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Appendix A: Proofs of main results

Proof of Theorem 3.1

We begin the proof with a lemma that will be used later on.

Lemma A.1. Assume a potential outcome panel with an assignment mechanism that
is individualistic (Definition 3) and probabilistic (Assumption 2). Define, for any w ∈
W(p+1), the random function Zi�t−p:t(w) := pi�t−p(w)−11{Wi�t−p:t = w}. Then, over the as-
signment mechanism, E(Zi�t−p:t(w)|Fi�t−p−1) = 1 and Var(Zi�t−p:t(w)|Fi�t−p−1) =
pi�t−p(w)−1(1−pi�t−p(w)), and Cov(Zi�t−p:t(w)�Zi�t−p:t(w̃)|Fi�t−p−1) = −1 for all w �= w̃.
Moreover, Zi�t−p:t(w) and Zj�t−p:t(w) are, conditioning on F1:N�t−p−1, independent for
i �= j.

Proof. The expectation is by construction, the variance comes from the variance of a
Bernoulli trial. The conditional independence is by the individualistic assignment as-

sumption.
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For any w� w̃ ∈ W(p+1), let ui�t−p(w� w̃;p) = τ̂i�t(w� w̃;p) − τi�t(w� w̃;p) be the esti-
mation error. Now

ui�t−p(w� w̃;p) = Yi�t

(
wobs
i�1:t−p−1�w

)(
Zi�t−p:t(w)− 1

)
−Yi�t

(
wobs
i�1:t−p−1� w̃

)(
Zi�t−p:t(w̃)− 1

)
�

Hence the conditional expectation is zero by Lemma A.1. Then

Var
(
ui�t−p(w� w̃;p)|Fi�t−p−1

)
= Yi�t

(
wobs
i�1:t−p−1�w

)2 Var
(
Zi�t−p:t(w)|Fi�t−p−1

)
+Yi�t

(
wobs
i�1:t−p−1� w̃

)2 Var
(
Zi�t−p:t(w̃)|Fi�t−p−1

)
− 2Yi�t

(
wobs
i�1:t−p−1�w

)
Yi�t

(
wobs
i�1:t−p−1� w̃

)
Cov(Zi�t−p:t(w̃)�Zi�t−p:t(w̃|Fi�t−p−1)

= Yi�t

(
wobs
i�1:t−p−1�w

)2
pi�t−p(w)−1(1 −pi�t−p(w)

)
+Yi�t

(
wobs
i�1:t−p−1� w̃

)2
pi�t−p(w̃)−1(1 −pi�t−p(w̃)

)
− 2Yi�t

(
wobs
i�1:t−p−1�w

)
Yi�t

(
wobs
i�1:t−p−1� w̃

)
�

Simplifying gives the result on the variance of the estimation error. Then

Cov
(
ui�t−p(w� w̃;p)�ui�t−p(w̄� ŵ;p)|Fi�t−p−1

)
= Yi�t

(
wobs
i�1:t−p−1�w

)
Yi�t

(
wobs
i�1:t−p−1� w̄

)
Cov

(
Zi�t−p:t(w)�Zi�t−p:t(w̄)|Fi�t−p−1

)
−Yi�t

(
wobs
i�1:t−p−1�w

)
Yi�t

(
wobs
i�1:t−p−1� ŵ

)
Cov

(
Zi�t−p:t(w)�Zi�t−p:t(ŵ)|Fi�t−p−1

)
−Yi�t

(
wobs
i�1:t−p−1� w̃

)
Yi�t

(
wobs
i�1:t−p−1� w̄

)
Cov

(
Zi�t−p:t(w̃)�Zi�t−p:t(w̄)|Fi�t−p−1

)
�

Yi�t

(
wobs
i�1:t−p−1� w̃

)
Yi�t

(
wobs
i�1:t−p−1� ŵ

)
Cov

(
Zi�t−p:t(w̃)�Zi�t−p:t(ŵ)|Fi�t−p−1

)
= −Yi�t

(
wobs
i�1:t−p−1�w

)
Yi�t

(
wobs
i�1:t−p−1� w̄

) +Yi�t

(
wobs
i�1:t−p−1�w

)
Yi�t

(
wobs
i�1:t−p−1� ŵ

)
+Yi�t

(
wobs
i�1:t−p−1� w̃

)
Yi�t

(
wobs
i�1:t−p−1� w̄

) −Yi�t

(
wobs
i�1:t−p−1� w̃

)
Yi�t

(
wobs
i�1:t−p−1� ŵ

)
Finally, conditional independence of the errors follows due to the individualistic assign-
ment of treatments.

Proof of Proposition 3.1

The proof of this result is analogous to the proof of Theorem 3.1. We state the analogue
of Lemma A.1 for completeness.

Lemma A.2. Assume a potential outcome panel with an assignment mechanism that is
individualistic (Definition 3) and probabilistic (Assumption 2). Define, for
any w ∈ W(p+1), the random function Vi�t−p:t(w) := pi�t−p(w)−21{Wi�t−p:t = w}. Then,
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over the assignment mechanism, E(Vi�t−p:t(w)|Fi�t−p−1) = pi�t−p(w)−1 and
Var(Vi�t−p:t(w)|Fi�t−p−1) = pi�t−p(w)−3(1 − pi�t−p(w)), and Cov(Vi�t−p:t(w)�Vi�t−p:t(w̃)|
Fi�t−p−1) = pi�t−p(w)−1pi�t−p(w̃)−1 for all w �= w̃. Moreover, Vi�t−p:t(w) and Vj�t−p:t(w)

are, conditioning on F1:N�t−p−1, independent for i �= j.

