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This Appendix contains the technical lemmas used in the proofs of the main the-
orems.

SA. PROOFS

Throughout the proofs, we use K to denote a generic finite constant that may change
from line to line. For p > 1, let || - ||, denote the L, norm for random variables. For no-
tational simplicity, we write ), in place of > ";_;.

SA.1 Technical lemmas for Theorem 1

LEMMA S1. Under Assumptions 1 and 2, we have for any R > 0,

sup 1= Y| P(X(8)) ~ P[P = 0y (& yman™),
0€B,,(R) t

n V> |PX) — P(X7)|P = 0y (¢3 yman™Y).
t

Proor. Fix some constant n > 0. Since the variables (L ;)1</<n are L -bounded, we
can use a maximal inequality to deduce E[maxi<;<, |Lx ] < n'/Pmaxi<<, ILx | p <
Kn'/P. Note that

sup max | X,(0) — X;| < Kn~Y? max Ly, = Op(n"/P71/2).
0eB,(R) 1st=n 1<t<n
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Hence, there exists some constant C > 0 such that

P(Q5) <m/2, where (), = {0 S;pR) lrEta<X |x:(0) — X7|| < Cnl/p—l/z}'
€

In particular, X;(0) € X®Cn'/P~1/2forall t and 6 € B,(R) inrestriction to (,,, and hence,

sup n 1X:HP (X:(0) — P(X ;)”2

0B, (R)

= sup n IZZ|3P1(X0t) (X.(0) — X7)[°

0B, (R) -1

= sup n 1ZZHﬂm(Xez)H | xio) - x;|°

0eB.(R) 1537
2 1,1 2 2 -1
<K{f ,man (n ZLx,z)=Op(§1,nmn” )
t

where X ¢,: is some mean value between X;(6) and X/, the first inequality is by the
Cauchy-Schwarz inequality, and the second inequality is by Assumptions 1 and 2.
Therefore, there exists some constant K > 0 such that

]P’({ sup n IZHP (X:(0)) — P( ;)||2>1<gfnmnn—1}rmn)<n/z.

0B, (R)

Hence,

p(,sup 7t IPONO) - PO > Kt

0eB,(R)

51@({ sup n IZH (X:(8)) — P( ;)||2>1<g§nmnn—1}an>+P(Q;)<

0B, (R)

This proves the first assertion of the lemma. Since (9,1 =0"+0 p(n‘l/ 2), the second as-
sertion readily follows from the first. O

Below, we denote

0n(0)=n"13 " P(X:(0)P(X:(6)) .
t

LEMMA S2. Suppose that Assumptions 1 and 2 hold. Then we have for any R > 0,

sup [ 0u(8) — Onllg = Op (80,0 + C1umi/*n~12) = 0,,(1),
0€B,(R)

10n — Qulls = Op(80,n + L1,0mi*n12) = 0, (1).
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Proor. Note that Q’;l = 0,(6%). By the triangle inequality,

10n(6) = 03] < | *Z (X:(8) — P(X7))(P(Xi(8) — P(X}))

*IZPX* (X:(0)) - P(x7)) " 5.1)

By the Cauchy-Schwarz inequality and Lemma S1, we have uniformly in 6 € B, (R),

2

*Z (X.(0) — P(X})) (P(X:(6)) — P(X}))"

< ( S Y (o) - p,(X;))z) — 0, (& m2n~?). 52

=1 t

In addition, we have uniformly in 6 € B, (R),

_IZPX* (X:(0) - P(x7))"

=S S P o) - )|
< @) S (0 (K0) — XD = Op (™), 83)

=1 t

where the bound on the last line follows from Lemma S1 and )\max(QZ) = 0,(1), with the
latter implied by Assumption 2. By (S.1), (S.2), and (S.3), we have uniformly in 6 € B, (R),

104(6) = 03| = 0p (&8 yman™ + C1,0mi/*n1/2)
= Oy (Gamml ) = 0,1,

where the second line follows from ¢ an},/ “n=1/2 = (1) which is implied by Assump-
tion 2(ii). The first assertion of the lemma thus follows from the estimate above and
the assumption that ||Q;l — Oulls = Op(89,,). The second assertion then follows from
0= 0" +0,(n~12). O

LeMwMmA S3. Under Assumption 1, we have for each R > 0,

sup n! Z(Ztﬂ(@) - Z?+1)2 =0,(n~'7?).
09€B,(R) -

ProOF. Fixany R > 0. Note that for each 6 € B, (R), f;(6*) — Rn~'/2L, < f,(0) < f,(6*) +
Rn~Y2[,,, and hence,

o2 _
|Z1+1(0) = Zi11(6)|” = Wyy,py <fon — Livia<fioon < U = U7, (S.4)
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where we set Ui = Liy,.1<f,(00+£Rn-121,)- Therefore,

sup 11 (Zis1(8) — Zeya (6%)° <n 1Y (UF - UY). (S.5)
9€B,(R) 7 7

Recall that F; 1:(+) is the F;-conditional distribution function of Y;;;. By Assumption 1,

E[U} — U7 |Fi] = Fya)e (f:(8*) + R Y2Ly) — Frpnpo(fi(6%) — Rn™'/2L,)
<2Rn Y22, (S.6)

Since L, is Ly-bounded, E[U;" — U;"] < Kn~'/2. The assertion of the lemma then readily
follows from this estimate and (S.5). O

LemMmA S4. Suppose that Assumptions 1 and 2 hold. Then we have for any R > 0,

1/2

sup =0, (Y2 + my/ " (L1,an™%* + Lo,un™%Y)).

