand, in high-
dimensional scenarios, we need to penalize more aggressively for the KL, and Pearson’s
χ2 divergence performs slightly better than the KL after penalization in terms of out-
of-sample cross-sectional predictability. Thus, in our empirical example of estimating
out-of-sample SDFs, if higher moments of returns do exist, then divergences that are
more sensitive to deviations from one probability measure to another (such as the KL
divergence) are more preferable, since they can capture skewness and other higher mo-
ment characteristics that might be important in asset markets. Given these theoretical
and empirical results, we recommend to use the KL divergence in low-dimensional sce-
narios and Pearson’s χ2 divergence in high-dimensional scenarios for our empirical ex-
ample in Section 5.

1.4 Related literature

The construction of our estimator is related to the method of generalized empirical like-
lihood (Newey and Smith (2004)). In spite of similarity of the construction of the esti-
mator, however, our setup and properties of λ̂ are quite different from this literature.
Indeed, our treatment on λ̂ shares more similarities with coefficients for basis functions
in series or sieve estimation (see Chen (2007) for a review).

In order to deal with high-dimensional moment conditions, we adapt the general
theory of the lasso with convex loss functions by van de Geer (2008) and Bühlmann
and van de Geer (2011) to our setup. For inference, the debiasing method adopted in
Section 3 is similar to Zhang and Zhang (2014) and van de Geer, Bühlmann, Ritov, and
Dezeure (2014). Note that the results in Section 3 complement the literature on high-
dimensional semiparametric inference with locally/doubly robust moment conditions
(e.g., Farrell (2015), Belloni et al. (2017), and Chernozhukov et al. (2018)). Our method
can also be compared to high-dimensional versions of empirical likelihood methods,
such as Hjort, McKeague, and Van Keilegom (2009), Tang and Leng (2010), and Lahiri
and Mukhopadhyay (2012). Again, however, our setup and treatment on λ̂ are intrinsi-
cally different from this literature (typically λ̂ converges to nonzero λ∗ in our setup).

The main applications of our method are inference on missing data models, treat-
ment effects, and stochastic discount factors. Here, we only mention closely related
papers to clarify our contributions in these fields. See Imbens and Rubin (2015) and
Cochrane (2009) for surveys of these topics.

5This result may be interpreted as an indication of importance of modeling skewness in financial market
(e.g., Kraus and Litzenberger (1976)).
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In the realm of asset pricing, our paper is closely related to information theoretic ap-
proaches for semi-nonparametric analysis on the SDF (e.g., Kitamura and Stutzer (2002)
and Ghosh, Julliard, and Taylor (2016, 2017)). In this context, we make three contribu-
tions. First, our method can be regarded as an extension of some existing methods,
such as the ones by Ghosh, Julliard, and Taylor (2016, 2017), to high-dimensional se-
tups (especially for a large number of assets). Second, our theoretical analysis for the
low-dimensional case in Section 2 provides a theoretical background for the analyses
in Ghosh, Julliard, and Taylor (2016, 2017). Third, as mentioned in Example 1, this pa-
per can provide an alternative method to extract permanent and transitory components
of SDF processes (Christensen (2017). Our paper has also been influenced by Hansen
(2014) who formulates the problem of estimating SDFs as recovering distorted beliefs
(see also Chen, Hansen, and Hansen (2020)). In this context, the estimated SDF in this
paper could be interpreted as estimates for the belief distortion required to rationalize
an SDF that takes the value 1 almost surely.

In the context of missing data and treatment effect analysis, the proposed method,
illustrated in Section 4, is closely related to the literature on balancing weights (Zu-
bizarreta (2015), Chan, Yam, and Zhang (2016), and Athey, Imbens, and Wager (2016)).
Compared to Zubizarreta (2015) and Chan, Yam, and Zhang (2016), this paper is consid-
ered as an extension toward a high-dimensional setup. Compared to Athey, Imbens, and
Wager (2016), this paper proposes an alternative estimation method for treatment ef-
fects under high-dimensional covariates by utilizing an information theoretic approach.

1.5 Organization

The paper is organized as follows. We first present theoretical properties of our estimator
θ̂ for the low-dimensional case (Section 2) and high-dimensional case (Section 3). Then
the proposed method is illustrated by a theoretical example on treatment effects (Sec-
tion 4) and empirical example on the SDF (Section 5). Proofs and additional tables are
contained in the Appendix of the Online Supplementary Material (Qiu and Otsu (2022)).

Notation

Hereafter, we work with triangular array data {X(n)
i , Y (n)

i }ni=1, which are considered as

the first n elements of the infinite sequence {X(n)
i , Y (n)

i }∞i=1 generated from a probabil-
ity measure P(n). To simplify the notation, we suppress the upper scripts and denote
by {Xi, Yi}ni=1 and P. Our asymptotic analysis is based on the array asymptotics, and
the convergence “→” is understood as the one for n → ∞. Also, let E[·] = EP[·] be ex-
pectation under P, En[·] be the empirical average, I{A} be the indicator function for an
event A, |B| = √

λmax(B′B) be the �2-norm for a scalar, vector, or matrix B, and a ∨ b =
max{a, b}. For a matrix C = [cij ], let λmax(C ) and λmin(C ) be its maximum and minimum
eigenvalues, respectively, and denote ‖C‖∞ = max

1≤i,j≤n
|cij| and ‖C‖1 = max

1≤j≤n

∑m
i=1 |cij|. Let

f (k) be the kth derivative of function f . Finally, “A� B” means there exists some positive
constant C that does not depend on n and satisfies A ≤ BC for all n large enough.
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2. Low-dimensional case

In this section, we present asymptotic properties of our information theoretic estima-
tor θ̂ in (13) for the low-dimensional case, where K = dim(g) in (1) grows slowly com-
pared to the sample size n. In this case, computation of λ̂ in (14) does not involve the
�1-penalization. We first impose the following conditions.

Condition D.

(1) {Xi, Yi}ni=1 is a strictly stationary and ergodic triangular array, and {Xi}ni=1 is α-

mixing with mixing coefficients {αX ,m} satisfying
∑n

m=1 α
1/2−1/q
X ,m � 1 for some q >

2.

(2) The support X ⊆ Rp of X is a Cartesian product of p intervals with nonempty in-
teriors. {Xn} is an increasing sequence of compact, convex, and nonempty subsets
of X , and satisfies P{X /∈ Xn} = o(n−1 ).

(3) The first element of g is 1 and the first element of r is 1. ω0 defined in (11) ex-
ists and is a continuous function bounded from above and away from zero with
E[ω0(X )2] < ∞. h is a scalar-valued continuous function with E[h(X , Y )2] <∞.

(4) φ is strictly convex and twice continuously differentiable on (0, +∞), and satis-
fies φ(1) = φ(1)(1) = 0, limu→0+ φ(1)(u) < 0, limu→+∞φ(1)(u) > 0, limu→+∞ φ(u)

u =
+∞, and limu→∞ uφ(1)(u)

φ(u) < ∞, where φ(1) is the first derivative of φ.
E[φ∗(a|gj(X )|)] < ∞ for each j = 1, � � � , K and a > 0. There exists some proba-
bility measure Q1 such that E[φ( dQ1

dP (X ))] < ∞.

(5) There exists some probability measure Q2 such that dQ2
dP (x) is strictly positive

and is in the quasi-relative interior of the domain of φ for each x ∈ X , E[φ(1 +
c|dQ2

dP (X )|)] <+∞ for some c > 0, and E[g(X )dQ2
dP (X )] = r.