For any w� w̃ ∈ W(p+1), let vi�t−p(w� w̃;p) = γ̂2
i�t(w� w̃;p) − γ2

i�t(w� w̃;p) be the esti-
mation error. Now

vi�t−p(w� w̃;p) = Yi�t

(
wobs
i�1:t−p−1�w

)2(
Vi�t−p:t(w)−pi�t−p(w)−1)

+Yi�t

(
wobs
i�1:t−p−1� w̃

)2(
Vi�t−p:t(w̃)− p̃i�t−p(w)−1)�

Therefore, the conditional expectation is zero by Lemma A.2. The conditional indepen-
dence of the errors follows due to the individualistic assignment of the treatments.

Proof of Theorem 3.2

Only the third results requires a new proof. The first result is a reinterpretation of the
classic cross-sectional result using a triangular array central limit theorem, for the usual
Lindeberg condition must hold due to the bounded potential outcomes and the treat-
ments being probabilistic. The second result follows from results in Bojinov and Shep-
hard (2019), who use a martingale difference array central limit theorem.

The third result, which holds for NT going to infinity, can be split into three parts.
For NT to go to infinity, we must have either: (i) T goes to infinity with N finite, (ii) N
goes to infinity with T finite, or (iii) both N and T go to infinity. In the case (i), we apply
the martingale difference CLT but now we have preaveraged the cross-sectional errors
over the N terms for each time period. The preaverage is still a martingale difference, so
the technology is the same. In the case (ii), we preaverage the time aspect. Then we are
back to a standard triangular array CLT. As we have both (i) and (ii), then (iii) must hold.

Proof of Proposition 3.2

The unbiasedness statements follow directly from Proposition 3.1. The proofs of the
consistency statements are analogous to the proof of Theorem 3.2. The first result fol-
lows from an application of the triangular array law of law of large numbers, which may
be applied due to the bounded potential outcomes and the treatments being proba-
bilistic. The second statement follows from an application of a martingale difference se-
quence law of large numbers (Theorem 2.13 in Hall and Heyde (1980)). The third state-
ment can be again proved in three cases: (i) T goes to infinity with N finite, (ii) N goes
to infinity with T finite, or (iii) both N and T go to infinity as in the proof of Theorem 3.2
and applying the appropriate law of large numbers.

Proof of Proposition 4.1

Begin by writing the observed outcomes as

Yi�t = Yi�t(0)+
t∑

s=1

βi�t�t−sWi�s�
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Similarly, write Ȳi· = Ȳi·(0) + βW i·, where βW i· = 1
T

∑T
t=1

∑t
s=1 βi�t�t−sWi�s. The trans-

formed outcome can be then written as

qYi�t =
t∑

s=1

βi�t�t−sWi�s −βW i· + qYi�t(0)�

Consider the numerator of the unit fixed effects estimator. Substituting in, we arrive at

1
NT

N∑
i=1

T∑
t=1

qYi�t
|Wi�t = 1

NT

N∑
i=1

T∑
t=1

βi�t�0Wi�t
|Wi�t

+ 1
NT

N∑
i=1

T∑
t=1

(
t−1∑
s=1

βi�t�t−sWi�s
|Wi�t

)

+ 1
NT

N∑
i=1

T∑
t=1

qYi�t(0)|Wi�t

= 1
T

T∑
t=1

(
1
N

N∑
i=1

βi�t�0Wi�t
|Wi�t

)

+ 1
T

T∑
t=1

t−1∑
s=1

(
1
N

N∑
i=1

βi�t�t−sWi�s
|Wi�t

)

+ 1
T

T∑
t=1

(
1
N

N∑
i=1

qYi�t(0)|Wi�t

)
�

Therefore, for fixed T as N → ∞,

1
T

T∑
t=1

(
1
N

N∑
i=1

βi�t�0Wi�t
|Wi�t

)
p−→ 1

T

T∑
t=1

qκW�β�t�t �

1
T

T∑
t=1

t−1∑
s=1

(
1
N

N∑
i=1

βi�t�t−sWi�s
|Wi�t

)
p−→ 1

T

T∑
t=1

t−1∑
s=1

qκW �β�t�s�

1
T

T∑
t=1

(
1
N

N∑
i=1

qYi�t(0)|Wi

)
p−→ 1

T

T∑
t=1

qδt�

Similarly, the denominator converges to 1
NT

∑T
t=1

∑N
i=1

|W 2
i�t

p−→ 1
T

∑T
t=1 qσ2

W�t . The result
then follows by Slutsky.

