
Taylor Projection - A User Guide

Oren Levintal

June 30, 2016

1 Introduction

This note explains how to implement the MATLAB package provided by Levintal

(2016) to solve a simple neoclassical growth model by Taylor projection.

2 Installation

The package is implemented by MATLAB/MEX files. You will need MATLAB,

MATLAB symbolic toolbox, MATLAB optimization toolbox, MATLAB control sys-

tem toolbox (optional), and Intel Fortran compiler (optional) that is configured to

work with MATLAB.1 The package was tested on MATLAB version R2014b with

an Intel Visual Fortran Composer XE 2013 on Windows 64bit.

To install the package follow these steps:

• Add the folder Solution Methods and its subfolders to the search path. For

example, if the folder location is c:/Solution Methods type:

1see www.mathworks.com

1



addpath(genpath(’c:/Solution Methods’))

in the command prompt.

• MEX files: The package includes MEX files that were compiled on WIN-

DOWS10 (64bit). In case that these files do not work on your computer go

to folder Solution Methods\Taylor Projection\MEX files and run the file

do mex.m to compile the FORTRAN source codes on your system. To do so,

you will need an Intel Fortran compiler that works with MATLAB.

3 Running the program

The folder Simple Example\Taylor projection solves the neoclassical growth

model in two stages. The first stage is performed by prepare model.m. This file

differentiates the model and prepares files and data that are used when the model

is solved. The second stage is performed by solve model.m, which solves the model

for given parameter values.

4 The model

The model is defined in prepare model.m. The notation of the model follows

Schmitt-Grohé and Uribe (2004):

2



Etf (yt+1, yt, xt+1, xt) = 0, (1)

xt+1 = h (xt) + ηǫt+1, (2)

yt = g (xt) (3)

h (xt) =







h̃ (xt)

Φ (x2
t )






, η =







0

η̃






. (4)

The state and control variables are defined by the symbolic variables x and y for

current period, and by xp and yp for next period. The equilibrium conditions are

defined by the symbolic variable f. It is recommended to define f in a unit-free form

to avoid scaling problems. This will also help later to compute the unit-free model

residuals. The parameters are defined by the symbolic variable symparams, and the

matrix eta is the same matrix as in Schmitt-Grohé and Uribe (2004).

The code differs from Schmitt-Grohé and Uribe (2004) by allowing to define the

function Phi. This is a symbolic expression that defines the expected value of future

exogenous state variables as a function of current state variables, i.e., the function

Φ (x2
t ), which is the lower block of h (x). Importantly, vector x should be defined

x=[x1,x2], where the first block is the endogenous state variables and the second

block is the exogenous state variables.

3



4.1 Auxiliary variables

The code allows to define the model by using auxiliary variables. It is not nec-

essary but highly recommended. The auxiliary variables are substituted out in the

final system. For instance, you can declare a new symbolic variable logy and de-

fine the symbolic expression logy =log(y). Then, you can use logy throughout the

code, but the algorithm will know to substitute it with logy . Importantly, when the

algorithm differentiates the model it DOES NOT substitute the variables. Instead,

it applies the chain rule. This makes the differentiation much more efficient.

For example, consider the Euler condition:

Euler=BETA*exp(GAMMA*(logc-logcp))*(ALPHA*exp(logap+(ALPHA-1)*logkp)+1-DELTA)-1;

It can be defined also in the following way:

logmpkp =log(ALPHA)+logap+(ALPHA-1)*logkp;

mpkp =exp(logmpkp);

logmp =log(BETA)+GAMMA*(logc-logcp);

mp =exp(logmp);

Euler=mp*(mpkp+1-DELTA)-1;

4



Note that mp is the stochastic discount factor from current to future period, and

mpkp is future marginal product of capital. Hence, the auxiliary variables make the

model more economically meaningful.

The auxiliary variables are defined by vector auxvars and the auxiliary functions

by auxfuns. In the example above, these vectors would be defined as follows:

auxvars=[logmpkp;mpkp;logmp;mp]

auxfuns=[logmpkp ;mpkp ;logmp ;mp ]

If you type [auxvars,auxfuns] you get all the auxiliary equations. The algorithm

applies the chain rule on these equations to obtain the required derivatives.

It is useful to denote the auxiliary function by the same name as the auxiliary

variable, with some common suffix (e.g. underscore).

4.2 Differentiating the model

After the model is defined, the function prepare tp is called. This function

differentiates the model and generates files and data. The files are stored in an

automatically generated folder files. Data are stored in the output variable model.

This variable is used later to solve the model so it has to be saved.

When you call prepare tp, you have to specify the order of the system by the

variable order. For instance, order=3 will produce a third order Taylor projection

system (which is the largest order available by the package). In this case, the policy

5



functions are approximated by 3rd order polynomials.

