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This Appendix consists of the following sections:

A. Data

B. Bayesian inference for MS-SVAR model

C. Robustness results for MS-SVAR model

D. Equilibrium conditions of MS-DSGE model

E. Results for alternative specifications of MS-DSGE model
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Appendix A. Data

All data are organized quarterly from the second Quarter of 1962 to the second Quarter

of 2018. Most data comes from Federal Reserve Economic Database (FRED).

• gdpt: output is the real GDP (GDPC1).

• vixt: uncertainty is the Chicago Board of Options Exchange Market Volatility Index.

From 1963 to 2009, we use the constructed index by Bloom (2009). Then, from 2009,

we follow Stock and Watson (2012) and take a quarterly average of daily VIX.

• spt: credit spread is constructed as the di↵erence between BAA corporate bond yields

(BAA) and AAA corporate bond yields (AAA).

For inference, we use the natural log of output. Our spread and uncertainty variables remain

unchanged.

Appendix B. Bayesian inference for MS-SVAR model

This section provides a detailed description of the Bayesian inference employed in this

paper. More specifically, we closely follow Sims, Waggoner, and Zha (2008).

B.1. The posterior. Before describing the posterior distribution, we introduce the following

notation: ✓ and q are vectors of parameters where ✓ contains all the parameters of the model

(except those of the transition matrix) and q = (qi,j) 2 Rh
2
. Yt = (y1, . . . , yt) 2 (Rn)t are

observed data with n denoting the number of endogenous variables and St = (s0, . . . , st) 2

H
t+1 with H 2 {1, . . . , h}.

The log-likelihood function, p(YT |✓, q), is combined with the prior density functions, p(✓, q),

to obtain the posterior density, p(✓, q|YT ) = p(✓, q)p(YT |✓, q).

B.1.1. The likelihood. Following Hamilton (1989), Sims and Zha (2006), and Sims, Wag-

goner, and Zha (2008), we employ a class of Markov-switching structural VAR models of the

following form:

y
0
t
A(st) = x

0
t
F (st) + "

0
t
⌅�1(st), (B.1)

with x
0
t
=
h
y
0
t�1 · · · y

0
t�⇢ 1

i
and F (st) =

h
A1(st) · · · A⇢(st) C(st)

i0
.
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Let aj(k) be the jth column of A(k), fj(k) be the jth column of F (k), and ⇠j(k) be the

jth diagonal element of ⌅(k). The conditional likelihood function is as follows:

p(yt|st, Yt�1) = |A(st)|
nY

j=1

|⇠j(st)|exp
✓
�⇠

2(st)

2
(y0

t
aj(st)� x

0
t
fj(st))

2

◆
. (B.2)

To simplify the Gibbs-sampling procedure described in the next section, it is preferable to

rewrite the condition likelihood function with respect to free parameters from matrix A(st)

and F (st):

|A(st)|
nY

j=1

|⇠j(st)|exp
✓
�⇠

2(st)

2
((y0

t
+ x

0
t
Wj)Ujbj(st)� x

0
t
Vjgj(st))

2

◆
, (B.3)

where aj(st) = Ujbj(k) and fj(st) = Vjgj �WjUjbj(k) is a result from the linear restrictions

Rj

h
aj fj

i0
= 0; and Uj and Vj are matrices with orthonormal columns and Wj is a matrix.

See Waggoner and Zha (2003) for further details.

The log likelihood function is given by

p(YT |✓, q) =
TX

t

ln

(
hX

st=1

p(yt|st, Yt�1)Pr [st|Yt�1]

)
, (B.4)

where

Pr [st = i|Yt�1] =
hX

j=1

Pr [st = i, st�1 = j|Yt�1] (B.5)

=
hX

j=1

Pr [st = i|st�1 = j] Pr [st�1 = j|Yt�1] . (B.6)

with qi,j = Pr [st = i|st�1 = j] are the transition probabilities from the h⇥ h matrix Q

Q =

2

6664

q1,1 · · · q1,j

...
. . .