Proof of Proposition 4.2

Begin by writing

Yi�t = Yi�t(0)+
t∑

s=1

βi�t�t−sWi�s�
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Then Ȳ·t = Ȳ·t (0)+βW ·t , Ȳi· = Ȳi·(0)+βW i· and Ȳ = Ȳ (0)+βW . Therefore,

q̇Yi�t = q̇Yi�t(0)+
(

t∑
s=1

βi�t�t−sWi�s −βW

)
− (βW ·t −βW )− (βW i· −βW )�

Consider the numerator of the unit fixed effects estimator. Substituting in,

1
NT

N∑
i=1

T∑
t=1

q̇Yi�t
|̇Wi�t = 1

NT

N∑
i=1

T∑
t=1

βi�t�0Wi�t
|̇Wi�t

+ 1
NT

N∑
i=1

T∑
t=1

t−1∑
s=1

βi�t�t−sWi�s
|̇Wi�t

+ 1
NT

N∑
i=1

T∑
t=1

q̇Yi�t(0)|̇Wi�t

= 1
T

T∑
t=1

(
1
N

N∑
i=1

βi�t�0Wi�t
|̇Wi�t

)

+ 1
T

T∑
t=1

(
1
N

N∑
i=1

t−1∑
s=1

βi�t�t−sWi�s
|̇Wi�t

)

+ 1
T

T∑
t=1

(
1
N

N∑
i=1

q̇Yi�t(0)|̇Wi�t

)
�

Therefore,

1
N

N∑
i=1

βi�t�0Wi�t
|̇Wi�t

p−→ q̇κW �β�t�t �

1
N

N∑
i=1

t−1∑
s=1

βi�t�t−sWi�s
|̇Wi�t

p−→
t−1∑
s=1

q̇κW �β�t�s�

1
N

N∑
i=1

q̇Yi�t(0)|̇Wi�t
p−→ q̇δt�

A similar argument applies to the denominator and the result follows.

Appendix B: Additional theoretical results

B.1 Prediction decomposition of the adapted propensity score

Recall the definition of the adapted propensity score in Section 3:

pi�t−p(w) := Pr
(
Wi�t−p:t = w|Wi�1:t−p−1�Yi�1:t (Wi�1:t−p−1�w)

)
�
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The adapted propensity score can be decomposed using individualistic assignment
(Definition 3) and the prediction decomposition.

Lemma B.1. For a potential outcome panel satisfying individualistic assignment (Defini-
tion 3) and any w ∈ W(p+1), the adapted propensity score can be factorized as

pi�t−p(w) = Pr
(
Wi�t−p = w1|Wi�1:t−p−1�Yi�1:t−p−1(Wi�1:t−p−1)

)
×

p∏
s=1

Pr
(
Wi�t−p+s =ws+1|Wi�1:t−p−1�Wi�t−p:t−p+s−1 = w1:s�

Yi�1:t−p+s−1(Wi�1:t−p−1�w1:s)
)
�

Proof. Use the prediction decomposition for assignments, given all outcomes,

pi�t−p(w) = Pr
(
Wi�t−p = w1|Wi�1:t−p−1�Yi�1:t(Wi�1:t−p−1�w)

)
×

p∏
s=1

Pr
(
Wi�t−p+s =ws+1|Wi�1:t−p−1�Wi�t−p:t−p+s−1 = w1:s�

Yi�1:t(Wi�1:t−p−1�w)
)
�

and then simplify using the individualistic assignment of treatments.

Even though the assignment mechanism is known, we only observe the out-
comes along the realized assignment path Yi�1:t (wobs

i�1:t ), and so it is not possible to use
Lemma B.1 to compute pi�t−p(w) for all assignment path. We can, however, compute
the adapted propensity score along the observed assignment path, pi�t−p(w

obs
i�t−p:t), since

the associated outcomes are observed.

B.2 Estimation as a repeated cross-section

Denote Ẏ1:N�t = (Ẏ1�t � � � � � ẎN�t)
′, Ẇi�1:t = (Wi�t − W̄·t �Wi�t−1 − W̄·t−1� � � � �Wi�1 − W̄·1)′ and

Ẇ1:N�t = (Ẇ1�1:t � � � � � ẆN�1:t)′. The least squares coefficient in the regression of Ẏ1:N�t on
Ẇ1:N�t is β̂1:N�t = (Ẇ ′

1:N�tẆ1:N�t)
−1Ẇ ′

1:N�tẎ1:N�t . Proposition B.1 derives the finite popula-

tion limiting distribution of β̂1:N�t as the number of units grows large.

Proposition B.1. Assume a potential outcome panel and consider the “control” only
path, for 0 ∈ W let w̃i�1:t = 0. Let μ̇i�t be the t × 1 vector whose uth element is E[Ẇi�t−(u−1)|
F1:N�0�T ] and Ωi�t be the t × t matrix whose u, vth element is Cov(Ẇi�t−(u−1)� Ẇi�t−(v−1)|
F1:N�0�T ). Additionally, assume that:

1. The potential outcome panel is linear (Definitions 7) and homogeneous with βit ≡
βt = (βt�0� � � � �βt�t−1) for all t.

2. Wi�1:t is an individualistic stochastic assignment path and, over the randomization
distribution, Var(Wi�t |F1:N�0�T ) = σ2

W�i�t <∞ for each i ∈ [N], t ∈ [T ].
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3. As N → ∞,

(a) Nonstochastically, N−1 ∑N
i=1 Ωi�t → �2�t , where �2�t is positive definite.