0B, (R)

n VY P(Xi(0))(Zi1(0) - Z1,)
t

ProOF. Step 1. By Lemma S2, supycp (g | Qn(e) — Qull = 0,(1). Since the eigenvalues of
0O, are bounded from above and away from zero, we further deduce

AL (04(8)) + Amax(0n(8)) = Op(1),  uniformly in 6 € B, (R). S.7)

Recall that Z,H(H) = Fi(f1(0)) — g is the F;-conditional mean of Z;,1(6). Let
Z141(0) = Z;1(0) — Z,41(0), which forms a martingale difference sequence with respect
to F; by construction. By the triangle inequality,

sup
0€B,(R)

n V> P(X1(0))(Zi1 () — Zp,y)
t

< sup
6eB,(R)

nt Y P(Xi(0))(Zi41(0) — Ziya (07)) H
t

+ sup
0eB,(R)

n > P(X(0))(Zis1(0) — Zija (6%)) H (S.8)
t

The first term on the majorant side of (S.8) can be bounded as follows:

2
sup [N P(X(O)NZ,..(0) — Zir1(6
| OO0~ Zn )
< sup Ama(Qu(0)) sup 'Y (Z,,(0) = Zia(67))°
0eB,(R) 0eB,(R) t

<0, sup w3 (a0Zeaa(0) |0 07+ Lo - 07|}
0B, (R) 7

=0,(n7"),



Supplementary Material A consistent specification test for dynamic quantile models 5

where the first inequality is obtained by using the contraction property of least-square
projections, the second inequality is due to Assumption 1, and the last line follows from
the Ly-boundedness of ||dyZ;(6*)|| and L,. This estimate further implies that

sup
0€By(R)

l’l_l ZP(Xt(H))(Zt+1(9) - Zt+1(0*)) H = Op(n_l/z)_
t

Hence, to prove the assertion of the lemma, it remains to show that the second term on
the majorant side of (S.8) satisfies

sup |1 Y " P(Xy(0))(Zi41(0) — Zig1(67)) H
6B, (R) ;
= 0 (my*(¢1,an™5 + Lo,an™%%)). (S.9)

Below, we prove (S.9) in two steps.
Step 2. For ease of notation, we set foreach / € {1, ..., m,},

Tn(0) =172 pi(X(0))(Ze1(0) — Zija (6%)),  0€0.
t

In this step, we establish the following technical estimate:

| 71,0(61) = m,0(02)],

<K({,an Y% + Z0,0) 1101 — 621112, for 61, 62 € Bu(R). (S.10)
Recall that ZH (0) = Z;41(0) — E[Z,41(0)|F;]. It is then easy to see that
E[(Z41(0) — Zi41(6%)°1F] <E[(Zi41(0) — Zis1 (6%))1F].

By (S.4) and (S.6), the majorant side of the above inequality can be further bounded by
Kn~1/212 uniformly in 6 € B,(R). Hence,

= = 2 _
E[(Zi41(0) — Zi1(0%))1F] < Kn~V2L2. (S.11)
For 61, 62 € B,,(R), we can decompose

(1) — ,0(02) =2 [ pr(Xi(01)) — pi(Xi(02)[(Ze41 (01) — Ziy1 (67))
t
+n723 " pi(Xi(02)) (Zis1(61) — Zis1(62)). (S.12)
t

We now derive L ,-bounds for the two terms on the right-hand side of (S.12). By (S.11),
Burkholder’s inequality, and Holder’s inequality, we have
]

|

w2y [(pi(Xe(01) = pi(X:(02)))(Zis1(81) — Zi41 (6))
t
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P/2i|

§KE[

nt Z[(Pl(Xz(01)) - pl(Xt(ez))]Zn_l/zL?
t

P/2i|

§Kn_p/4E|:

221161 — 02||2(n_1 ZL%,#?)
t

< Kn—P/4§an[n—1 ZLQIL{’] 161 — 62]|.
t

Since E[Lf(,th’ ] < K by Assumption 1, we can bound the L ,-norm of the first term in
the decomposition (S.12) as follows:

n—l/Z Z[(Pl(Xt(al)) — pl(Xl(Oz))](ZH-l(el) - Zt+l(0*))
t

p
<Kn~ V41 40101 — 2] (S.13)

Turning to the second term in the decomposition (S.12), we note that

2
(Zi+1(61) = Z141(82))” < L1y <fi(00)+1fi (00— F(62)1) — L(¥epn <1001 (01)—Fi (621}

Hence,

E[(Z41(61) — Zi11(02))°1F] < 2L f:(61) — f1(82)| < 22|61 — 62]. (S.14)

|
n S pi(Xi(02)) E[(Zes1(61) — Zi41(62))° 1 7]
t

P/2i|

< K5 100 — 020177207V Y "E[LI] < KEF 1160 — 621772,
t

By (S.14), Burkholder’s inequality, and Hélder’s inequality,

"

n_l/z Z p](Xt(GZ))(Zt"rl(Ol) - ZH—I(@Z))
t

§KE[

P/2]

