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Introduction

The package GMMSensitivity implements estimators and confidence interval for sensitivity anal-
ysis in moment condition models considered in Armstrong and Kolesár [2020]. In this vignette,
we demonstrate the implementation of these confidence intervals using the demand model for
automobiles from Berry et al. [1995].

The package includes the dataset blp, which contains estimates of the Berry et al. [1995] model,
as implemented by Andrews et al. [2017]. A description of the dataset can be obtained via the
documentation in R, using ?blp. We give additional description here:

G Matrix with 31 rows and 17 columns, estimate of derivative of the moment condition G =
∂E[g(wi, θ)]/∂θ, evaluated at initial estimate θ̂initial. The initial estimate corresponds to a
second-step GMM estimate, as computed by Andrews et al. [2017].

H Vector of length 17, estimate of derivative of average markup h(θ), evaluated at θ̂initial.
W Weight matrix used to obtain the estimate θ̂initial. It corresponds to an estimate of the inverse of

the variance of the moment condition Σ.
g_init Average moment condition n−1 ∑n

i=1 g(wi, θ), evaluated at estimate θ̂initial of θ from Berry
et al. [1995].

h_init Estimate of the average markup, h(θ̂initial).
names Two lists, one for names of the moment conditions, and one for elements of theta
ZZ Gram matrix of the instruments, used to specify the set C
Sig Variance of moment condition, estimate of Σ, given by the sample variance of the moment

condition evaluated at θ̂initial.
sdZ vector of standard deviations of the instruments
perturb scaling parameter to give interpretable meaning to violations of moment conditions. For

demand-side moments, it corresponds to an estimate of δd = 0.01p/(y/α), and for supply-
side moments, it corresponds to an estimate of δs = −0.01p/mc, where p is average price, y is
average income, mc is average marginal cost, and α is a parameter in the utility function. With
this scaling, if a given demand-side instrument enters the utility function with coefficient δd,
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a consumer is willing to pay 1% of the average car price for a unit increase in the instrument.
If a given supply-side instrument enters the cost function with coefficient δs, increasing the
instrument by one unit decreases the marginal cost by 1% of the average car price.

n Sample size, number of model/years.

Usage

The package implements estimators, confidence intervals, and efficiency calculations for the model
(in the notation of Armstrong and Kolesár [2020])

g(θ0) = c/
√

n, c ∈ C, C = {Bγ : ‖γ‖p ≤ M}.

Suppose that we want to allow all excluded instruments in the Berry et al. [1995] application to be
potentially invalid. Fix B to a scaling matrix so that if the jth supply-side instrument is invalid with
γsj = 1, this means that changing the instrument by one standard deviation changes the marginal
cost by γsj% of the average car price, and if the j the demand-side instrument is invalid with
γdj = 1, then the consumer willingness to pay for one standard deviation change in the instrument
is γdj% of the average 1980 car price. Let p = 2, and M =

√
#I, where #I is the number of invalid

instruments so that γ = 1 is included in the set (this is the same scaling as described in Armstrong
and Kolesár [2020] in the paper). Then the confidence interval can be constructed as follows:

## Construct estimate of initial sensitivity

blp$k_init <- -drop(blp$H %*% solve(crossprod(blp$G, blp$W %*%

blp$G), crossprod(blp$G, blp$W)))

## list collecting initial estimates of H, G, Sigma, n,

## g(thetahat), initial sensitivity k, and initial

## estimate of average markup h(thetahat)

eo <- list(H = blp$H, G = blp$G, Sig = blp$Sig, n = blp$n,

g_init = blp$g_init, k_init = blp$k_init, h_init = blp$h_init)

## Rows corresponding to invalid instruments

I <- vector(mode = "logical", length = nrow(eo$G))

I[c(6:13, 20:31)] <- TRUE

## Matrix B, scaled as described in the paper

B0 <- blp$ZZ %*% diag(sqrt(blp$n) * abs(blp$perturb)/blp$sdZ)

## Value of M

M0 <- sqrt(sum(I))

## Select columns of B0 corresponding to invalid

## instruments

OptEstimator(eo, B0[, I], M = M0, p = 2, alpha = 0.05, opt.criterion = "FLCI")

#>

#>

#> |Estimate |Max. bias |SE |CI |

#> |:---------|:----------|:----------|:---------------------|

#> |0.5598804 |0.06295884 |0.02268748 |(0.459604, 0.6601569) |

The efficiency κ∗ for this confidence interval can be computed using the EffBounds function (which
can also be used to compute efficiency of one-sided confidence intervals):
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EffBounds(eo, B0[, I], M = M0, p = 2)$twosided

#> [1] 0.9704414

In contrast the CI based on the initial estimate is much wider:

OptEstimator(eo, B0[, I], M = M0, p = 2, alpha = 0.05, opt.criterion = "Valid")

#>

#>

#> |Estimate |Max. bias |SE |CI |

#> |:---------|:---------|:----------|:-----------------------|

#> |0.3271788 |0.1983659 |0.01815665 |(0.09894796, 0.5554097) |

A specification test for whether the value M = M0 is too low, that is a test of the hypothesis
H0 : M ≤ M0, can be conducted using the Jtest function:

## Update eo so that Sig corresponds to the initial

## estimate of Sigma, so that thetahat_initial minimizes

## n*g(theta)Sig�{-1} g(theta), and the J statistic is

## given by the value of this minimum.

eoJ <- eo

eoJ$Sig <- solve(blp$W)

jt <- Jtest(eoJ, B0[, I], M = M0, p = 2, alpha = 0.05)

Here J is the J-statistic, p0 is the p-value of the usual J-test (that assumes M = 0 under the null), pC
is the p-value of the test, and Mmin is the smallest value of M that is not rejected. Rescaling by

√
#I,

we obtain the result in Table 1 in Armstrong and Kolesár [2020]:

jt$Mmin/M0

#> [1] 1.130813

If were only concerned about the validity of the demand-side instrument "demand_firm_const"
(number of cars produced by the same firm), then since this is the sixth instrument, an analogous
analysis could be conducted as:

I <- vector(mode = "logical", length = nrow(eo$G))

I[6] <- TRUE

OptEstimator(eo, B0[, I, drop = FALSE], M = 1, p = 2, alpha = 0.05,

opt.criterion = "FLCI")

#>

#>

#> |Estimate |Max. bias |SE |CI |

#> |:---------|:-----------|:----------|:----------------------|

#> |0.3564058 |0.002489518 |0.01868669 |(0.3194578, 0.3933538) |

EffBounds(eo, B0[, I, drop = FALSE], M = 1, p = 2)$twosided

#> [1] 0.8593365

OptEstimator(eo, B0[, I, drop = FALSE], M = 1, p = 2, alpha = 0.05,

opt.criterion = "Valid")

#>

#>

#> |Estimate |Max. bias |SE |CI |
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#> |:---------|:----------|:----------|:----------------------|

#> |0.3271788 |0.01070908 |0.01815665 |(0.2862084, 0.3681493) |

Jtest(eoJ, B0[, I, drop = FALSE], M = 1, p = 2, alpha = 0.05)

#> $J

#> [1] 426.7276

#>

#> $p0

#> [1] 0

#>

#> $pC

#> [1] 0

#>

#> $Mmin

#> [1] 10.20545
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