(b) N−1/2 ∑N
i=1(Ẇi�1:t − μ̇i�t)Ẏi�t(0)|F1:N�0�T

d−→N(0��1�t).

(c) Nonstochastically, N−1 ∑N
i=1 Ẏi�t(0)μ̇i�t → δ̇t .

Then, over the randomization distribution, as N → ∞,

√
N

(
β̂1:N�t −βt − �−1

2�t δ̇t
)|F1:N�0�T

d−→N
(
0��−1

2�t �1�t�
−1
2�t

)
�

Proof. Under linear potential outcomes,

Yi�t(Wi�1:t )−Yi�t(W̃i�1:t )=
t−1∑
s=0

βi�t�s(Wi�t−s − W̃i�t−s)�

Focus on the counterfactual W̃i�1:t = 0, then

Yi�t = Yi�t(Wi�1:t) = Ȳ·t (0)+
t−1∑
s=0

βi�t�sWi�t−s + Ẏi�t(0)�

Therefore, the within-period transformed outcome equals

Ẏi�t = Yi�t − Ȳ·t =
t−1∑
s=0

{
βi�t�sWi�t−s − 1

N

N∑
j=1

βj�t�sWj�t−s

}
+ Ẏi�t(0)�

Further imposing homogeneity, it simplifies to

Ẏi�t =
t−1∑
s=0

{
βt�s(Wi�t−s − 1

N

N∑
j=1

Wj�t−s

}
+ Ẏi�t(0)�

Stacking everything across units, this becomes Ẏ1:N�t = Ẇ1:N�tβt + Ẏ1:N�t(0), and so the
linear projection coefficient is given by

β̂t = (
Ẇ ′

1:N�tẆ1:N�t

)−1
Ẇ ′

1:N�tẎ1:N�t = βt + (
Ẇ ′

1:N�tẆ1:N�t

)−1
Ẇ ′

1:N�tẎ1:N�t(0)�

The important unusual point here is that Ẏ1:N�t(0) is nonstochastic and that Ẇ1:N�t is
random, exactly the opposite of the case often discussed in the statistical analysis of
linear regression. Now

1
N

Ẇ ′
1:N�tẆ1:N�t = 1

N

N∑
i=1

Ẇi�1:t Ẇ ′
i�1:t �

and

1
N

N∑
i=1

Ẇi�1:t Ẏi�t(0) = 1
N

N∑
i=1

(Ẇi�1:t − μ̇i�t)Ẏi�t(0)+ 1
N

N∑
i=1

μi�t Ẏi�t(0)�
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Then, under the assumption of individualistic assignment (Definition 3),

1
N

N∑
i=1

Ẇi�1:tẆ ′
i�1:t |F1:N�0�T

p−→ �2�t �

recalling Ẏi�t(0) is nonstochastic and applying Assumptions 3(b) and 3(c), then Slutsky’s
theorem delivers the result.

Appendix C: Additional simulation results

C.1 Additional simulations for the estimator of the total average dynamic causal effects

Quantile-quantile plot for the normal approximation Figure A1 provides quantile-
quantile plots of the simulated randomization distribution for the estimator ˆ̄τ(1�0;0)
presented in Section 5 of the main text.

Simulation results for the estimator of the lag-1 total weighted average dynamic causal ef-
fect, τ̄†(1�0;1) We now present simulation results that analyze the properties of our es-
timator for the lag-1 total weighted average dynamic causal effect, ˆ̄τ†(1�0;1). We choose
the weights to av to place equal weight on the future treatment paths. Figure A2 plots the
simulated randomization distribution for ˆ̄τ†(1�0;1) and Figure A3 plots the associated

Figure A1. Quantile-quantile plots for the simulated randomization distribution for ˆ̄τ(1�0;0)
under different choices of the parameter φ and treatment probability p(w). The quantile-quan-
tile plots compare the quantiles of the simulated randomization distribution (y-axis) against the
quantiles of a standard normal random variable (x-axis). The 45-degree line by the solid line. The
rows index the parameter φ ∈ {0�25�0�5�0�75}, and the columns index the treatment probability
p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the quantile-quantile plots for simulated randomization
distribution with normally distributed errors εi�t ∼ N(0�1) and N = 100, T = 10. Panel (b) plots
the quantile-quantile plots simulated randomization distribution with Cauchy distribution er-
rors εi�t ∼ Cauchy and N = 500, T = 100. Results are computed over 5000 simulations. See Sec-
tion 5 of the main text for further details.
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Figure A2. Simulated randomization distribution for ˆ̄τ†(1�0;1) under different choices of the
parameter φ and treatment probability p(w). The rows index the parameter φ ∈ {0�25�0�5�0�75},
and the columns index the treatment probability p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the sim-
ulated randomization distribution with normally distributed errors εi�t ∼ N(0�1) and N = 100,
T = 10. Panel (b) plots the simulated randomization distribution with Cauchy distribution errors
εi�t ∼ Cauchy and N = 500, T = 10. Results are computed over 5000 simulations. See Section 5 of
the main text for further details.

quantile-quantile plot. We observe that the normal approximation remains accurate for
lagged dynamic causal effects.