Condition D contains standard assumptions on the data {Xi, Yi}ni=1, divergence φ,
and functions appearing in (1) and (2). Condition D(1) allows the data to be weakly de-
pendent, and covers independent and identically distributed (iid) data as a special case.
Condition D(2) is on the support X of X and the trimming set Xn. For example, the
condition P{X /∈ Xn} = o(n−1 ) is satisfied with Xn = {x ∈ Rp : |x| ≤ n1/a} for a ∈ (0, a1 )
with E[|X|a1 ] < ∞.6 Condition D(3) is on the functions appearing in (1) and (2). The
first requirement in Condition D(3) guarantees that Q∗ in (10) integrates to 1. By Ko-
munjer and Ragusa (2016, Theorem 3 and Lemma 5), Condition D(4) guarantees that
the solution of (8) exists and is unique, and that the primal problem in (8) has the well-
defined dual problem in (9). Note that this condition allows unbounded g as long as
E[φ∗(a|gj(X )|)] < ∞ for each j = 1, � � � , K and a > 0. Condition D(5) combined with the
first requirement in Condition D(3) provides a constraint qualification to guarantee the

6In this paper, we apply trimming on the support X instead of the moment functions g. The main reason
is that the trimming on X makes it easier to verify the approximation condition in Condition S(2) (equation
(16)) below. We also note that trimming on X is adopted by Chen and Christensen (2015).
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strong duality between (8) and (9), that is, the unique solution of (8) coincides with the
one of (9) by applying Borwein and Lewis (1993, Corollary 3.6 and primal constraint
qualification).

To simplify the presentation, we focus on the case where h (and thus θ0) is scalar-
valued. An extension to the case of vector θ0 is straightforward. It is also possible to
extend our method to the case where θ0 is implicitly defined as a solution of moment
conditions E[h(Z, θ0, ω0(X ))] = 0 for Z = (Y , X ′ )′ and a linear map h (in ω0).

Let gn(X ) = E[g(X )g(X )′I{X ∈ Xn}]−1/2g(X )I{X ∈ Xn} be the orthonormalized ver-
sion of g after trimming. We impose the following assumptions.

Condition S.

(1) All eigenvalues of E[g(X )g(X )′I{X ∈ Xn}] are strictly positive for each n, and
|En[gn(X )gn(X )′] − I| = op(1).

(2) There exists some λb ∈RK such that

sup
x∈Xn

∣∣[φ(1)∗
]−1(

ω0(x)
) − λ′

bgn(x)
∣∣ � ηK,n, (15)

√
E

[{
ω0(X ) −φ(1)∗

(
λ′
bgn(X )

)}2] � ςK,n, (16)

for some ηK,n → 0 and ςK,n → 0.

Condition S lists requirements for the functions g and gn. Condition S(1) contains
eigenvalue conditions on E[g(X )g(X )′I{X ∈ Xn}] to guarantee existence of gn, and the
convergence of the matrix En[gn(X )gn(X )′]. This convergence is satisfied if {Xi}ni=1 is iid
and ζ2

K,n logK → 0, where ζK,n = supx∈X |gn(x)| (see, Lemma 3(i) in the Appendix of the
Online Supplementary Material). This convergence can be satisfied for dependent data
as well. For example, by Chen and Christensen (2015, Lemma 2.2), if {Xi}ni=1 is station-
ary and β-mixing with mixing coefficients {βm} such that βmn/m → 0 for some integer

m≤ n/2, then |En[gn(X )gn(X )′]−I| =Op(
√
mζ2

K,n logK/n) provided mζ2
K,n logK/n → 0.

Condition S(2) imposes assumptions on series approximations by gn for [φ(1)∗ ]−1(ω0 ).
The orders of the approximation errors ηK,n and ςK,n depend on the choices of the ba-
sis functions g, trimming set Xn, and smoothness of [φ(1)∗ ]−1(ω0(·)). It can be verified
by using results from functional analysis literature (e.g., Lorentz (1986) and Schumaker
(1981)).

Let rn(X ) = E[g(X )g(X )′I{X ∈ Xn}]−1/2r(X )I{X ∈ Xn} and

MK,n = max
1≤j≤K

{
E

[∣∣gnj(X )
∣∣q]}1/q ∨ {

E
[∣∣rnj(X )

∣∣q]}1/q
for q in Condition D(1),

ς̃K,n =
√√√√1

n

(
ς2
K,n + ς

1+2/q
K,n

n∑
m=1

α
1/2−1/q
X ,m

)
,

BK,n = ςK,n + √
ς̃K,n, μK,n = 1 +MK,n

n∑
m=1

α
1/2−1/q
X ,m .
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As in Komunjer and Ragusa (2016), we defineφ(1)(0) = limu→0+ φ(1)(u), and φ(1)(+∞) =
limu→+∞φ(1)(u). We impose the following assumptions for the convex conjugate func-
tion φ∗ of the divergence φ.

Condition I. φ∗ : R→ R∪ {+∞} is strictly convex and three times continuously differ-
entiable on (φ(1)(0), φ(1)(+∞)). Also, ζK,n(

√
KμK,n/n+BK,n ) → 0.7

Let ω̂(x) = φ(1)∗ (λ̂′g(x)I{x ∈ Xn}). Based on the above conditions, the convergence
rates of ω̂(·) and consistency of the estimator θ̂ in (13) are obtained as follows.

Theorem 1. Suppose that Conditions D, S, and I hold true. Then

√
En

[{
ω̂(X ) −ω0(X )

}2] =Op(
√
KμK,n/n+BK,n ), (17)

θ̂
p→ θ0, and

sup
x∈Xn

∣∣ω̂(x) −ω0(x)
∣∣ =Op(ζK,n

√
KμK,n/n+ ζK,nBK,n +ηK,n ). (18)

The consistency of θ̂ is established by showing that of ω̂ under the empirical L2-
norm in (17). As a byproduct of the proof of (17), we can obtain (18), an upper bound of
the uniform convergence rate of ω̂ over the trimming set Xn.8 Interestingly, although our
setup is different from standard nonparametric series estimation and ω0 is not a condi-
tional expectation function, we achieve similar convergence rates with conventional se-
ries estimators for regression models. Indeed, our proof is in line with series estimation
methods, where the estimation error of ω̂ can be decomposed into two parts: approxi-
mation bias (corresponding to BK,n) and sampling error (corresponding to

√
KμK,n/n).

The approximation error is dealt with Lemma 2 while the sampling error is controlled by
Lemma 3. In particular, μK,n characterizes a slowdown of the convergence rate for the
sampling error due to weak dependence of the data. For iid data, we have μK,n = 1 and
the sampling error is of order

√
K/n. On the other hand, ς̃K,n is an additional term due

to weak dependence in the approximation bias BK,n. For iid data with
√
nςK,n → ∞, the

bias term becomes a familiar expression BK,n = ςK,n.
We next consider the limiting distribution of our estimator θ̂. To this end, we add the

following conditions.

7If φ∗ is strictly convex and three times continuously differentiable on R (such as the KL and PSN1 diver-

gences), the requirement ζK,n(
√
KμK,n/n+ BK,n ) → 0 can be weakened to (i) the second derivative φ(2)∗ is

bounded from above and away from zero, or (ii) ζK,n(
√
KμK,n/n+BK,n ) � 1.

8Although this uniform convergence rate is admittedly not optimal, it is sufficient to establish asymptotic

normality of our estimator θ̂ below. It is also an open question whether we can improve the convergence
rate in (17) to establish the optimal rate as in Belloni et al. (2015) and Chen and Christensen (2015). Since
our estimator ω̂ and target ω0 are more complicated than the least squares estimator for the conditional
mean studied in those papers, such analysis will be technically more involving.
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Condition N.

(1) There exists a function rh : X → R such that E[rh(X )] = E[ω0(X )E[h(X , Y )|X]]
and

E
[
β′{ω0(X )gn(X ) − rn(X )

} − {
ω0(X )E

[
h(X , Y )|X

] − rh(X )
}]2 = o

(
n−1), (19)

where β = E[φ(2)∗ (λ′
bgn(X ))gn(X )g′

n(X )]−1E[φ(2)∗ (λ′
bgn(X ))gn(X )h(X , Y )].