<K|6: — 92||p/2E[

nLY pi(Xi(62)) L2
t

Hence,

<K{onll6n — 6212 (S.15)
P

n2 Y pi(Xi(02))(Zes1 (61) = Zia (62)
t

Since |61 — 62| < Rn~1/2, the assertion in (S.10) readily follows from (S.13) and (S.15).
Step 3. We shall use a chaining argument to establish (5.9). Construct nested sets
Op,n C O1,, C --- C By(R) such that O¢ , = {6*} and for each j > 1, ©; , is a maximal
set of points such that each pair of distinct elements in ©; ,, has distance greater than
Rn~1/227/. Note that the number of points in ©; is less than C(2/)%% for some constant
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C > 0 that does not depend on j. Link every point 6;,1 € ®;,; to a unique 6; € ®; such
that |01 — 0;]l < Rn~1/227J. Then for any J > 0 and 6;,; € ®;,1, we can construct a

chain 6;,1, ..., fp to 6y = 6*, and hence, by the triangle inequality
J J
71,0070 = _[m,0(0j51) — m,0(0)]] <Y max|m,,(0j11) — m,4(6))]  (S.16)
=0 j=0

where, for each j, the maximum is taken over all links (6,11, 6;) from 0;;; to ©; (with
the total number less than C(2/11)4¢). We then observe

J
i @], < A msimattyon = macepll,

~

<KY (@) dﬂ/pmax”ﬂzn(eﬁrl) m,(60))],
j=0

J
Z 2, de/P (4, an Y2 ,,)(Rn_l/zz ;)1/2
j=0

= K(gl,nn_s/ + §0,nn_1/4)

where the first inequality is by (S.16); the second inequality is by a maximal inequal-
ity under the L ,-norm; the third inequality follows from (S.10); and the last inequality
holds because )_;(2/)%/(27/)1/? < 0o as implied by p > 2d,. Since the stochastic pro-
cess m ,(0) indexed by 6 is separable, by letting / — oo, we further have

sup [m,(0)]| < K (&1 + o,n14). 8.17)
0B, (R) p

Finally, note that [|n=1/2 Y, P(X;(0))(Z141(0) — Zi1(0*)[1> = X7 m,,(0)%. There-
fore,

2 my
E[ sup | V23" P(X,(0))(Z141(0) — Zisa (67)) } <X| sup |mu0)] H
0eB,(R) p =1 0€BA(R)
The assertion in (S.9) then readily follows from this estimate and (S.17). O

LEMMA S5. Suppose that Assumptions 1 and 2 hold. Under the null hypothesis, we have
forany R > 0,

= OP({an,l/Zn_l).

Z (X:(0)) = P(X,(6")))u

sup
6eBy, (R)

PrOOF. We set m ,(0) =n~ 123", (pi(X:(0)) — pi(X:(6*)))u}. Note that under the null
hypothesis, (p;(X:(0)) — p;(X:(6%)))u; forms a martingale difference sequence. For any
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01, 0> € ®, we observe
n Y (pr(Xi(01)) — pi(Xi(62)))

2 P/2i|
i

<KZ{ 101 — 621Pn S E[LE 1 < K¢P 1161 — 0217,
t

E[|m,,(01) — m1,,(62)|"] < KE[

where the first inequality is by Burkholder’s inequality and the boundedness of u}, and
the second line follows from Assumptions 1 and 2. Hence,

171,n(01) — 71,0 (62) | p < K {1,001 — O2]. (5.18)

Construct g , C 91,, C --- C B,(R) as in step 3 in the proof of Lemma S4. Using the
same chaining argument but with (S.10) replaced by (S.18), we deduce that

J
max [mu(0)]| < ;Hmaxmn(ojm w6l

~

Z (2 d"/Pmame,n(OjJrl) - 7Tz,n(0j)||p
j=0

J
<K& an V2 Z(z,j)l—dg/p <K{1an V2.
j=0

Sending J — oo, we further deduce

sup |77,,,(9)|H <K& an V2. (S.19)
0€Bu(R)

Finally, note that [|n=1 ", (P(X/(0)) — P(X/(6*)u}]|? = Y/, 7,,(0). Therefore,

2 mMp
E| sup |n1/? (X:(0)) — P(X((6")))u} ]5 sup |m,,(6)
|:OGB,,I?R) Z ' ( t( ))) ! ; GeBnI()R)‘ b ’H
The assertion of the lemma then readily follows from (S.19). O

LemMmA S6. Suppose that Assumptions 1 and 2 hold. Then we have ||3n — bl =0p(8p,0),
where

Im)/?n=1/2 under the null,
6b n—

Lamy 202 4 g omy*n3% in general.

ProoOF. By Lemma S2, ||§n — Oulls = 0,(1). Since the eigenvalues of O, are bounded
from above and away from zero, we further have

AZL (0n) + Amax(On) = 0, (1). (S.20)
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Recall that u} = Z7 ;| —

by b= 0, (! () + 05 (v PR~ )
t t

+0,'n Y PR (h(X]) - P(X)TbY)
t

E[Z;,,|X[]. By the definition of by, We can decompose

+0y 1(”_1 Y PX)(Zisr - Z?+1)>- (5.21)
t

It remains to bound the four terms on the right-hand side of this decomposition.

First, recall that 4, = Var(n=1/23", P(X})u}) has bounded eigenvalues (Assump-
tion 2). Hence, E[|n~Y2Y", P(X})ui||?] = Trace(A,) < Km,, which, combined with
(S.20), implies that

0,! <n—1 ZP(X;)W;) =0,(my/*n~17?). (5.22)
t

Second, by the Cauchy-Schwarz inequality, the boundedness of u}, and Lemma S1,

2
<Kn' Y [PX0-P(X;)|* = 0p(¢F yman™).
t

nt Y (PX)-P(X]))u;
t

In addition, under the null hypothesis, we can apply Lemma S5 to get

n LS (P(X)—P(X}))u; = Op(¢1,umi/*n7Y). (S.23)
t
Hence,

@nl(nlz(Pw?n—P(Xn)u:)

t

12 1
Op(&1,nmy'“n™")  under the null,
0, (&1,nmy/*n~ %) in general.