C.2 Simulations for the estimator of the time-t average dynamic causal effects

We present simulation results for our estimator of the time-t average dynamic causal
effect, ˆ̄τ·�t(1�0;0), with N = 100 units when the potential outcomes are generated with
normally distributed errors and N = 50�000 with Cauchy distributed errors.

Normal approximations and size control Figure A4 plots the randomization distribu-
tion for the estimator of the contemporaneous time-t average dynamic causal effect,
ˆ̄τ·t(1�0;0), under the null hypothesis of β = 0 for different combinations of the pa-
rameter φ ∈ {0�25�0�5�0�75} and treatment probability p(w) ∈ {0�25�0�5�0�75}. When the
errors εi�t are normally distributed, the randomization distribution quickly converges
to a normal distribution—the normal approximation is accurate when there are only
N = 100 units in the experiment. As expected, when the errors are Cauchy distributed,
the number of units must be quite large for the randomization distribution to become
approximately normal. There is little difference in the results across the values of φ and
p(w). Figure A5 provides quantile-quantile plots of the simulated randomization dis-
tributions to further illustrate the quality of the normal approximations. Testing based
on the normal asymptotic approximation controls size effectively, staying close to the
nominal 5% level (the exact rejection rates for the null hypothesis, H0 : τ̄·t(1�0;0) = 0
are reported in Table A1).
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Figure A3. Quantile-quantile plots for the simulated randomization distribution for ˆ̄τ†(1�0;1)
under different choices of the parameter φ and treatment probability p(w). The quantile-quan-
tile plots compare the quantiles of the simulated randomization distribution (y-axis) against the
quantiles of a standard normal random variable (x-axis). The 45-degree line is plotted by the
solid line. The rows index the parameter φ ∈ {0�25�0�5�0�75}, and the columns index the treat-
ment probability p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the quantile-quantile plots for simulated
randomization distribution with normally distributed errors εi�t ∼ N(0�1) and T = 1000. Panel
(b) plots the quantile-quantile plots simulated randomization distribution with Cauchy distri-
bution errors εi�t ∼ Cauchy and T = 50�000. Results are computed over 5000 simulations. See
Section 5 of the main text for further details.

Figure A4. Simulated randomization distribution for ˆ̄τ·t (1�0;0) under different choices of the
parameter φ and treatment probability p(w). The rows index the parameter φ ∈ {0�25�0�5�0�75}
and the columns index the treatment probability p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the sim-
ulated randomization distribution with normally distributed errors εi�t ∼ N(0�1) and N = 100.
Panel (b) plots the simulated randomization distribution with Cauchy distribution errors
εi�t ∼ Cauchy and N = 50�000. Results are computed over 5000 iterations. See Section 5 of the
main text for further details on the simulation design.
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Figure A5. Quantile-quantile plots for the simulated randomization distribution for ˆ̄τ·t (1�0;0)
under different choices of the parameter φ and treatment probability p(w). The quantile-quan-
tile plots compare the quantiles of the simulated randomization distribution (y-axis) against the
quantiles of a standard normal random variable (x-axis). The 45-degree line is plotted by the
solid line. The rows index the parameter φ ∈ {0�25�0�5�0�75}, and the columns index the treat-
ment probability p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the quantile-quantile plots for simulated
randomization distribution with normally distributed errors εi�t ∼ N(0�1) and N = 100. Panel (b)
plots the quantile-quantile plots simulated randomization distribution with Cauchy distribution
errors εi�t ∼ Cauchy and N = 50�000. Results are computed over 5000 simulations. See Section 5
of the main text for further details on the simulation design.

Rejection rates Figure A6 plots rejection rate curves against the null hypotheses as
the parameter β varies for different choices of the parameter φ and treatment prob-
ability p(w) in simulations with N = 100 units. For p = 0, the rejection rate against
H0 : τ̄·t(1�0;0) = 0 quickly converges to one as β moves away from zero across a range
of simulations. This is encouraging as it indicates that the conservative variance bound

Table A1. Null rejection rate for the test of the null hypothesis H0 : τ̄·t (1�0;0) = 0 based upon
the normal asymptotic approximation to the randomization distribution of ˆ̄τ·t (1�0;0). Panel (a)
reports the null rejection probabilities in simulations with εi�t ∼ N(0�1) and N = 100. Panel (b)
reports the null rejection probabilities in simulations with εi�t ∼ Cauchy and N = 50�000. Results
are computed over 5000 simulations. See Section 5 of the main text for further details on the
simulation design.

p(w) p(w)

0�25 0�5 0�75 0�25 0�5 0�75

(a) εi�t ∼ N(0�1), N = 100 (b) εi�t ∼ Cauchy, N = 50�000
φ 0�25 0�046 0�048 0�048 0�031 0�031 0�034

0�5 0�049 0�049 0�050 0�048 0�039 0�043
0�75 0�050 0�049 0�045 0�052 0�047 0�057
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Figure A6. Rejection probabilities for a test of the null hypothesis H0 : τ̄·t (1�0;0) = 0 and
H0 : τ̄†

·t (1�0;1) = 0 as the parameter β varies under different choices of the parameter φ and
treatment probability p(w). The rejection rate curve against H0 : τ̄·t (1�0;0) = 0 is plotted by
the circles and the rejection rate curve against H0 : τ̄†