...

qi,1 · · · qi,j

3

7775
(B.7)

The probability terms are updated as follows:

Pr [st = j|Yt] =Pr [st = j|Yt�1, yt] =
p(st = j, yt|Yt�1)

p(yt|Yt�1)
(B.8)

=
p(yt|st = j, Yt�1)Pr[st = j|Yt�1]P
h

j=1 p(yt|st = j, Yt�1)Pr[st = j|Yt�1]
. (B.9)
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B.1.2. The prior. Following Sims and Zha (1998), we exploit the idea of a Litterman’s

random-walk prior from structural-form parameters. Note that dummy observations are

not introduced as a component of the prior to keep in line with the original Litterman’s

prior. Using linear restrictions, the overall prior, p(✓, q), is given in the following way:

p(bj(k)) =normal(bj(k)|0, ⌃̄bj), (B.10)

p(gj(k)) =normal(gj(k)|0, ⌃̄gj), (B.11)

p(⇠2
j
(k)) =gamma(⇠2

j
(k)|↵̄j, �̄j), (B.12)

p(qj) =dirichlet(qi,j|↵1,j, . . . ,↵k,j), (B.13)

where ⌃̄bj , ⌃̄ j , and ⌃̄�j denotes the prior covariance matrices and ↵̄j and �̄j are set to one,

allowing the standard deviations of shocks to have large values for some regimes.

The Gamma distribution is defined as follows:

gamma(x|↵, �) = 1

�(↵)
�
↵
x
↵�1

e
��x

. (B.14)

Regarding the transition matrix, Q, suppose that qj = [q1,j, . . . , qh,j]0. The prior, denoted

p(qj), follows a Dirichlet form as follows:

p(qj) =

 
�
�P

i2H ↵i,j

�
Q

i2H �(↵i,j)

!
⇥
Y

i2H

(qi,j)
↵i,j�1

, (B.15)

where � denotes the standard gamma function.

B.2. Gibbs-sampling. Following Kim and Nelson (1999) and Sims, Waggoner, and Zha

(2008), a Markov Chain Monte Carlo (MCMC) simulation method is employed to approx-

imate the joint posterior density, p(✓, q, ST |YT ). The advantage of using VARs is that con-

ditional distributions like p(ST |YT , ✓, q), p(q|YT , ST , ✓), and p(✓|YT , q, ST ) can be obtained in

order to exploit the idea of Gibbs-sampling by sampling alternatively from these conditional

posterior distributions.
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B.2.1. Conditional posterior densities, p(✓|YT , q, ST ). To simulate draws of ✓ 2 {bj(k), gj(k), ⇠2j }

from p(✓|YT , St, q), one can start to sample from the conditional posterior

p(bj(k)|yt, St, bi(k)) =

exp

✓
�1

2
b
0
j
(k)⌃̄�1

bj
bj(k)

◆

⇥
Y

t2{t:st=k}


|A(k)|exp

✓
�⇠

2(st)

2
(y0

t
aj(k)� x

0
t
fj(k))

2

◆�
, (B.16)

using the Metropolis-Hastings (MH) algorithm. Then a multivariate normal distribution is

employed to draw gj(k):

p(gj(k)|yt, St) = normal(gj(k)|µ̃gj(k), ⌃̃gj(k)). (B.17)

The computational details of the posterior mean vectors and covariance matrices are given

in Sims, Waggoner, and Zha (2008).

Disturbance variances ⇠2
j
are simulated from a gamma distribution

p(⇠2
j
(k)|yt, St) = gamma(⇠2

j
(k)|↵̃j(k), �̃j(k)), (B.18)

where ↵̃j(k) = ↵̄j +
T2,k

2 and

�̃j(k) = �̄j +
1

2

X

t2{t:s2t=k}

(y0
t
aj(st)� x

0
t
fj(st))

2
, (B.19)

with T2,k denoting the number of elements in {t : s2t = k}.