(2) |En[φ(2)∗ (λ′
bgn(X ))gn(X )gn(X )′] − E[φ(2)∗ (λ′

bgn(X ))gn(X )gn(X )′]| = Op(�K,n ) for
some �K,n → 0.

(3) E[h(X , Y )2|X = ·] is bounded from above, E[|h(X , Y )|q1/(1−q1/q)] < ∞ for some
q1 ∈ (2, q] and E[|rh(X )|q] < ∞, where q > 2 is defined in Condition D(1).

(4) {Yi, Xi}ni=1 is α-mixing with mixing coefficients {αXY ,m}m∈N satisfying

n∑
m=1

α
(a/(2+a))∨(1/2−1/q1 )
XY ,m � 1,

for some a > 0 and E[|�|2+a] < ∞, where

�= ω0(X )h(X , Y ) − θ0 − {
ω0(X )E

[
h(X , Y )|X

] − rh(X )
}

. (20)

Condition N(1) is considered as the mean square continuity condition (cf. Assump-
tion 5.3 in Newey (1994)) in our setup, which guarantees the

√
n-consistency of θ̂ even

though ω̂ converges at a slower rate. Intuitively, (19) requires that E[h(X , Y )|X = ·] is
well approximated by the basis functions gn(·). This requirement is typically verified by
the results in functional analysis. The function rh should be specified for each appli-
cation. If r(X ) is a vector of known constants (as in Example 1), we can simply set as
rh(X ) = θ0. For Example 2, we can set as rh(X ) = E[Y ∗|X]. Proposition 2 below gives
two examples where (19) is satisfied. Condition N(2) is analogous to Condition S(1).

The convergence rate �K,n will be
√
ζ2
K,n logK/n for the iid case (by Lemma 3(i)), and√

mζ2
K,n logK/n for the β-mixing case (by adapting Lemma 2.2 in Chen and Christensen

(2015)). Condition N(3) contains mild assumptions on h and rh. Condition N(4) requires
α-mixing for {Xi, Yi}ni=1 to apply a central limit theorem to 1√

n

∑n
i=1 �i, where �i is the

influence function for θ̂.
By imposing Condition N, the limiting distribution of the estimator θ̂ is obtained as

follows.

Theorem 2. Suppose that the conditions of Theorem 1 and Condition N hold true. In
addition, ζ4

K,nKμK,n/
√
n → 0,

√
nζK,nBK,n → 0, and

√
KμK,nζK,n�K,n → 0. Then

√
n(θ̂− θ0 )

d→ N(0, V ),

where V = limn→∞ Var(
√
nEn[�]).
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This theorem says that our information theoretic estimator θ̂ is
√
n-consistent and

asymptotically normal. For iid data, the variance V becomes E[�2], which can be shown
to be the semiparametric efficiency bound (see Section 4 for the case of the average
treatment effect). Compared to Theorem 1, Theorem 2 requires more stringent condi-
tions on K. However, we note that the condition ζ4

K,nKμK,n/
√
n → 0 can be weakened

for some choices of φ, such as the Pearson’s χ2 divergence.
The asymptotic variance V can be estimated by some heteroskedasticity autocor-

relation consistent estimator. For example, based on Newey and West (1987), V can be
estimated by

V̂ = γ̂0 + 2
Mn∑
l=1

(
Mn − l

Mn

)
γ̂l,

where γ̂l = (n − l)−1 ∑n
i=l+1(�̂i − n−1 ∑n

i=1 �̂i )(�̂i−l − n−1 ∑n
i=1 �̂i ) is the sample auto-

covariance of

�̂i = I{Xi ∈ Xn}
[
ω̂(Xi )h(Xi, Yi ) − θ̂− {

ω̂(Xi )ĥ
X(Xi ) − r̂h(Xi )

}]
,

ĥX and r̂h are some nonparametric estimators of E[h(X , Y )|X = ·] and rh, respectively,
and Mn is a tuning parameter. By adapting the proof of Newey and West (1987, Theo-
rem 2) to the present context, the consistency of V̂ is obtained as follows.

Proposition 1. Suppose that the conditions of Theorem 2 hold true. Additionally, as-
sume that E[|�i|4q2+δ] < ∞ for some q2 > 1 and δ > 0,

∑n
m=1 α

1−1/(2q2 )
XY ,m � 1,

supx∈Xn
|ĥX(x) − E[h(X , Y )|X = x]| = Op(Rn ) and supx∈Xn

|r̂h(x) − rh(x)| = Op(Rn ) for

Rn = ζK,n
√
KμK,n/n+ ζK,nBK,n +ηK,n, Mn → ∞, and MnRn → 0. Then V̂

p→ V .

We close this section by providing some specific examples that satisfy (19) in Condi-
tion N(1).

Proposition 2. Suppose the assumptions in Theorem 2 except for (19) hold true.

(i) Suppose r(X ) is a vector of known constants, P{X /∈ Xn} = o((Kn)−1 ) and

E
[{
E

[
h(X , Y )|X

] − λ′gn(X )
}2] = o

(
n−1), (21)

for some λ ∈RK . Then (19) is satisfied with rh(X ) = θ0.

(ii) In Example 2 on missing data, suppose

E
[{
E

[
Y ∗|X

] − λ′gn(X )
}2] = o(1),

for some λ ∈RK . Then (19) is satisfied with rh(X ) = E[Y ∗|X].

Based on Proposition 2, if r(X ) is a vector of known constants, the influence function
� simplifies to �=ω0(X ){h(X , Y ) −E[h(X , Y )|X]}.
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3. High-dimensional case

In this section, we consider the high-dimensional case, where K = dim(g) can be larger
and grow faster than the sample size n. In this case, λ̂ in (14) is computed by the �1-
penalization. High dimensionality of g may be caused by either high dimensionality
of the original data X or many transformations (or basis functions) based on low-
dimensional X . In either case, as far as the latent weight function ω0 in (11) admits
certain sparse representation, our penalized estimator can consistently estimate ω0 and
the parameter of interest θ0. In Section 3.1, we study asymptotic properties of ω̂ to esti-
mate ω0. Then we consider three estimation approaches for θ0, debiasing (Section 3.2),
post selection (Section 3.3), and targeted debiasing (Section 3.4), and present conditions
to achieve

√
n-consistency and asymptotic normality for these estimators for θ0.

3.1 Estimation of ω0

We first present asymptotic properties of ω̂. For the high-dimensional case, we impose
the following assumptions.

Condition D′ . {Xi, Yi}ni=1 is an iid triangular array. The support X ⊆Rp of X is a Carte-
sian product of p intervals with nonempty interiors. Conditions D(3), (4), and (5) hold
true.

For the high-dimensional case, we focus on the case of iid data. An extension to de-
pendent data requires development of empirical process theory for dependent data in
our setting, which is beyond the scope of this paper. We also do not use trimming for X .
Impacts from possible unbounded support are dealt implicitly by the growth rate of
supx∈X ‖g(x)‖∞ and a uniform approximation assumption over X (see the statement
in Theorem 3).

To state additional conditions for the high-dimensional case, we introduce further
notation. For an index subset S ⊂ {1, � � � , K}, let |S| be its cardinality, λS = (λ1,S , � � � ,
λK,S )′ be a K dimensional vector with λj,S = λjI{j ∈ S} for the jth component λj of λ,
and λSc = (λ1,Sc , � � � , λK,Sc )′ with λj,Sc = λjI{j /∈ S}. So, λS and λSc have nonzero elements
only in the index set S and its complement Sc , respectively. Furthermore, let S be a class
of index sets.9 We introduce the so-called compatibility condition.