·t (1�0;1) = 0 is plotted by the triangles.
The rows index the parameter φ ∈ {0�25�0�5�0�75}, and the columns index the treatment prob-
ability p(w) ∈ {0�25�0�5�0�75}. The simulations are conducted with normally distributed errors
εi�t ∼ N(0�1) and N = 100. Results are averaged over 5000 simulations. See Section 5 of the main
text for further details on the simulation design.

still leads to informative tests. However, when p = 1, the persistence of the causal ef-

fects φ has an important effect on the power of our tests. In particular, when φ = 0�25,

the rejection rate against H0 : τ̄†
·t (1�0;1) = 0 is quite low for all values of β – lower val-

ues of φ imply less persistence in the causal effects across periods. When φ= 0�75, there

is substantial persistence across periods and observe that the rejection rate curves im-

prove for p = 1. Additionally, Figure A7 shows the same power plots for N = 1000 units.

We again observe that power is relatively low for low values of φ, but when φ = 0�75, the

rejection rate curves for p = 0�1 appear similar. This suggests that detecting dynamic

causal effects requires larger sample sizes.

Simulation results for the estimator of the lag-1, time-t weighted average dynamic causal

effect, τ̄†
·�t(1�0;1) We now present simulation results that analyze the properties of our

estimator for the lag-1 total weighted average dynamic causal effect, ˆ̄τ†
·�t(1�0;1). We

choose the weights to av to place equal weight on the future treatment paths. Figure A8

plots the simulated randomization distribution for ˆ̄τ†
·�t(1�0;1) and Figure A9 plots the

associated quantile-quantile plot. We observe that the normal approximation remains

accurate for lagged dynamic causal effects.
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Figure A7. Rejection probabilities for a test of the null hypothesis H0 : τ̄·t (1�0;0) = 0 and
H0 : τ̄†

·t (1�0;1) = 0 as the parameter β varies under different choices of the parameter φ and
treatment probability p(w). The rejection rate curve against H0 : τ̄·t (1�0;0) = 0 is plotted by
the circles and the rejection rate curve against H0 : τ̄†

·t (1�0;1) = 0 is plotted by the triangles.
The rows index the parameter φ ∈ {0�25�0�5�0�75}, and the columns index the treatment prob-
ability p(w) ∈ {0�25�0�5�0�75}. The simulations are conducted with normally distributed errors
εi�t ∼ N(0�1) and N = 1000. Results are averaged over 5000 simulations. See Section 5 of the main
text for further details on the simulation design.

Figure A8. Simulated randomization distribution for ˆ̄τ†
·t (1�0;1) under different choices of the

parameter φ and treatment probability p(w). The rows index the parameter φ ∈ {0�25�0�5�0�75},
and the columns index the treatment probability p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the sim-
ulated randomization distribution with normally distributed errors εi�t ∼ N(0�1) and N = 100.
Panel (b) plots the simulated randomization distribution with Cauchy distribution errors
εi�t ∼ Cauchy and N = 50�000. Results are computed over 5000 simulations. See Section 5 of the
main text for further details on the simulation design.
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Figure A9. Quantile-quantile plots for the simulated randomization distribution for ˆ̄τ†
·t (1�0;1)

under different choices of the parameter φ and treatment probability p(w). The quantile-quan-
tile plots compare the quantiles of the simulated randomization distribution (y-axis) against the
quantiles of a standard normal random variable (x-axis). The 45-degree line is plotted by the
solid line. The rows index the parameter φ ∈ {0�25�0�5�0�75}, and the columns index the treat-
ment probability p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the quantile-quantile plots for simulated
randomization distribution with normally distributed errors εi�t ∼ N(0�1) and N = 1000. Panel
(b) plots the quantile-quantile plots simulated randomization distribution with Cauchy distri-
bution errors εi�t ∼ Cauchy and N = 50�000. Results are computed over 5000 simulations. See
Section 5 of the main text for further details on the simulation design.

C.3 Simulations for the estimator of the unit-i average dynamic causal effects

We present simulation results for our estimator of the unit-i average dynamic causal
effect, ˆ̄τi�·(1�0;0), with T = 100 time periods when the potential outcomes are generated
with normally distributed errors and T = 50�000 with Cauchy distributed errors.

Normal approximations and size control Figure A10 plots the randomization distribu-
tion for ˆ̄τi·(1�0;0). We see a similar pattern as before—when the errors are normally
distributed, the randomization distribution converges quickly to a normal distribu-
tion, but it takes longer to do so when the errors are heavy-tailed. Figure A11 provides
quantile-quantile plots of the simulation randomization distributions to further illus-
trate the quality of the normal approximations. The null rejection rates for the hypoth-
esis, H0 : τ̄i�·(1�0;0) = 0 are reported in Table A2 and, again, the test controls size well
across a wide range of parameters.