B.2.2. Conditional posterior densities, p(ST |YT , ✓, q). A multi-move Gibbs-sampling is em-

ployed to simulate St, t = 1, 2, ..., T . First, draw st according to

p(st|yt, St) =
X

st+12H

p(st|YT , ✓, q, st+1)p(st+1|YT , ✓, q), (B.20)

where

p(st|Yt, ✓, q, st+1) =
qst+1,stp(st|Yt, ✓, q)

p(st+1|Yt, ✓, q)
. (B.21)

Then, in order to generate st, one can use a uniform distribution between 0 and 1. If the

generated number is less than or equal to the calculated value of p(st|yt, St), we set st = 1.

Otherwise, st is set equal to 0.
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B.2.3. Conditional posterior densities, p(q|YT , ST , ✓). The conditional posterior distribution

of qj is as follows:

p(qj|Yt, St) =
hY

i=1

(qi,j)
ni,j+�i,j�1

, (B.22)

where ni,j is the number of transitions from st�1 = j to st = i.

Appendix C. Robustness results for MS-SVAR model

C.1. The threshold of minimum contribution. 60%, 70%, and 80%.
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Figure 7. Impulse-response functions to uncertainty shock. Threshold of 60%.

vi



0 2 4 8 16
quarters after shock

-3

-2

-1

0

1

2

Pe
rc

en
t

Panel A. Output [1]

0 2 4 8 16
quarters after shock

-3

-2

-1

0

1

2

Pe
rc

en
t

Panel D. Output [2]

0 2 4 8 16
quarters after shock

-3

-2

-1

0

1

2

Pe
rc

en
ta

ge
 P

oi
nt

s

Panel G. Output [2]-[1]

0 2 4 8 16
quarters after shock

-5

0

5

10

Pe
rc

en
ta

ge
 P

oi
nt

s

Panel B. VIX [1]

0 2 4 8 16
quarters after shock

-5

0

5

10

Pe
rc

en
ta

ge
 P

oi
nt

s

Panel E. VIX [2]

0 2 4 8 16
quarters after shock

-5

0

5

10

Pe
rc

en
ta

ge
 P

oi
nt

s

Panel H. VIX [2]-[1]

0 2 4 8 16
quarters after shock

0

0.2

0.4

0.6

Pe
rc

en
ta

ge
 P

oi
nt

s

Panel C. Credit spread [1]

0 2 4 8 16
quarters after shock

0

0.2

0.4

0.6

Pe
rc

en
ta

ge
 P

oi
nt

s

Panel F. Credit spread [2]

0 2 4 8 16
quarters after shock

0

0.2

0.4

0.6

Pe
rc

en
ta

ge
 P

oi
nt

s

Panel I. Credit spread [2]-[1]

Median
68% error bands
90% error bands

Figure 8. Impulse-response functions to uncertainty shock. Threshold of 70%.
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Figure 9. Impulse-response functions to uncertainty shock. Threshold of 80%.

viii



C.2. Alternative restrictions horizon. Restrictions imposed for the next two quarters.
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Figure 10. Impulse-response functions to uncertainty shock.
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C.3. Alternative restriction on forecast error variance. Identification strategy in the

spirit of Uhlig (2003).
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Figure 11. Impulse-response functions to uncertainty shock.
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Appendix D. Equilibrium Conditions of MS-DSGE model

To solve our model, we require that the variables be stationary. The level of neutral and

investment-specific technology have a unit root. The composite trend is then z
⇤
t
= zt⌥

( ↵
1�↵ )t

with the following steady state growth rate:

z
⇤ = z⌥( ↵

1�↵ )
. (D.1)

Several variables are then transformed to induce stationarity as follows:

ct =
Ct

z
⇤
t

, yt =
Yt

z
⇤
t

, it =
It

z
⇤
t⌥t

, kt =
Kt

z
⇤
t�1⌥

t�1
, nt =

Nt

Pt�1z
⇤
t�1

(D.2)

gt =
Gt

z
⇤
t

, wt =
Wt

z
⇤
tPt

, µ
⇤
z,t

=
zt⇤
z
⇤
t�1

, gdpt =
GDPt

z
⇤
t

, w
e

t
=

W
e

t

Ptz
⇤
t

. (D.3)