Condition C. For each S ∈ S, there exists some constant φS > 0 such that for all λ sat-
isfying ‖λSc‖1 ≤ 3‖λS‖1, it holds ‖λS‖1 ≤φ−1

S

√
λ′E[g(X )g(X )′]λ

√
|S|.

This is a high level condition that bounds ‖λS‖1 by the L2-norm of its correspond-
ing function λ′g(· ). Such a compatibility condition is commonly employed in the high-
dimensional statistics literature, such as the restricted eigenvalue condition in Bickel,
Ritov, and Tsybakov (2009). Let

E(λ) = E
[
φ∗

(
λ′g(X )

) − λ′r(X )
] −E

[
φ∗

(
λ′∗g(X )

) − λ′∗r(X )
]
,

9Knowledge of S can reflect researcher’s prior on what might be important sets of covariates. In the worst
case of no prior knowledge, S should contain all possible index sets for covariates.
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be the excess risk. Given S with associated compatibility constants {φS : S ∈ S} in Con-
dition C, the oracle λo is defined as

λo = arg min
λ:Sλ∈S

2E(λ) + 8α2
n

φ2
Sλ
�

|Sλ|, (22)

where Sλ = {j : λj �= 0}, αn is the penalty level in (14), and � is a constant defined in

Condition H below. Let Qo be the minimized value of (22) and ωo(x) = φ(1)∗ (λ′
og(x)).

Note that E(λo ) ≥ E(λ∗ ) = 0 and a part of our sparsity assumption is characterized by
the convergence rate of E(λo ) toward zero. Let

νn(λ) = En
[
φ∗

(
λ′g(X )

) − λ′r(X )
] −E

[
φ∗

(
λ′g(X )

) − λ′r(X )
]
,

be an empirical process. We impose the following assumptions.

Condition H. For every ε > 0 small enough and n large enough, there exist positive
constants σε,n, �, and A such that for M = Qo

2σε,n
,

(1) P{sup‖λ−λo‖1≤M |νn(λ) − νn(λo )| ≤ σε,nM } ≥ 1 − ε,

(2) for any λ satisfying ‖λ− λo‖1 ≤M , it holds

sup
x∈X

∣∣(λ− λo )′g(x)
∣∣ ≤A, �(λ− λo )′E

[
g(X )g(X )′

]
(λ− λo ) ≤ E(λ),

(3) σε,n ≤ αn/8 and αn ∝ √
logK/n for all n ∈ N.

Condition H(1) controls the empirical process νn(λ) in a neighborhood of the ora-
cle λo. Intuitively, we require that νn(λ) − νn(λo ) will be small when λ is close to λo in
terms of the �1-norm. The order of σε,n, which is typically O(

√
logK/n), can be derived

by empirical process theory.10 By Condition H(2), the excess risk E(λ) can be bounded
from below by a quadratic function of λ when λ is close to λo in terms of the �1-norm.
Condition H(3) is on the penalty coefficient αn. First, αn should be large enough to offset
the effect from σε,n. Second, since σε,n is typically of order O(

√
logK/n), we set αn as the

same order to achieve the fastest convergence in this typical case.11

Under these conditions, the convergence rate of ω̂ and consistency of the pa-
rameter estimator θ̂ are established as follows. Let ζ̃K = supx∈X ‖g(x)‖∞, s = |Sλo|,

κo,n = E(λo )
√

n
logK ∨ s

√
logK
n , and {ξn} and {ςo,n} be positive sequences such that

‖En[g(X )g(X )′‖∞ =Op(ξn ) and
√
E[{ωo(X ) −ω0(X )}2] � ςo,n, respectively.

10Since our objective function is Lipschitz in a neighborhood of λo, probabilistic inequalities, such as
Bühlmann and van de Geer (2011, Lemma 14.20), can be applied.

11Generally, there are two data-driven methods to select αn. First, αn may be chosen by cross validation
although it might lack theoretical justification. Second, αn can be chosen as the smallest value such that
Condition H holds with large probability. That is, we can set αn = 8σ̂ε,n, where σ̂ε,n is an estimator of σε,n,
based on the empirical process and moderate deviation theories. See Belloni et al. (2012) for further details.
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Theorem 3. Suppose Conditions D′, C, and H hold true. φ∗ : R → R ∪ {+∞} is strictly
convex and three times continuously differentiable, and either (i) the second derivative
φ(2)∗ is bounded from above and away from zero, or (ii) ζ̃Kκo,n � 1. Furthermore, assume
that ςo,n → 0, κo,nξ

1/2
n → 0, and supx∈X |ωo(x) −ω0(x)| � 1. Then

√
En

[{
ω̂(X ) −ω0(X )

}2] = Op(κo,n
√
ξn + ςo,n ), (23)

and θ̂
p→ θ0. If we additionally assume ζ̃Kκo,n → 0 and supx∈X |ωo(x) −ω0(x)| → 0, then

sup
x∈X

∣∣ω̂(x) −ω0(x)
∣∣ p→ 0. (24)

This theorem, a counterpart of Theorem 1 for the high-dimensional case, establishes
the empirical L2 convergence rate of ω̂, which is used to derive the consistency of θ̂. Note
that we only require boundedness for the uniform approximation error supx∈X |ωo(x) −
ω0(x)| by the oracle. The object ζ̃K depends on the choice of basis functions g and X .
For example, if g is a vector of polynomials over X = [0, 1]p, it holds ζ̃K = O(1). The ob-
ject ξn measures the growth rate of the sup-norm of En[g(X )g(X )′]. It can be controlled
by Hoeffding’s inequality, and is typically of order O(‖E[g(X )g(X )′]‖∞ ) (or O(1) for cer-
tain basis functions). In this case, if we further assume E(λo ) = O(s logK/n) and ςo,n =
O(s

√
logK/n), then the empirical L2 convergence rate of ω̂ is of order Op(s

√
logK/n)

and the dimension K may grow faster than n even at an exponential rate. For the high-
dimensional case, the approximation bias for ω0 tends to be larger and is controlled by
the approximate sparsity assumption that requires sufficiently fast decay rates of the ex-
cess risk E(λo ) and approximation error ςo,n. A byproduct of this theorem is the uniform
consistency in (24) under additional assumptions.

Although the estimator θ̂ is consistent for θ0, it does not achieve the
√
n-consistency

and asymptotic normality in general. In the following subsections, we present three ap-
proaches to modify the estimator for θ0 to achieve the

√
n-consistency and asymptotic

normality.

3.2 Debiased estimator for θ0

In this subsection, we consider a debiased estimation method for θ0 in the high-
dimensional setup. It is well known that plug-in methods to estimate finite dimen-
sional objects, where the first step is implemented by the lasso, typically cannot achieve
the

√
n-consistency. In statistics literature, several procedures are proposed to debias

the lasso estimators to achieve the
√
n-consistency and asymptotic normality for fi-

nite dimensional objects of interest (see, e.g., Zhang and Zhang (2014) and van de Geer
et al. (2014)). It is natural to ask whether such debiasing procedures may be applied
to our setup. However, in our setting, it seems the debiasing procedure achieves

√
n-

consistency and asymptotic normality for θ0 only under certain stringent conditions.
To illustrate this point, suppose φ(2)∗ (· ) = c∗ > 0 for some known constant c∗ (e.g., by

choosing φ(x) = 1
2x

2). Let κ̂ = (sign(λ̂1 ), � � � , sign(λ̂K ))′ and �̂ be an approximation of
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the ‘inverse’ of En[g(X )g(X )′] (which may not exist in the high-dimensional case). Here,
we consider the debiased estimator

θ̂DB = En
[{
φ(1)∗

(
λ̂′g(X )

) + αng(X )′�̂κ̂
}
h(X , Y )

]
, (25)

where the additional term αng(·)′�̂κ̂ corrects the first-order bias from the plug-in esti-
mation by λ̂. We note that this additional term will be different if we drop the require-
ment φ(2)∗ (· ) = c∗ > 0. To establish the

√
n-consistency and asymptotic normality of θ̂DB,

we impose the following assumptions. Let β̂DB = �̂′En[g(X )h(X , Y )].