(5.24)

Third, we note that

2
H 0, 'n! ZP(X,)(h(X;) ~ P(X,)"b})

<A b (Ot Z —P(X)T ;)
<201 (0n V> (h(X) - P(X) b}’
t

+ 2050 (@™ (X)) — k(X))
t
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Define (), as in the proof of Lemma S1, so that X, € X & &, for some &, < n!/?=1/2 in
restriction to . By (S.20) and Assumption 2, /\r:liln(é,,)n‘l >, (h(X,) — P()?I)Tb;)z =
(0] p(n_l). Moreover, since A (-) is continuously differentiable, it is Lipschitz on the com-
pact set X @ &,. Therefore,

M (O)n ™V (WX — h(X7))* < 0,(Mn~ 1Y (X, — X7)?
t

t

50,,(1)< ‘IZL >|9n—0*||

=0p(n7").

Combining the three estimates above yields

H 0,'n 1> P(X)(h(X}) = P(X))Tb}) | = 0, (n/?). (S.25)
t

On the other hand, under the null hypothesis, we have /(-) = 0 and b} = 0. We thus have

0,'n 'Y P(X,)(h(X]) — P(X,)b})
t

0 under the null,
- (S.26)

Op(n'/?) in general.

Finally, by Lemma S4,
Q;l <n_l ZP(X\t)(/Z\I%I — Z;—i—l))
t
= O0p(n™ Y2 4+ my? (G1,0n™ %% + Lo,an7%/%)). (S.27)
Combining (S.22), (S.24), (5.26), and (S.27), we deduce that

~ 10) (m,l/zn_l/2 + Lunmy + Lonin 3/4) under the null,
||b _bn“ = 0 (é’ 1/2 _-1/2 n3/4 .
o (G V2 4 o amy ) in general.

Under the maintained rate condition on ¢y, , and {1,, (see Assumption 2), we can further
reduce the rates displayed above into those asserted in the lemma. O

LeMMA S7. Suppose that Assumptions 1 and 2 hold. Then

Op(5A nt {1, nm -z g do,n m 1/4) under the null,

1An — Anlls = _
o Op(8.4,+ Lo.nmy*n~ 1 + éo,nil,nmnn_l/z) in general.

In particular, ||Zn — Aylls = 0,(1).
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PRrOOF. Step 1. We outline the proof in this step. Recall that A* = n~1Y, uX2P(X}) x
P(X})T. By the triangle inequality,

|4, - 43) =

n 1Zu P(X)P(X)T —n V> u?P(x7)P(X7)'
t

Y (P(X0) - P(X}))(P(X) - P(x7))'

+2

'Y uPP(XY)(P(X0 - P(X]))
t

n! Z w2 — u)P(X)P(X)"|. (S.28)

Below, we bound the three terms on the majorant side of (S.28) in turn.
We start with the first two terms. Note that 7 is bounded. By the triangle inequality,
the Cauchy-Schwarz inequality, and Lemma S1,

-1 Z w?(P(X) — P(X}))(P(X) — P(x}))"

<Kn 1Y |P(X) - P(X7) | = 0p(& man™Y). (S.29)
t

Using Lemma S1, we can also deduce that

n VS uP(X7)(P(X) - P(X7))
t

nt Y P P(X7) (pi(X0) = pi(X7))
t

2>1/2

- 1/2
< (Z)\max( “)n ‘12Hu (p1(X0) = pi(X7)) | )
=1

s

=1

R 172
<0, (! SR - )P
t
= Op(¢1,amy/ “n~V2). (S.30)

Turning to the third term on the majorant side of (5.28), we note that

2

*IZ 2—u)P(X)P(X))"

2

‘IZP(Xt)pl(Xt) 0 —up®)
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SZ/\max(/Q\n)”_lzpl()?t)z( _”;2)2
=1 t

<& mnAmax(Qn)n ™! Z a2 —u?)’, (8.31)
=1
In steps 2—4, below, we shall show that
n! Z i —u?) = 0p(n~ 2+ 85, + {5 ,mady ). (S.32)
Then (S.31) and (S.32) imply
n”! Z 2)P(X:)P(X;) H Op(Go,nmy*n™ V2 + Lo,umy 80,0 + £§ ymnd?,,)
= 0p(Lomy*n™ V" + Lo,umy*8y,0), (8.33)

where 8, ,, is defined in Lemma S6, and the second line follows from (o, nm}/ 2 Spn=o0(1),
which is implied by Assumption 2. Therefore, by (S.29), (S.30), and (S.33),

H;In - Z:z ” = Op(gl nm}L/Zn 2 4 do, nmrlz/zn VA4 §0,nmt11/23b,n)- (8.34)

Recalling the definition of 8, , from Lemma S6, we can further simplify the rate in (S.34)
via some elementary calculations, yielding

1O, (Zo,nm V4 + &1,ymy/*n~1/2) under the null,
Op(%o, a2 YA 4 Lo,nl1,nmun~ %) in general.

||2n—2;||={

The assertion of the lemma then follows from this estimate and the assumption that
||2; — Aplls = Op(8 4,,). The remaining steps below are devoted to proving (S.32).