The nominal rental rate on capital (r̃k
t
Pt) and the market price of capital are transformed to

induce stationarity as well

r
k

t
= ⌥t

r̃
k

t
, qt = ⌥t

QK,t

Pt

. (D.4)

We now re-write the model in a stationary form. The pricing equation by monopolistic

producers is

p
⇤
t
=

0

@(1� ⇠p)

✓
Kp,t

Fp,t

◆ �f
1��f

+ ⇠p

✓
⇡̃t

⇡t
p
⇤
t�1

◆ �f
1��f

1

A

1��f
�f

(D.5)

with

Fp,t = �z,tyt + �Et

(
Fp,t+1 ⇠p

✓
⇡̃t+1

⇡t+1

◆ 1
1��f

)
, and (D.6)

Kp,t = yt�z,t�fst + �Et

8
<

:⇠p
✓
⇡̃t+1

⇡t+1

◆ �f
1��f

Kp,t+1

9
=

; , (D.7)

which satisfy

Kp,t = Fp,t

0

B@
1� ⇠p

⇣
⇡̃t
⇡t

⌘ 1
1��f

1� ⇠p

1

CA

1��f

(D.8)

The inflation indexation rule is

⇡̃t = ⇡
⇤◆
⇡
1�◆
t�1 (D.9)
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The wage equation setting by labor contractor is

w
⇤
t
=

0

BB@(1� ⇠w)

0

B@
1� ⇠w

⇣
µz

⇡̃w,t

⇡w,t

⌘ 1
1��w

1� ⇠w

1

CA

�w

+ ⇠w

✓
µz

⇡̃w,t

⇡w,t

w
⇤
t�1

◆ �w
1��w

1

CCA

1
�w

1��w

(D.10)

with

Fw,t =
ht (w⇤

t
)

�w
�w�1 �z,t (1� ⌧l)

�w
+ �Et

8
<

:Fw,t+1

⇠wµ
⇤
z

�w
1��w ⇡̃

1
1��w
w,t+1

⇡t+1

✓
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1��w

9
=

; , (D.11)

Kw,t =
⇣
ht (w

⇤
t
)

�w
�w�1

⌘1+�L
+ �Et

(
⇠w

✓
⇡̃w,t+1

⇡w,t+1
µ
⇤
z

◆ �w
1��w

(1+�L)

Kw,t+1

)
, (D.12)

which satisfy

Kw,t =

0

B@
1� ⇠w

⇣
⇡̃w,t

⇡w,t
µ
⇤
z,t

⌘ 1
1��w

1� ⇠w

1

CA

1��w(1+�L)

w̃t

Fw,t

 L

. (D.13)

The wage inflation equation is

⇡w,t = ⇡tµ
⇤
z

w̃t

w̃t�1
, (D.14)

and the indexation rule is

⇡̃w,t = (⇡target

t )◆w⇡1�◆w
t�1 . (D.15)

The e�ciency condition for setting capital utilization is

r
k

t
= exp (�a (ut � 1)) r̄k, (D.16)

where the rental rate on capital is

r
k

t
= ↵

 
⌥µzht (w⇤

t
)

�w
�w�1

utkt�1

!1�↵

st. (D.17)

The capital utilization costs are given by

at =
r̄
k (exp (�a (ut � 1))� 1)

�a
, (D.18)

and the capital adjustment costs are as follows

St = exp

"r
S 00 (�t)

2

✓
⌥µz

it

it�1
�⌥µz

◆#
+exp

"
�
r

S 00 (�t)

2

✓
⌥µz

it

it�1
�⌥µz

◆#
�2 (D.19)
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The level of output is given by

yt = p
⇤
t

�f
�f�1

 ✓
utkt�1

⌥µz

◆↵✓
htw

⇤ �w
�w�1

t

◆1�↵

� �

!
(D.20)

and the marginal cost of production is

st =

✓
r
k

t

↵

◆↵ ✓
w̃t

1� ↵

◆1�↵

(D.21)

The stationary household first-order conditions are
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where (D.22), (D.23), and (D.24) are with respect to risk-free bonds, consumption, and

investment, respectively.