Condition DB.

(1) There exist functions rh, r̃h, h̃X : X → R such that E[rh(X )] = E[ω0(X )E[h(X ,
Y )|X]], E[r̃h(X )] = E[ω0(X )h̃X(X )], and

En
[
β̂′
DB

{
ω0(X )g(X ) − r(X )

} − {
ω0(X )h̃X(X ) − r̃h(X )

}]2 = op
(
n−1),(

ς2
o,n + ςo,nn

−1/2)En
[
h̃X(X ) − β̂′

DBg(X )
]2 = op

(
n−1).

(2)
√
nκo,n‖En[h(X , Y )g(X )]‖∞‖I −En[g(X )g(X )′]�̂‖1 = op(1).

Condition DB highlights two key requirements for achieving the
√
n-consistency and

asymptotic normality of the debiased estimator θ̂DB. Condition DB(1) is a natural ex-
tension of Condition N(1) under the high-dimensional case. It requires that β̂′

DBg(·)
should converge fast enough to some function h̃X(·). Intuitively, h̃X(·) can be under-
stood as an approximation of E[h(X , Y )|X =· ]. This is a key condition to correct the
bias from the second step to compute θ̂DB. On the other hand, Condition DB(2) con-
trols the �1-regularization bias. It says the matrix �̂ should be selected to guarantee
‖I −En[g(X )g(X )′]�̂‖1 to be sufficiently small.

The
√
n-normality of the debiased estimator θ̂DB is obtained as follows. Let {τn} be

a positive sequence such that
√
E[{E[h(X , Y )|X] − h̃X(X )}2] ∨

√
E[{rh(X ) − r̃h(X )}2] �

τn.

Theorem 4. Suppose Conditions D′, C, H, and DB hold true and φ(2)∗ (· ) = c∗ > 0
for some known constant c∗. If supx∈X E[h(X , Y )2|X = x] � 1, ςo,n → 0, τn → 0, and√
nςo,nτn → 0, then

√
n(θ̂DB − θ0 )

d→N
(
0, E

[
�2]).

Theorem 4 gives conditions under which the debiased estimator θ̂DB can achieve
the

√
n-normality. It seems the requirements on �̂ listed in Condition DB are difficult to

avoid. In fact, our debiasing procedure may be considered as an intermediate procedure
between the parametric debiasing of Zhang and Zhang (2014) and van de Geer et al.
(2014), and the complete debiasing of Farrell (2015) and Belloni et al. (2012). It is beyond
the scope of this paper to study a practical way of finding the matrix �̂ (e.g., by adapting
the lasso with nodewise regression in van de Geer et al. (2014)), and we leave this for
future research.
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3.3 Post selection estimator for θ0

Given that the debiasing procedure in the last subsection requires relatively strong con-
ditions, we propose the following post selection method to obtain a

√
n-consistent esti-

mator for θ0:

(1) Compute λ̂ in (14) for the high-dimensional case. Let s = |Ŝ| be the cardinality of
the selected set Ŝ = {j : λ̂j �= 0}.

(2) Let gs and rs be the s-dimensional functions corresponding to the selected set Ŝ.
Implement (14) for the low-dimensional case (i.e., without the �1-penalty) based
on gs and rs. Denote the solution of this step as

�̂ = arg min
�∈Rs

En
[
φ∗

(
�′gs(X )

) −�′rs(X )
]
. (26)

(3) Construct the post selection estimator as

θ̃ = En
[
φ(1)∗

(
�̂′gs(X )

)
h(X , Y )

]
. (27)

To study asymptotic properties of the post selection estimator θ̃, we introduce some
notation. Let �∗ = arg min�∈Rs E[φ∗(�′gs(X )) −�′rs(X )] be the population counterpart
of (26), and ω∗(x) = φ(1)∗ (�′∗gs(x)), which is an approximation of ω0 using the selected
vector gs. Note that ω∗ could be different from ωo selected by the oracle λo. Also, define

βs = E
[
φ(2)∗

(
�′∗gs(X )

)
gs(X )gs(X )′

]−1
E

[
φ(2)∗

(
�′∗gs(X )

)
gs(X )E

[
h(X , Y )|X

]]
,

and h̃X(x) = β′
sgs(x). We impose the following conditions.

Condition N′ . There exist functions rh, r̃h : X → R such that E[rh(X )] = E[ω0(X ) ×
E[h(X , Y )|X]], E[r̃h(X )] = E[ω0(X )h̃X(X )], and

E
[
β′

s
{
ω0(X )gsi(X ) − rs(X )

} − {
ω0(X )h̃X(X ) − r̃h(X )

}]2 → 0. (28)

Condition N′ can be viewed as an extension of the mean square continuity (as in As-
sumption 5.3 of Newey (1994)) for imperfect model selection, where h̃X(·) = β′

sgs(·) is
understood as an approximation of E[h(X , Y )|X = ·] based on the selected basis func-
tions gs. In the case of imperfect model selection (i.e., Ŝ �= Sλo ), ω∗ and h̃X may not
approximate ω0 and hX well enough, respectively. We impose the following conditions
for those approximation errors.

Condition S′ . For each n, all eigenvalues of E[gs(X )gs(X )′] are bounded from above
and away from zero, conditional on the selected set Ŝ. Also, for some positive sequences
{ςs,n} and {τs,n}, √

E
[{
ω0(X ) −ω∗(X )

}2] � ςs,n, (29)√
E

[{
E

[
h(X , Y )|X

] − h̃X(X )
}2] � τs,n. (30)
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Because of the imperfect model selection, ςs,n and τs,n may not vanish sufficiently
fast as in Theorem 2. Instead, we only require ςs,n and τs,n to be O(1). Let ζs =
supx∈X |gs(x)|.

Condition I′ . φ∗ : R → R ∪ {+∞} is strictly convex and three times continuously dif-
ferentiable,

sup
x∈X

φ(2)∗ (�′∗gs(x)) � 1, and sup
�∈Rs:|�−�∗|�

√
ζ2

s /n

En[φ(3)∗ (�′gs(X ))2] =Op(1).

Condition I′ is a counterpart of Condition I, and imposes additional requirements on
the conjugate function φ∗, which can be trivially satisfied for some divergence, such as
φ(x) = 1

2x
2. This condition can be also satisfied if supx∈X |[φ(1)∗ ]−1(ω0(x))−�′∗gs(x)| � 1,

that is, the selected component �′∗gs(·) is not too far from [φ(1)∗ ]−1(ω0(·)).
Under these conditions, the

√
n-normality of the post selection estimator θ̃ is ob-

tained as follows.

Theorem 5. Suppose Conditions D′, S′, I′, and N′ hold true. In addition, ζ2
s log s/n → 0,

ζ6
s /

√
n → 0, and E[(�+ v1 + v2 + v3 )2] <∞, where � is defined in (20). Then

√
n(θ̃− θ0 + b)

d→N
(
0, E

[
(�+ v1 + v2 + v3 )2]), (31)

where b = E[(ω0(X ) −ω∗(X ))(hX(X ) − h̃X(X ))],

v1 = (
ω∗(X ) −ω0(X )

)(
h(X , Y ) − hX(X )

)
,

v2 = ω0(X )
(
hX(X ) − h̃X(X )

) + r̃h(X ) − rh(X ),

v3 = (
ω∗(X ) −ω0(X )

)(
hX(X ) − h̃X(X )

) −E
[(
ω∗(X ) −ω0(X )

)(
hX(X ) − h̃X(X )

)]
.