Step 2. We collect some technical estimates in this step. Since [|6, — 8*|| = O, (n~1/?),
we can apply Lemma S3 to get

_ = . 12 _
n Y | Zia = Z5 [T =0,(n71?). (S.35)
t
Since Z+1 and Z; 1 are bounded, this estimate further implies

n! Z|Z+1 - Z?—i—l |4 = n! Z|Z+1 - Z;+l |2 = Op(”_l/z)- (S.36)
t

t

Denote hy,(-) = P(-) " b%. By Lemma S6 and (S.20),

nY (X0 = ha(X0)|? < Amax(Dn) | B — 03 |* = 0p(83,,)- (5.37)
t

Note that for some &, =< n/P=1/2, (X, :1 <t < n} € X @ &, with probability arbitrarily
close to one and, in restriction to this event, we have | P(X;)||? < {&nmn by the definition
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of {o,,. Then, by Lemma S6 and (S.37), we have

n S [ha(X) — ha(X0)|*
t

n
=< gganln ||bn — b; ||2n—1 Z|hn ()?t) — hn(j;t) |2 = Op(é’&nmnﬁén)_ (S.38)
t=1

Finally, we note that (recalling u, = Z+1 - ’En(ft) and u} = A —h(X7}))
|ﬁt—u:’§|2t+l z+1|+’h (X1) — hn (Xt)|
+ | ha(X0) — h(X0)| + |h(X)) — h(X])]. (S.39)

Step 3. In this step, we prove (5.32) under the null hypothesis. In this case, 2(-) =0
and &,(-) = 0. Hence, by (58.39), |u; — uj| < |Zi+1 — Z; 4| + [hn(X:) — hn(X)]. By (S.35)
and (S.37), we have

n! Zﬁl\t - u;}z <Kn! Z|Z+1 - Z;+1|2 +Kn™1 Zmn()?t) - hn()?z)|2
t t t
=0,(n""?) +0,(5; ). (S.40)
Similarly, by (S.36) and (S.38), we have

w3 (i - ut [ = 0y (n7V2) + 0y (88 s ,)- (S.41)
t

Consider the following elementary inequality: for any |x| <1 and y € R,
((x+y)? - xz)2 = (2xy + yz)2 <8x%y? 42y <K(y* +y). (S.42)
Applying this inequality with x = u} and y = u; — u}, we deduce
_IZ <Kn_IZ|u,—ut| +Kn_IZ|ut—ut|
=0, (1?2 + 8, + L5 ;mad} ). (S.43)

This completes the proof of (S.32) under the null hypothesis.
Step 4. In this step, we prove (S.32) in the general case without imposing the null
hypothesis. We first observe that

n Y XD = h(X) [ =07t YWD - h(X)[
t t
<K[6y—6*|°n > L%, =0p(n7Y), (S.44)
t

where the first inequality holds because #4(-) is bounded, and the second inequality fol-
lows from the Lipschitz continuity of 4(-) and || X;(6) — X} || < Lx |6 — 6*|. By (5.39), we
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have for g =2 or 4,
n Y = < Kn Y | Zia = ZE [T+ Kn Y [Ra(X0) = k(X |
t t t
+Kn Y | ha(X0) = (X)) |+ Kn7t Y |h(X) — h(X7)]1.
t t
Then, by (S.35), (5.37), (5.44), and Assumption 2(ii), we deduce

n Y fa - uif =0, (2 4 8 ). (S.45)
t

Similarly, by (S.36), (S.38), (S.44), and Assumption 2(ii), we deduce

n Y -] = 0p(n7 VP 8 mad) ). (S.46)
t

Using (S.42), (S.45), and (S.46), we derive
_ ~ %2\ 2 — ~ %2 — ~ x4
n 1Z(ut2 —u?)” <Kn IZ}ut —uj|"+Kn IZ|ut — uj|
t t t
= OP (n—1/2 + Si,n + g(%,nmnb‘é,n)'
This completes the proof of (S.32), and hence, the assertion of the lemma. O

LeMMA S8. Suppose that Assumptions 1 and 2 hold. Then

P(x)" 0, VY P(X))(Zig — Z:H)‘
t

su =0,((logn)~1/2).
¥ o (x) p(logm ™)

Prookr. Step 1. We outline the proofin this step. Recall Zt+1(0) =E[Z;4+1(0)|F;] and set
Z141(0) = Z111(0) — Z;41(0). For ease of notation, we denote Z ; = d9Z;11(6*). Our
proof relies on the following decomposition:

P()C)T/Q\;ln_l/2 ZP()?t)(zt+1 -Z)

3
t = .
on(X) - ;Rfyn(x)r (S.47)
where
P(X)Téglnfl/z ZP()?t)(Zt_,_l(én) — ZH—I(G*))
Rin(x) = d ,
' n(X)
Px) Q12 Z{P()?t)(zﬂrl(@”) ~ 2 (0) = P(XD) ZLT, (Bu—0%))
R2,n(x) = ! ,

on(x)



Supplementary Material A consistent specification test for dynamic quantile models 15

P)" 0, n 2y P(X7)ZiL (02—0")
t

RB,n(x) = o (X)

By (S.9), we have

n1/? ZP()?I)(ZI+1(én) - Z+1(0*)) H = Op({l,nm},/znfg/4 + §o,nm,11/2n*1/4),
1

which further implies
sup Ry, (x)| < Op(&1,nm *n =3/ + fo,umy*n=111)
xeX
=0,((logn)~1/?). (S.48)