Regarding the entrepreneurs, the zero profit condition is as follows
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The stationary entrepreneur first-order condition with respect to capital is given by
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where �t(!t+1)0 = 1� Ft(!t+1).

The return of capital for entrepreneurs is
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The law of motion of entrepreneurial net worth is given by
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The monetary policy rule is as follows
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where cR and iR coe�cients account for the share of consumption and investment in GDP.

The stationary resource constraint of the economy is
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where ⇥ is the share of assets consumed by dying entrepreneurs and dt the monitoring costs,

which are given by

dt =
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The law of motion for physical capital is
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The law of motion for the uncertainty shock is as follows

log �t = (1� ⇢�(�t)) log � + ⇢�(�t) log �t�1 + "�,t, (D.34)

with "�,t = normal("�,t|0, ��(�t)).
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Appendix E. Results for alternative specifications of MS-DSGE model

Table 5. Posterior distribution, alternative specifications

Model

(1) (2) (3) (4)

Coe�cient Description Benchmark Taylor rule Nominal rigidities Flexible prices

LWZ (2011) LWZ (2011) and wages

p11 Transition matrix 0.9170
[0.7971;0.9600]

0.9134
[0.7997;0.9566]

0.9139
[0.8066;0.9558]

0.9079
[0.7851;0.9440]

p22 Transition matrix 0.9684
[0.8385;0.9868]

0.9794
[0.8105;0.9856]

0.9670
[0.8368;0.9867]

0.9989
[0.7851;0.9996]

 Measurement VIX 0.9142
[0.5849;1.5301]

0.9516
[0.6492;1.5800]

0.7720
[0.5271;1.3030]

0.7305
[0.5234;1.2774]

S00(�t = 1) Investment adj. costs 0.5993
[0.2820;1.2952]

0.6453
[0.2799;1.4609]

0.5337
[0.2419;1.3725]

0.9779
[0.7734;1.7522]

S00(�t = 2) Investment adj. costs 1.3437
[0.7985;1.9746]

1.4032
[0.8543;2.0745]

0.9059
[0.4270;1.6728]

2.0424
[1.6096;2.6620]

µ(�t = 1) Monitoring costs 0.2090
[0.1125;0.3231]

0.2076
[0.1130;0.3198]

0.2169
[0.1264;0.3345]

0.1631
[0.1059;0.2656]

µ(�t = 2) Monitoring costs 0.0615
[0.0326;0.1290]

0.0597
[0.0387;0.1385]

0.0662
[0.0402;0.1303]

0.0682
[0.0503;0.1326]

⇢�(�t = 1) Persistence shock 0.5509
[0.2962;0.6603]

0.5156
[0.2714;0.6305]

0.5980
[0.3374;0.7116]

0.5227
[0.2235;0.7610]

⇢�(�t = 2) Persistence shock 0.7689
[0.6902;0.8103]

0.7493
[0.6846;0.7971]

0.7730
[0.7011;0.8095]

0.7425
[0.6211;0.7972]

��(�t = 1) Std. Dev. shock 0.4096
[0.3197;0.5682]

0.4003
[0.3213;0.5650]

0.4018
[0.3118;0.5418]

0.3805
[0.2809;0.4944]

��(�t = 2) Std. Dev. shock 0.4204
[0.3045;0.5588]

0.4227
[0.3041;0.5389]

0.4528
[0.3316;0.5708]

0.3130
[0.2369;0.3620]

Log Marginal Likelihood �22.5363 �22.6416 �22.4009 �44.1524

Note: Posterior modes and 90% probability intervals are reported. LWZ (2011) stands for

Liu, Waggoner, and Zha (2011).
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