Furthermore, if ςs,n → 0, τs,n → 0, and
√
nςs,nτs,n → 0, then

√
n(θ̃− θ0 )

d→N
(
0, E

[
�2]). (32)

This theorem characterizes effects of the imperfect model selection from the first
step lasso procedure. b is an additional bias term, and v1, v2, and v3 are additional vari-
ance terms. In particular, v1 is due to imperfect approximation of ω0 by ω∗, v2 is due to
imperfect approximation of hX by h̃X , and v3 is due to slow approximation of both hX

and ω0. For the case of (32), we can conduct inference on θ0 by estimating the asymp-
totic variance E[�2]. On the other hand, if the imperfect model selection is severe in the
sense of ςs,n = τs,n = O(1), the post selection estimator θ̃ will have the asymptotic bias b
and additional terms in the variance as in (31). Valid inference in this general case is left
for future research.
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3.4 Targeted debiasing estimator for θ0

In this subsection, we discuss a targeted debiasing procedure, which is between the de-
biasing procedure for the whole vector λ̂ in Section 3.2 and post selection procedure in
Section 3.3.

Without loss of generality, we assume the first s elements of {1, � � � , K} are se-
lected by λ̂. Suppose that �̂s is a good approximation of the inverse of the s × s ma-
trix E[φ(2)∗ (λ′

osgs(X ))gs(X )gs(X )′]. For example, a practical choice for �̂s would be the
empirical counterpart (En[φ(2)∗ (λ̂′

sgs(X ))gs(X )gs(X )′])−1. Define the targeted debiasing
version λ̂TD of λ̂ as

λ̂TD = (
�̂′

s, 0′
K−s

)′
, �̂s = λ̂s + �̂sαnκ̂s,

and 0K−s is the (K − s)-dimensional vector of zeros. That is, we only correct the bias for
the selected elements by Ŝ. Then θ0 is estimated by

θ̂TD = En
[
φ(1)∗

(
λ̂′

TDg(X )
)
h(X , Y )

]
. (33)

Let γ̃n = κo,n ∨ √
s logK/n, ωs(x) =φ(1)∗ (λ′

osgos(x)), and h̃X
TD(x) = β̃′

sgs(x), where

β̃s = E
[
φ(2)∗

(
λ′

osgs(X )
)
gs(X )gs(X )′

]−1
E

[
φ(2)∗

(
λ′

osgs(X )
)
gs(X )E

[
h(X , Y )|X

]]
.

To derive the limiting distribution of θ̂TD, we add the following assumptions.

Condition TD.

(1) There exist functions rh, r̃hTD : X →R such thatE[rh(X )] = E[ω0(X )E[h(X , Y )|X]],
E[r̃hTD(X )] = E[ω0(X )h̃X

TD(X )], and

E
[{
β̃′

s
(
ω0(X )gs(X ) − r(X )

) − (
ω0(X )h̃X

TD(X ) − r̃hTD(X )
)}2] → 0.

(2) |�̂−Q(2)(λos )−1| = Op(�n ) and
√
nγ̃nζs�n → 0.

(3) Condition I′ holds true with �∗ and
√
ζ2

s /n replaced by λos and γ̃n, respectively.

(4) Condition S′ holds true with ω∗ and h̃X replaced by ωs and h̃X
TD, respectively.

Condition TD(1) is a counterpart of Condition N′(2). The roles of Conditions TD(3)–
(4) for the targeted debiasing procedure are same as Conditions I′ and S′ for the post-
selection procedure, respectively. Condition TD(2) is concerned with quality of the tar-
geted debiasing procedure. Under these conditions, the targeted debiasing estimator
θ̂TD admits the same asymptotic representation as the post selection estimator.

Theorem 6. Suppose Conditions D′, C, H, and TD hold true. Additionally, assume√
nκ2

o,nζ
4
s → 0,

√
nζ2

s γ̃
2
n → 0, and E[(�+ ṽ1 + ṽ2 + ṽ3 )2] <∞. Then

√
n(θ̂TD − θ0 + b̃)

d→ N
(
0, E

[
(�+ ṽ1 + ṽ2 + ṽ3 )2]).

where b̃, ṽ1, ṽ2, and ṽ3 are same as those in Theorem 5 with replacements of ω∗, h̃X , and
r̃h with ωs, h̃X

TD, and r̃hTD, respectively.
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4. Theoretical application: Treatment effect

In this section, we extend Example 2 in Section 1 and consider estimation of the aver-
age treatment effect. Let Di be the indicator of a treatment for individual i = 1, � � � , n
(Di = 1 and 0 mean treated and not treated, resp.). For each i, there exist two poten-
tial outcomes, Yi(1) if treated and Yi(0) if not treated. The observable outcome is Yi =
DiYi(1)+(1−Di )Yi(0). Also, let Xi be covariates of individual i. Based on a random sam-
ple {Di, Yi, Xi}ni=1, we wish to estimate the average treatment effect τ = E[Y (1) −Y (0)].
Under the unconfoundedness and overlap assumptions, τ can be identified as (Rosen-
baum and Rubin (1983))

τ = E
[
ωt(X )DY

] −E
[
ωu(X )(1 −D)Y

] ≡ θt − θu,

where ωt(x) = π(x)−1, ωu(x) = {1 −π(x)}−1, and π(x) = Pr{D = 1|X = x} is the propen-
sity score. We treat ωt and ωu as latent weight functions, and construct moment condi-
tions as in (1) by utilizing the property of the propensity score:

E
[
Dωt(X )g(X )

] = E
[
(1 −D)ωu(X )g(X )

] = E
[
g(X )

]
, (34)

for any g. By applying our methodology based on (34), the weight function ωt can be
estimated by {

ω̂t(x) =φ(1)∗
(
λ̂′

1g(x)
)

(low-dimensional case),

ω̃t(x) =φ(1)∗
(
�̂′

1g(x)
)

(high-dimensional case),

where

λ̂1 =
⎧⎨
⎩

arg min
λ

En
[
Dφ∗

(
λ′g(X )

) − λ′g(X )
]

(low-dimensional case),

arg min
λ

En
[
Dφ∗

(
λ′g(X )

) − λ′g(X )
] + α1n‖λ‖1 (high-dimensional case),

�̂1 = arg min
�∈Rs1

En
[
Dφ∗

(
�′gs1 (X )

) −�′gs1 (X )
]
,

and gs1 is the s1-dimensional functions corresponding to Ŝ1 = {j : λ̂1j �= 0}.
Then θt can be estimated by θ̂t = En[ω̂t(X )DY ] for the low-dimensional case, or by

the post-selection estimator θ̃t = En[ω̃t(X )DY ] for the high-dimensional case. Similarly,
we can estimate ωu and θu (by replacing D with (1 − D)). The average treatment effect
τ can be estimated by τ̂ = θ̂t − θ̂u for the low-dimensional case, or τ̃ = θ̃t − θ̃u for the
high-dimensional case. By applying the results in the previous sections, we obtain the
following corollary.

Corollary 1. Consider the setup of this section. Suppose D⊥(Y (1), Y (0))|X (uncon-
foundedness condition), and the propensity score π is bounded away from 0 and 1 over
the compact support X (overlap condition). Furthermore, assume E[Y 2(0)] < ∞ and
E[Y 2(1)] < ∞.
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(i) [Low-dimensional case] Under the assumptions of Theorem 2, in particular, if

sup
x∈X

∣∣E[
Y (1)|X = x

] − λ′
1g(x)

∣∣ → 0,

sup
x∈X

∣∣E[
Y (0)|X = x

] − λ′
0g(x)

∣∣ → 0,

for some λ1, λ0 ∈RK , it holds

√
n(τ̂ − τ)

d→N(0, �),

where �= E[{E[Y (1)|X] −E[Y (0)|X] − τ}2 + Var(Y (1)|X )
π(X ) + Var(Y (0)|X )

1−π(X ) ].