In steps 2 and 3 below, we show that

sup [R; »(x)| = op((logn)_l/z), forj=2,3. (S.49)
xeX

The assertion of the lemma then follows from (S.47), (S.48), and (S.49).
Step 2. In this step, we prove (S.49) for the j = 2 case. We first observe that, for any
R>0,

’P(x)TQ,;ln—l/z Y PX)(Z,,,(0) = Zipa (07) — Z;L(o—a*))’
t

sup sup
0B (R) xeX on(x)

<O0p(1)- sup
0eB,(R)

(n0) V2 Y P(R(Zis1(0) = Zus (60°) Z;L(e_e*))H
t

i i ) 1/2
<0,(1)- sup (Z(Zt+l(0) — Zi41(6%) — 2211(9_9*))2)
0B, (R) \ "7

1/2
=0p(): (n—z ZL?> = Op(”_l/z) = Op((logn)_l/z),
t

where the first inequality follows from the fact that Apni (25,) is bounded away from zero;
the second inequality follows from the contraction property of the least-square projec-
tion; and the last line follows from the definition of B,,(R) and the L,-boundedness of
L,.Since 6, — 6* = O, (n~1/?), this estimate further implies

Px) 0, 2N P(X(Z,,,(0n) — Zesa (6%) = Z;, (Ba—0"))
t

Su
e (%)

=0, ((logn)~1/?). (S.50)
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We further observe that

HP(x)TQnInIZ(P()AQ)— (X)) Zi5
t

S
ey (%)
<0,()|n ' Y (P(X)) = P(X)))Zi1,
t

- 1/2 12
<0, (w ! SPE ) (7 TNzl
t
= OP(fl.nm}z/Z’fl/z) =0,((logn)~'?),

where the first inequality follows from the fact that /\min(Qn) and Ay (2,) are bounded
away from zero with probability approaching 1; the second inequality is by the Cauchy-
Schwarz inequality; and the last line follows from Lemma S1. Then, by the Cauchy-
Schwarz inequality, we further deduce

P70, ' 2 (P(X)) — P(X}))d6Zi41(67) ' (Bn— 67)
t

Su
ey (%)

=0,((logn)~1?). (S.51)

The claim in (S.49) for the case j = 2 readily follows from (S.50) and (S.51).
Step 3. In this step, we prove (S.49) for the j = 3 case. Recall the definition 1, = Z,
IE[Z;+1|XI*]. We then observe, for each j € {1, ..., dg},

2
IE|: n_IZP(Xf)TIj,z ] =n—1Trace(Var<n_1/2ZP(X;)TIJ'J>)
p t

<Kmun!, (S.52)
which further implies that =1 Y, P(X})n,|| = Op(ml/zn—l/Z)_ Hence,

+17

]mxw@;ln—w2P<X;>nr<én—e*)
t

sup

xeX Un(x)
n S P(X)n/ | = 0p(mi*n712) = 0p((logn) V). (S.53)
t
Recall that g(X7}) =E[Z +1|X* ]. Hence, ]E[||g(X*)|| 1< [||Z+1|| ] <K and

1Y |g(x))F = 0p (D). (S.54)
t
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By (S.54) and Lemma S2,

P(X)T(Q;I ; 71/2 ZP X* on_gt)

Su
e o)

< 0,10 — Qulls|n™ Y P(X})g(x7)"
t

. 1/2
<0,()[10, - ans(n‘1 ZHg(X?)Hz)

=0, (80,0 + (1,nmy*n~ V%) = 0, ((logn) ~1/?). (S.55)
Using (S.53), (S.55), and the triangle inequality, we further deduce that

P70, n 2 P(X]) 21 (60— 67)
t

su
xeAp.’ On (x)

P(x)T 0, V2N P(x7)g(X7) (B,—0%)

- ta'n(x) ‘ = 0p((logn)™/?). (S.56)

Next, foreach j e {1, ..., dg},let g; ,(-) = P(')Tyj,n and observe that

'P(x)TQ;ln”Z (X7)gi(X7) — gj(x)

t

jlélg on(x)
'P(x) 07 o P(X7) 51 (X5) - gjn(X*))’
_xe/r\)’ on(X) xeg o, (x)

172
< Op(1)<”_1 > (gi(x7) - gj,n(X?))z) +K Su§|gj(x) — gj,n(x)|
: xe

= op((logn)_l/z),

where the last line follows Assumption 1(v). This estimate further implies

‘P(x) Q,'n I/ZZP (X7)g X*) (0,—6) —n?g(x)T (6,—0)

su
ey (%)

P(x)"Q;'n IZP (X)) g(X7) - g(x)

<nl21p _p*
<n'’?| 6, ngg Un(x)
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=0,((logn)~'?). (S.57)

Finally, since sup, .y [[P(x)|~! = o((logn)~1/?) under Assumption 1(vii),

1/2 T(h _pg*
0 )]y o L]

= 1 —1/2y, S.58
e (%) v [P op((logm ™) (5.58)

Combing (5.56), (5.57), and (S.58), we derive (S.49) for j = 3 as claimed. This completes
the proof of the lemma. O

SA.2 Technical lemmas for Theorem 2

In this subsection, we prove Theorem 2 in the main text. We first explicitly introduce
some notation for various bootstrap quantities:

O, =n"'Y P(XNP(X)',  By=(0)" ( ZPO??‘)A?‘H)’
t t

=250 —P(X)) by Ap=n'Y PXRNP(XY) (@)%
t

3 =1 T Ay —1
2=(0n) A2
We need some technical lemmas before proving Theorem 2. Below, we use D,, to denote

the o-field generated by data and use P* (resp., E*[-]) to denote the conditional proba-
bility (resp., expectation) given data.