Rejection rates Next, we investigate the rejection rate of the statistical test based on the
normal asymptotic approximation for H0 : τ̄†

i·(1�0;0) = 0 and H0 : τ̄†
i·(1�0;1) = 0, plotting

the rejection rates in Figure A12. For p = 0, Once again, we observe that the rejection
rate against H0 : τ̄†

i·(1�0;0) = 0 has good power properties across a range of simulations.
However, once again for p = 1, our conservative test has low power and the persistence
of the causal effects φ has an important effect on the power of our tests. Additionally,
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Figure A10. Simulated randomization distribution for ˆ̄τi·(1�0;0) under different choices of the
parameter φ and treatment probability p(w). The rows index the parameter φ ∈ {0�25�0�5�0�75},
and the columns index the treatment probability p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the sim-
ulated randomization distribution with normally distributed errors εi�t ∼ N(0�1) and T = 100.
Panel (b) plots the simulated randomization distribution with Cauchy distribution errors
εi�t ∼ Cauchy and T = 50�000. Results are computed over 5000 simulations. See Section 5 of the
main text for further details on the simulation design.

Figure A11. Quantile-quantile plots for the simulated randomization distribution for
ˆ̄τi·(1�0;0) under different choices of the parameter φ and treatment probability p(w). The quan-
tile-quantile plots compare the quantiles of the simulated randomization distribution (y-axis)
against the quantiles of a standard normal random variable (x-axis). The 45-degree line is plotted
by the solid line. The rows index the parameter φ ∈ {0�25�0�5�0�75}, and the columns index the
treatment probability p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the quantile-quantile plots for sim-
ulated randomization distribution with normally distributed errors εi�t ∼ N(0�1) and T = 100.
Panel (b) plots the quantile-quantile plots simulated randomization distribution with Cauchy
distribution errors εi�t ∼ Cauchy and T = 50�000. Results are computed over 5000 simulations.
See Section 5 of the main text for further details on the simulation design.
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Table A2. Null rejection rate for the test of the null hypothesis H0 : τ̄i·(1�0;0) = 0 based upon
the normal asymptotic approximation to the randomization distribution of ˆ̄τi·(1�0;0). Panel (a)
reports the null rejection probabilities in simulations with εi�t ∼ N(0�1) and T = 100. Panel (b)
reports the null rejection probabilities in simulations with εi�t ∼ Cauchy and T = 50�000. Results
are computed over 5000 simulations. See Section 5 of the main text for further details on the
simulation design.

p(w) p(w)

0�25 0�5 0�75 0�25 0�5 0�75

(a) εi�t ∼ N(0�1), T = 100 (b) εi�t ∼ Cauchy, T = 50�000
φ 0�25 0�052 0�047 0�054 0�031 0�031 0�034

0�5 0�049 0�049 0�048 0�048 0�039 0�043
0�75 0�058 0�046 0�054 0�052 0�047 0�057

Figure A13 shows the same power plots for T = 1000 time periods. In this case, we ob-
serve that the conservative test has good power against the weak null of no unit-i aver-
age dynamic causal effects for both p = 0�1. This suggests that detecting unit-i average
dynamic causal effects requires a long time dimension in the panel experiment.

Simulation results for the estimator of the lag-1, unit-i weighted average dynamic causal
effect, τ̄†

i�·(1�0;1) We now present simulation results that analyze the properties of our

Figure A12. Rejection probabilities for a test of the null hypothesis H0 : τ̄†
i·(1�0;0) = 0 and

H0 : τ̄†
i·(1�0;1) = 0 as the parameter β varies under different choices of the parameter φ and

treatment probability p(w). The rejection rate curve against H0 : τ̄†
i·(1�0;0) = 0 is plotted in

the circles and the rejection rate curve against H0 : τ̄†
i·(1�0;1) = 0 is plotted in the triangles.

The rows index the parameter φ ∈ {0�25�0�5�0�75}, and the columns index the treatment prob-
ability p(w) ∈ {0�25�0�5�0�75}. The simulations are conducted with normally distributed errors
εi�t ∼ N(0�1) and T = 100. Results are averaged over 5000 simulations. See Section 5 of the main
text for further details on the simulation design.
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Figure A13. Rejection probabilities for a test of the null hypothesis H0 : τ̄†
i·(1�0;0) = 0 and

H0 : τ̄†
i·(1�0;1) = 0 as the parameter β varies under different choices of the parameter φ and

treatment probability p(w). The rejection rate curve against H0 : τ̄†
i·(1�0;0) = 0 is plotted in

the circles and the rejection rate curve against H0 : τ̄†
i·(1�0;1) = 0 is plotted in the triangles.

The rows index the parameter φ ∈ {0�25�0�5�0�75}, and the columns index the treatment prob-
ability p(w) ∈ {0�25�0�5�0�75}. The simulations are conducted with normally distributed errors
εi�t ∼ N(0�1) and T = 1000. Results are averaged over 5000 simulations. See Section 5 of the main
text for further details on the simulation design.