(ii) [High-dimensional case] Under the assumptions of Theorem 5, it holds

√
n(τ̃ − τ + bps )

d→N(0, �ps ),

where the formula of bps ≥ 0 and �ps ≥ � can be found accordingly via Theorem 5.

Proofs are similar to those of Theorems 2 and 5. This corollary may be considered
as an extension of Chan, Yam, and Zhang (2016) to the high-dimensional case by using
the �1-penalized estimator. Note that the asymptotic variance � is the semiparametric
efficiency bound for τ established in Hahn (1998).

5. Empirical application: Stochastic discount factor

To illustrate the performance of our proposed method, we consider Example 1 and
estimate the normalized SDF in an equity market. We compare out-of-sample perfor-
mances of the proposed method and Fama–French three-factor method.

To make the results comparable with existing literature (e.g., Fama and French
(1993), Lewellen, Nagel, and Shanken (2010), and Ghosh, Julliard, and Taylor (2016)),
our out-of-sample evaluation covers from July 1963 to December 2010. All returns data
are taken from Kenneth French’s data library and are quoted in %. We note the approach
adopted by Ghosh, Julliard, and Taylor (2016) is a special case of ours for the low-(and
fixed) dimensional case using the KL divergence without trimming.

Our major findings are as follows. (i) In the low-dimensional setup where the num-
ber of portfolios in the market is small, predictability of our method is at least as good as
the Fama–French three-factors model, and our method shows lower cross-sectional er-
rors. (ii) In a relatively high-dimensional setup where the number of portfolios is similar
to the number of training periods, upon choosing suitable penalty levels, our method
outperforms the Fama–French three factors model. Also Ghosh, Julliard, and Taylor’s
(2016) method shows erratic behaviors in this case. (iii) Our methods are robust against
different choices of φ and trimming, but the SDFs extracted by different φ have different
shapes, especially in terms of skewness and kurtosis. (iv) In a low-dimensional case, the
KL divergence performs better than the Pearson’s χ2 divergence. In high-dimensional
case with penalization, the Pearson’s χ2 divergence performs better than the KL diver-
gence.
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5.1 Step-by-step implementation

We first give a detailed procedure of implementing our proposed method to estimate
out-of-sample SDF and test its cross-sectional predictability.

5.1.1 Form training and testing samples in rolling windows Let L be a set of indexes of
years for which we want to estimate monthly out-of-sample SDFs. Let Rt be a K − 1 di-
mensional vector of portfolio excess returns in month t. Following the convention in em-
pirical finance, in July of each year l ∈ L, we form a training sample {Rt }t∈T1(l) of monthly
returns in the past 30 years and a testing sample {Rt }t∈T2(l) of returns 12 months ahead.
That is, in each rolling window, the training sample size is |T1(l)| = 360, and the testing
sample size is |T2(l)| = 12.12 Let {Rt }t∈T̃1(l) be the sample of monthly returns after trim-

ming. The actual training sample size after trimming is |T̃1(l)|. If there is no trimming, it
holds T̃1(l) = T1(l).

5.1.2 Out-of-sample prediction We create a grid of possible values for the penalty αn.
For each αn in the grid points and each l ∈ L, we compute the following:

(1) If the KL divergence is used, the out-of-sample prediction for the SDF is given by

ω̂j = exp
(
λ̂′Rj

)
∣∣T2(l)

∣∣−1 ∑
t∈T2(l)

exp
(
λ̂′Rt

) , (35)

for each j ∈ T2(l), where

λ̂ = arg min
λ∈RK−1

∣∣T̃1(l)
∣∣−1 ∑

t∈T̃1(l)

exp
(
λ′Rt

) + αn‖λ‖1.

(2) For other divergences, the out-of-sample prediction for the SDF is given by

ω̂j =φ(1)∗
(
λ̂′Xj

)
, (36)

for each j ∈ T2(l), where Xj = (1, R′
j )′,

λ̂= arg min
λ∈RK

∣∣T̃1(l)
∣∣−1 ∑

t∈T̃1(l)

φ∗
(
λ′Xt

) − λ′e1 + αn‖λ‖1,

and e1 = (1, 0, � � � , 0)′ is a K dimensional vector.

(3) Repeat (1) and (2) for each year l ∈ L.

5.1.3 Testing cross-sectional predictability Based on the constructed time series of the
predicted SDFs {ω̂j }j∈T2(l),l∈L, we test its cross-sectional predictability using standard
two-pass regression in empirical finance (Fama and MacBeth (1973) and Cochrane
(2009)). Empirical performances of extracted out-of-sample SDFs depend on the penalty

12This is except for the last rolling window in which the testing sample size is 6.
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level αn for our method. We recommend to select αn in a given grid to lead to the best
predictability. There are different measures of predictability in the literature. In this em-
pirical exercise, we set the optimal penalty level as the one that leads to the smallest
magnitude of the estimated constant and the largest adjusted R2.

5.2 Main empirical results

5.2.1 Low-dimensional case: 25 size and book-to-market portfolios This is arguably a
low-dimensional scenario. We present results using three divergences: KL, PSN1, and
PSN2. Table 1 presents some summary statistics of predicted SDFs without penaliza-
tion. As we can see, the predicted SDFs by KL are positively skewed with high kurtosis
compared to the ones by PSN1 and PSN2. By truncating at zero, PSN2 excludes negative
values for predicted SDFs and yields positive skewness.

Table 2 presents cross-sectional regression results for the 25 Fama–French size and
book-to-market portfolios. Panel A summarizes results without trimming. Although pe-
nalization seems unnecessary, we also present predictability results with αn = 0.05 for
comparison. Without penalty, all three choices of divergences work well: (i) the esti-
mated prices of risk are highly significant with the correct sign, (ii) the adjusted R2’s
are larger than the one for the Fama–French model, and (iii) the intercept estimates are
much smaller than the one by the Fama–French model. These results indicate that the
proposed method outperforms the Fama–French three-factor model in our empirical
example. We note that the KL divergence works better than the PSN1 and PSN2 diver-
gences in terms the adjusted R2 in this case, and that the performances of PSN1 and
PSN2 are very similar. For our method, the estimates with penalization underperform
the ones without it. Since the dimension is low, we expect every portfolio is informative
and there is no need for penalization.

We also report results after trimming extreme values of returns in Panel B of Table 2.
For each training sample formed for year l, we remove returns that are either too big or

Table 1. Summary statistics of predicted SDF using 25 portfolios, no penalty, no trimming.

KL PSN1 PSN2

min 0.044 −1.544 0
max 4.965 3.100 3.458
Mean 1 1.0813 0.972
25% 0.654 0.744 0.660
Median 0.924 1.088 0.975
75% 1.199 1.372 1.277
Standard deviation 0.544 0.555 0.483
Skewness 2.229 −0.200 0.430
Kurtosis 13.166 5.117 4.252

13For PSN1 and PSN2, the mean of the predicted SDF is not exactly 1 because they are out-of-sample
prediction. On the other hand, for KL, the mean of the predicted SDF is always 1 by construction of (35).
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Table 2. Cross-sectional regression for 25 size and book-to-market portfolios.