LemmA S9. Under Assumptions 1 and 2,
* N —1\1/2
|05 = Onll g = Op(&o,n(log(mn)mun™") ") = 0, (1).
Proor. Denote D} = P()A(;")P()A(;‘)T - IE*[P()A(?)P()A(;“)T]. We further set
Rpn=2max [P(X)I?, 0}, =nAmax(Qn) max [P(X)]?.
1<t=<n ! 1<t<n

It is easy to see that

max [0}l < Ro |

> E*[DD;]| <o}, (S.59)
t N ’

Since the matrix-valued variables (D});>1 are i.i.d. with zero mean conditional on data,

by (S.59), we can invoke the matrix Bernstein inequality (see, e.g., Theorem 1.4 in Tropp

(2012)) to deduce that, for any finite constant C > 1,

(|05 — Ouls = Cy/log(ma)Rp,n~")

=]P’*< ZD;“ SZC‘/log(mn)RD,nn>
t
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—C? log(mn)RD /2 )
o3, + C(log(my)) * R} n' 123

gmnexp< _ ~Clogtmn)/2 11/2>, (S.60)
Amax(Qn) + (log(mu)Rp,an™")

=my exp(

where the second inequality is by ‘TD 0 = n/\maX(Qn)R D,n- Under Assumptions 1 and 2,
Rp,=0 (50 nmn) and

log(mu)Rp,nn~" = 0, (log(m) {5 ,man") = 0,(1).

By Lemma S2, AmaX(Qn) = 0,(1). We can then deduce from (S.60) that

100 = Oils = 0p (/1ogma) &G ),
which completes the proof. 0

LeMmmA S10. Under Assumptions 1 and 2, we have ||E,"; — En” = 0,(8}, ) where

8}) - 1/2
" 2o,nlog(mn) 2 my P01/

. m,l/zn_l/2 under the null,
in general.

PROOF. SlnceE*[P(X*)ZtH]_n‘IZtP(Xt)ZH,wehave
by —ba=(0;)" ( ‘IZP (X7) ,*H)—(@)”(n*ZP()?t)ZH)
t
= @) (! S @) 2 - E PR 210))

t

+((@n) " - (Qn)—1)<n—1 ZP()?I)ZH). (S.61)
t
By (5.20) and Lemma S9,
mm (Qn) + )‘de(Qn) OP(I)' (S.62)
Note that n~! > (P(X*)Zt+1 — E* [P(X*)ZtH]) is an average of D,-conditionally i.i.d.

zero-mean elements. Therefore,
2
= | S 2 - E PE 2| |

=n ' P(X)) 20 — B[ P(X) 257

< 'E|P(XD)Zia]7]

n=2 Y IP(X))|1? = n~ ' Trace(Qn) = Op(mun?), (S.63)
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where the second inequality is by |Zt+1| < 1 for any ¢ and ]E*[||P(X*)|| | =
n 1Y IP(X, X,)|I2, and the last equality is by (S.20). Combining the results in (S.62) and
(5.63), we get

_ ( _IZ P(X})Zi —E*[P(X*)Z?ll])) = O0p(m/*n™'1%). (S.64)

Since | Z* 11 < 1 for any ¢, by (5.20) we obtain

2
= /\maX(Qn)n_1 ZZtZ_H = 0p(1)~
t

n! ZP()?t)ZH
t
Hence, by Lemma S9,
(0" - (@)*)(n—l ZP()?I)ZH) = O0p(Lo,n(logmm)mun~H) %), (5.65)
t

Combining (S.64) and (S.65), we prove the assertion of the lemma in the general case.
If we further impose the null hypothesis, we see that

(@)_1‘@")1)(”121’(??0Z+1)=((§,’2) —(00) ") 0uba = 0p(mb*n~172),

where the second equality follows from Lemma S6. This estimate and (5.64) imply the
assertion of the lemma under the null. O

LeMmwma S11. Under Assumptions 1 and 2, we have ||2; - 2,,”5 = 0p(1). In addition, un-
der the null hypothesis, || A% — Anlls = Op({o,nmnan=1/?).

Proor. We decompose u} = Z;*H - P()A(;“)TE:; as

=7}y — P(X}) by — P(X}) " (B} — b).

Therefore,

ERl,n —2R2,n +R3,n- (566)
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We analyze these terms in turn, starting with the (leading) term R; , defined as

Run=n""Y"P(XN)P(X}) (Zt, — P(X}) D)’
t

Note that by, is D,,-measurable (where D,, is the o-field generated by data) and R, , is the
average of conditionally i.i.d. variables. The conditional mean of each summand term is

= ST /5 ST \2
E*[P(X7)P(X]) (Zi1 — P(XT) bn)7]
=0 P(X)PXD) (Zis1 — P(X)) T bn)”
t
=n"'Y P(X)P(X,) @} = Ay, (S.67)
t
and the conditional second moment of each centered summand term satisfies
2
=| ]

Mp
=m0 B (o0 (X7) P (X7)(Zi0 = P(XT) TBa)"))
h,l=1

o~

n VS P(XNP(X) (Zi — P(XF) ba)? — Ay
t

np
=123 N (pn, (X0 pi(X)(Zis1 — P(X0) D))
t I1,lb=1

=n"2Y"|P(X0)| "at. (3.68)
t

Next, we observe that

23| PR 2!
t
<Kn Y|P ()" + Kn ™ Y| PR @ - )’
t t
<K& man 2 Y| PR | + &8 m2n2 > (@ — )"
t t

P(gg,nm n_l) + Op(gg,nmgtn_l)op (n—l/Z + g(%,nmnaé,n)

=0,(L§ min™), (S.69)

where the second inequality follows from |u}| < K and ||P(X})] < §o,nm,11/ 2, the first
equality follows from (S.46), and the last line is implied by the maintained rate condi-
tions in Assumption 2. Therefore,

IR1,n — Anll = Op(Lo,nman™"?). (S.70)
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Next, we analyze
Row=n"' Y P(RIPR;) (22 -

t

P(X;) "ba) (P(X}) " (B — bn)).