Figure A14. Simulated randomization distribution for ˆ̄τ†
i·(1�0;1) under different choices of the

parameter φ and treatment probability p(w). The rows index the parameter φ ∈ {0�25�0�5�0�75},
and the columns index the treatment probability p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the sim-
ulated randomization distribution with normally distributed errors εi�t ∼ N(0�1) and T = 100.
Panel (b) plots the simulated randomization distribution with Cauchy distribution errors
εi�t ∼ Cauchy and T = 50�000. Results are computed over 5000 simulations. See Section 5 of the
main text for further details on the simulation design.
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Figure A15. Quantile-quantile plots for the simulated randomization distribution for
ˆ̄τ†
i·(1�0;1) under different choices of the parameter φ and treatment probability p(w). The quan-

tile-quantile plots compare the quantiles of the simulated randomization distribution (y-axis)
against the quantiles of a standard normal random variable (x-axis). The 45-degree line is plotted
by the solid line. The rows index the parameter φ ∈ {0�25�0�5�0�75}, and the columns index the
treatment probability p(w) ∈ {0�25�0�5�0�75}. Panel (a) plots the quantile-quantile plots for sim-
ulated randomization distribution with normally distributed errors εi�t ∼ N(0�1) and T = 1000.
Panel (b) plots the quantile-quantile plots simulated randomization distribution with Cauchy
distribution errors εi�t ∼ Cauchy and T = 50�000. Results are computed over 5000 simulations.
See Section 5 of the main text for further details on the simulation design.

estimator for the lag-1 total weighted average dynamic causal effect, ˆ̄τ†
i�·(1�0;1). We

choose the weights to av to place equal weight on the future treatment paths. Figure A14
plots the simulated randomization distribution for ˆ̄τ†

i�·(1�0;1) and Figure A15 plots the
associated quantile-quantile plot. We observe that the normal approximation remains
accurate for lagged dynamic causal effects.

Appendix D: Additional empirical results

D.1 Analysis of unit and time-specific average dynamic causal effects

We estimate unit-specific average dynamic causal effects in the panel experiment con-
ducted by Andreoni and Samuelson (2006). We focus on two randomly selected units in
the experiment and construct estimates of their average i, tth lag-0 dynamic causal ef-
fect, τi�t(1�0;0) (Definition 5). Figure A16 shows the nonparametric estimates τ̂i�t(1�0;0)
for t ∈ [T ], for the two units. The figure also contains the nonparametric estimate of
the average unit-i lag-0 dynamic causal effect τ̄i·(1�0;0) = 1

T

∑T
t=1 τ̂i�t(1�0;0). The re-

sult shows that the point estimate of the average unit-i lag-0 dynamic causal effect
is positive for both units, suggesting that a larger value of λ in the current game in-
creases the likelihood of cooperation for both units. Since each unit only plays a to-
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Figure A16. Estimates of the weighted average i, tth lag-0 dynamic causal effect (Definition 5)
of W = 1{λ ≥ 0�6} on cooperation in period one for two units in the experiment of Andreoni
and Samuelson (2006). The solid line plots the nonparametric estimator τ̂i�t (1�0;0) given in Re-
mark 3.1. The varying dashed line plots the running average of the period-specific estimator
for each unit: for each t ∈ [T ], 1

t

∑t
s=1 τ̂i�s(1�0;0). The constant dashed line plots the estimated

weighted average unit-i lag-0 dynamic causal effect, ˆ̄τi·(1�0;0)= 1
T

∑T
t=1 τ̂i�t (1�0;0).

tal of twenty rounds, the estimated variance of these unit-specific estimators is quite

large.

We next estimate period-specific, weighted average dynamic causal effects that pool

information across units in order to gain precision. For each time period t ∈ [T ], we con-

struct estimates based on the nonparametric estimator of the weighted average time-t,

lag-p dynamic causal effect τ̄†
·t(1�0;p) = 1

N

∑N
i=1 τ

†
i�t(1�0;p) for p = 0�1�2�3. For each

value of p, the dashed black line in Figure A17 plots the estimates ˆ̄τ†
·t(1�0;p) and the

grey region plots a 95% pointwise conservative confidence band for the period-specific

weighted average dynamic causal effects. For each value of p, there appears to be some

heterogeneity in the period-specific weighted causal dynamic causal effects across time

periods.

To further investigate these dynamic causal effects, the solid line in Figure A17 plots

the nonparametric estimator the total lag-p weighted average causal effect τ̄†(1�0;p)
for p = 0�1�2�3, which further pools information across all units and time periods. The

short dashed lines plot the conservative confidence interval for the total lag-p weighted

average causal effect. See the main text for further discussion of the total lag-p weighted

average causal effect estimates.
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Figure A17. Estimates of the time-t lag-p weighted average dynamic causal effect, τ̄†
·t (1�0;p) of

W = 1{λ ≥ 0�6} on cooperation in period one based on the experiment of Andreoni and Samuel-
son (2006) for each time period t ∈ [T ] and p= 0�1�2�3. The long dashed line plots the nonpara-
metric estimator of the time-t lag-p weighted average dynamic causal effect, ˆ̄τ†

·t (1�0;p), for each
period t ∈ [T ]. The grey region plots the 95% pointwise confidence band for τ̄†

·t (1�0;p) based
on the conservative estimator of the asymptotic variance of the nonparametric estimator (The-
orem 3.2). The solid line plots the nonparametric estimator of the total lag-p weighted average
dynamic causal effect, ˆ̄τ†(1�0;p) and the short dashed lines plot the 95% confidence interval for
τ̄†(1�0;p) based on the conservative estimator of the asymptotic variance of the nonparametric
estimator.
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