Intercept λSDF λRM λSMB λHML Adjusted R2

3 Factors 1.668 −0.751 0.204 0.437 0.714
(4.401) (−2.067) (3.853) (6.773)

Panel A: No trimming
KL: No penalty 0.649 −0.257 0.844

(13.977) (−11.438)
KL: αn = 0.05 0.720 −0.124 0.625

(10.146) (−6.400)
PSN1: No penalty 0.735 −0.194 0.767

(14.628) (−8.938)
PSN1: αn = 0.05 0.755 −0.116 0.631

(11.555) (−6.478)
PSN2: No penalty 0.675 −0.167 0.737

(11.126) (−8.270)
PSN2: αn = 0.05 1.616 −0.077 0.686

(22.725) (−7.312)

Panel B: With trimming
KL: trim 1% 0.660 −0.260 0.822

(13.423) (−10.573)
KL: trim 2.5% 0.624 −0.284 0.765

(10.080) (−8.890)
PSN1: trim 1% 0.748 −0.195 0.738

(14.257) (−8.284)
PSN1: trim 2.5% 0.695 −0.203 0.717

(11.339) (−7.853)
PSN2: trim 1% 0.716 −0.168 0.701

(11.736) (−7.563)
PSN2: trim 2.5% 0.776 −0.141 0.587

(11.475) (−5.927)

Note: The estimated SDF is derived in a rolling window out-of-sample fashion from July 1963 to December 2010. Panel A
presents results without trimming, and Panel B presents results with trimming. The second column is the estimated constant
in each model, the last column records the adjusted R2, and the other columns summarize estimated price of risk. Numbers in
the bracket are the corresponding t-values.

too small. For each period t, the vector of returns Rt is trimmed as

RtI
{‖Rt‖∞ ≤Q1−a

}
,

where Q1−a is the (1 − a)th empirical quantile of {‖Rt‖∞} across all months used for
training, that is, from July 1933 to June 2010. We consider a = 0.01 and 0.025. As we
can see in Table 2, after trimming, predictability in terms of the adjusted R2 slightly de-
creases for all divergences. The KL divergence seems more sensitive to extreme values
than the unrestricted PSN1 divergence. Forcing nonnegativity, PSN2 divergence also in-
creases sensitivity of the results to extreme values.

For robustness checks, we also report results using the KL divergence for other low-
and intermediate-dimensional portfolios in Tables 5 and 6 in the Appendix of the Online
Supplementary Material. An interesting case is in Panel B of Table 5, where the estimate
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without penalization is worse than the penalized estimate. This result indicates useful-
ness of penalization even for the low-dimensional case.14

5.2.2 High-dimensional case: 300 portfolios In this case, the estimate without penal-
ization (essentially, the one by Ghosh, Julliard, and Taylor (2016)) is not applicable or
performs erratically, and it is crucial to introduce some penalization. We focus on two
divergences, KL and PSN1. For KL, the grid for the penalty level αn ranges from 0 to 2
with 0.05 increments. For PSN1, the grid for αn ranges from 0 to 1 with 0.025 increments.
We estimate the SDFs by our method and implement the cross-sectional regression for
each penalty level.

The results are summarized in Figure 1. Performances of the two divergences are
similar. The SDF estimates without penalization perform very badly with the adjusted
R2 close to 0 and relatively large intercept estimates. As the penalty level increases, pre-
dictability of our method gets better and outperforms Fama–French. The intercept esti-
mates of our methods are also much smaller compared to Fama–French. However, the
performance of our method gets worse when the penalty level continues to increase
(αn > 1.5 for KL and αn > 0.45 for PSN1). This is expected because the number of se-
lected portfolios will be too small for too large penalty levels and the performance would
deteriorate. Based on these results, we set the optimal penalty level at 0.9 for KL and
0.475 for PSN1, and report more detailed results in Table 3. We can see that the ad-
justed R2 by the SDF estimates using penalization is much higher than the one of Fama–
French, and that its intercept estimate is much closer to 0. Therefore, our method shows
excellent performance upon choosing suitable penalty levels. We find that in this high-
dimensional scenario, PSN1 works better than KL in terms of the adjusted R2. This may
be due to nonexistence of higher moments of certain returns in the presence of many
portfolios. Moreover, we find that at the optimal penalty level (i.e., 0.9 for KL and 0.475
for PSN1), KL and PSN1 select 5 and 18 portfolios on average, respectively. Out of all
rolling windows, 33% of times PSN1 with the optimal penalty level includes all portfo-
lios selected by KL with optimal penalty level, 56% of times PSN1 only misses one or two
portfolios selected by KL, and 11% of times PSN1 misses three or four portfolios selected
by KL.

5.2.3 Time series property of penalized SDF estimates We illustrate time series prop-
erties of the SDF estimates with penalization for 300 portfolios. The penalty levels are
chosen at 0.9 for KL and 0.475 for PSN1. The time series plot is displayed in Figure 2 and
the grey shaded areas correspond to NBER recessions. In Table 4, we run a time series re-
gression of our SDF estimates on other key factors in the market including Fama–French

14Underperformance of the estimate without penalization (for both low- and high-dimensional cases)
may be due to nonexistence of higher moments. Note that both Ghosh, Julliard, and Taylor (2016) (with
no penalization) and our method using the KL divergence (with �1-penalization) rely upon finite exponen-
tial moments E[exp(λ′Rt )], which require infinite order of moments of Rt . If some higher moments of Rt

do not exist, the estimator without penalization will behave erratically. Although formal analysis is beyond
the scope of this paper, we conjecture that our �1-penalization may effectively remove such problematic
components. Also, if nonexistence of higher moments is a significant concern, we can choose a different
divergence function, such as the PSN1 or PSN2, which requires less stringent conditions for higher mo-
ments.
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Figure 1. Summary of cross-sectional regression against different penalty levels in high-di-
mensional case (K = 300, |T̃1| = 360).
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Table 3. Cross-sectional regression in high-dimensional case: 300 portfolios.

Intercept λSDF λRM λSMB λHML Adjusted R2

KL: αn = 0.1 1.027 −1.197 0.032
(14.062) (−3.306)

KL: αn = 0.9 −0.050 −0.214 0.658
(−0.851) (−24.017)

PSN1: αn = 0.05 0.521 −5.458 0.126
(5.576) (−6.651)

PSN1: αn = 0.475 0.200 −0.361 0.919
(8.281) (−58.153)

3 Factors 4.687 −3.891 0.699 −0.517 0.301
(10.986) (−9.998) (5.295) (−2.900)

Note: Cross-sectional regression results with 300 portfolios. The 300 portfolios are composed of: 100 size and book-to-
market portfolios, 100 size and operating profitability portfolios, and 100 size and investment portfolios. The estimated SDF
is derived in a rolling window out-of-sample fashion from July 1993 to December 2010. The second column is the estimated
constant in each model, the last column records the adjusted R2, and the other columns summarize estimated price of risk.
Numbers in the bracket are the corresponding t-values.

Figure 2. Time series plot of estimated SDF in high-dimensional case: July 1993–December
2010 (Grey shaded area represents NBER recessions).

three factors and momentum factors. We can see that correlations of our SDF estimates

with those leading factors are very small, and the adjusted R2 is also small. This indi-

cates that our method may capture critical information for asset pricing in the market

that cannot be explained by Fama–French or momentum factors.
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Table 4. Time series properties of estimated SDF from 300 portfolios.

Intercept βRM βSMB βHML βMOM Adjusted R2

Panel A: KL, αn = 0.9
1.011 −0.004 −0.014 −0.007 −0.007 0.118

(85.846) (−1.427) (−4.106) (−1.851) (−3.264)

Panel B: PSN1, αn = 0.475
0.962 −0.020 −0.028 −0.051 −0.001 0.096

(26.596) (−2.343) (−2.657) (−4.377) (−0.177)

Note: Time series regression of estimated SDF extracted from 300 portfolios against key factors in the market. The esti-
mated SDF is derived in a rolling window out-of-sample fashion from July 1993 to December 2010. Panel A presents results
using KL divergence and when penalty level is 0.9, and Panel B presents results using PS1 divergence and when penalty level
is 0.475. The first column is the estimated intercept in each regression, the last column records the adjusted R2, and the other
columns summarize estimated beta for each factor. Numbers in the bracket are the corresponding t-values.
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