Consider any a,, € R" with | a,|| = 1. Observe that
aIR%ynan

=|n! ZP()??‘)P()??)T%(Z?H -

< don( O3 PR o) (Zi PR B (P(E) (B B’

D185 = Ba n‘lz X7) an)*(Zi — P(X7) Bu)’

< Amax(0;) max | P(X
Op (86 mn(8},,)°) max (Z7,1 = P(X7) "Bu)”, (5.71)
h(X’t*) is bounded

where the last line follows from Lemma S10. In addition, since Z;" "

and max) </, |h(XF) — P(X*) b4 = 0,(1),

h(XF) - P(XF) b}

max | Zi\y — P(X7) " ba| < max | Z,) — h(X7)|+ max
+ max |P(X7)" (bn — 3|
= Op(1+ Lo,umn/*8p,) = Op(1). (S.72)
Hence, (S.71) further implies that
(8.73)

IRz, ulls = Op(£o,m %55 ,).
It remains to study the term
Rsu=n""Y_ P(X)P(X;) (P(X}) (B — ba))>.

R with ||a,| = 1. Then by the Cauchy-Schwarz inequality

Consider any a, €
2

= | o PENPE (PR B =)

< Amax(Q}) *IZ X7) a0 (P(X7)" (B}~ b))

1<t<n

(Amax(@5))* max IP(X7) 11455 — B

= Op(gg,nmn (5;;,71) )’
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where the last line follows from (S.62) and Lemma S10. Hence,
IR3,nlls = Op(L5,,mn;7,)- (S.74)
Finally, collecting the estimates in (S.70), (S.73), and (S.74), we get
|45 — Anlg < IRLn — Anlls + 2Rz, ulls + 1 R3,nlls

_ 1/2
= Op(g“o,nmnn 12 + gov"mn/ Sz,n + {g,”mnﬁlﬁ?n)

= 0p(lo.nmi°5;,,).

The assertions of the lemma then follows from the definition of 5; , in Lemma S10, and
the fact that £§ , log(m,,)'/*m,n~1/? = o(1), which is implied by the maintained rate con-
ditions in Assumption 2. O

LeMmwMmA S12. Suppose that Assumptions 1 and 2 hold. Then under the null hypothesis,
| = Anlls = Op(do,nmun"2),
where H = E*((Z},,)?P(X{)P(X})T) - E*[Z;, P(X)IESP(X})T ZF 1.

Proor. Note that

n
E*[P()?DA?H] =n! ZP(yz)’Z\H-l = Qnby. (S.75)
=1

Under the null hypothesis, #(x) = 0 and b}, = 0. By (5.20) and Lemma S6,
Onbn =0, (my/*n=1/?), (S.76)
which together with (S.75) implies that
* [ 7% Tk * T\ | —
”E [Zz+1P(Xt)]E [P(Xt) t+1]” = Op(mnn 1)' (S8.77)
Since ﬁt = Zt_;,_] — P()/Zt)—r/b\n,
x[(F% \2p(y* T\ | 7
E [( t+1) P(Xt)P(Xt) ]_A"
=n' Y (Ziy1)*P(X)P(X)" - 4,
t
=n" 1Y (P(X) by + 1) P(X)P(X)) — A4y
t

=01 Y (P(X0) Tha) P(X)P(X)T
t

+2n7 1 @ (P(X)) Tba) P(X)P(X))T. (S.78)
t
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Let a;, € R™ be such that ||a, | = 1. By Assumption 2, (S.20), and (S.76),
2
a, <n_1Z(P(Xt)Tbn)ZP(Xz)P(Xz)T> an
t

2

n Y P(X)(P(X) Toa)(P(X) T an)
t
< Amax(@n)n ™V Y (P(X0) Th) (P(X0) T an)?
t

= (/\max(én))z lma (P(jf\t)-r’b\n)4

X
<t<n

< (Amax(@n))” max [ PX)|*1Ball* = Op (&5 ymipn™2),

=i=n

which implies that

n U (PR b)) P(X)P(X))T
t

=0, (25 ,min"). (S.79)
N

Turning to the second term in (5.78), we note that by (5.20), Lemma S7, and (S.76), we
have

2
ay <n—1 Za,(P(ft)TBn)P()?t)P()?t)T) an
t

2

n~1 Y P(X )@ (P(X) b)) (P(X0) " an)
t

< Amax(Qn)n 1Y (P(X) Tby) (@ P(X1) ")’
t

< Amax(Qn) Amax(An) max | P(X0) |2 15ul1? = Op (22 m2nY), (5.80)
which implies that
n~ Y W P(X) b P(X)P(X))" = Oy (Lo, nman1?). (S.81)
t
The assertion of the lemma then follows from (S.77), (S.78), (S.79), and (S.81). O
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