The package can also compute a perturbation solution (up to 4th order), which

can be used as the initial guess. By default, the order of the perturbation solution

is the same as the order of the Taylor projection solution. However, if you are

interested in a perturbation solution of a different order, you should specify it as

the second element of order. For instance order=[2,4] will produce a 2nd-order

Taylor projection solution and a 4th-order perturbation solution. A higher-order

perturbation solution would be required if the low order solution is not sufficiently

accurate as an initial guess. For example, in models with strong volatility, the high-

order derivatives w.r.t the perturbation parameter may be economically important

to get a sufficiently accurate initial guess.

5 Solve the model

Open and run the file solve model.m in folder Simple Example\Taylor projection.

This file solves the model by Taylor projection, using a perturbation solution as the

initial guess.

The file starts by adding the folder files to the search path. This folder was

generated automatically in the first stage by the function prepare tp. It stores files

that are necessary to solve the model. Second, load the variable model that was

generated in the first step.

Next, you should provide the discrete distribution of the nǫ×1 vector of shocks ǫ.

The discrete distribution is defined by the realization matrix nep and the probability

6



vector P. The matrix nep is of size nǫ × nnodes, where nnodes is the number of nodes

of the discrete distribution. The vector P is of length nnodes. For instance, nep(:,i)

is a realization with probability P(i). If the shocks are continuous (as is usually

the case), you should discretize them. The file solve model.m uses monomial rules

written by Judd, Maliar, Maliar, and Valero (2014).

By default, the solution uses an exact Jacobian. If you have a large model, you

may want to use the approximate Jacobian discussed in Levintal (2016). To do so,

define model.jacobian=’approximate’.

We are now ready to solve the model. First, we need to obtain an initial guess.

The package can compute a perturbation solution for the initial guess. This solution

is usually very good for solving the model near the steady state.

5.1 Perturbation solution

A perturbation solution is obtained by the function get pert. The inputs include

parameter values (params), steady state values (nxss, nyss), the matrix η (eta) and

the cross moments (M). The cross moments are obtained by the function get moments.

This function computes the moments from the discrete distribution. If you know the

analytic cross moments, you can use them instead.2 For example, if the shocks are

independent standard normal you can use the function gaussian moments(n e) that

computes the cross-moments of a vector of n e standard normal iid shocks.

In addition, you need to choose a solver for the Sylvester equation solved by the

perturbation algorithm. There are three possibilities: 1. ’vectorize’ is good only

2M.M2 is Eǫ⊗2, M.M3 is Eǫ⊗2, and M.M4 is Eǫ⊗4.

7



for small models. 2. ’dlyap’ is good for larger models, but requires the MATLAB

control system toolbox. 3. ’gensylv’ is recommended for very large models. It

applies the algorithm of Kameńık (2005), which is provided by Dynare as a compiled

MEX file.3 The current package includes the WINDOWS (64bit) version of this

MEX file. If you work on a different operating system, you can get the appropriate

version by downloading Dynare from www.dynare.org and searching for the MEX file

gensylv. Then, add this file to folder Solution Methods\Perturbation\gensylv.

The function get pert generates 4 outputs. The first output derivs contains

the derivatives of g and h w.r.t x and σ, where σ is the perturbation parameter.4

The second output stoch pert is a standard perturbation solution transformed into

a vector of unique polynomial coefficients. The third output nonstoch pert is a

perturbation solution of a deterministic model in the form of unique polynomial

coefficients. This solution does not correct for the model volatility. Both vectors

stoch pert and nonstoch pert can be used as an initial guess. However, in models

with strong volatility the latter may not be sufficiently accurate. If stoch pert is

also not sufficiently accurate, try to produce a higher-order perturbation solution, as

explained in section 4.2.

If this is not good either, try to start with a model with no volatility, namely, a

model where η is all zero. The vector nonstoch pert should be the exact solution

of the nonlinear system at the steady state for this particular case. Then, you can

increase η gradually to the required value and solve the model at each step using the

3For a description of Dynare see Adjemian, Bastani, Juillard, Mihoubi, Ratto, and Villemot
(2011).

4Note that the perturbation parameter is added to the vector of state variables x, as done in
Levintal (2015). For example, the derivatives of g w.r.t σ are in the last column of derivs.gx.

8



previous solution as the initial guess (as in homotopy).

5.2 Taylor projection solution

Having the initial guess, we are now ready to solve the model by the function

tpsolve. The arguments of the function are: (1) the initial guess coeffs; (2) the

point x0 at which we solve the model; (3) the precomputed variable model; (4)

the vector of parameter values params; (5) the matrix eta; (6) the point c0 at

which the initial guess is centered;5 (7) the discretized shocks nep and probabilities

P; (8) tolerance parameters of the Newton solver: tolX, tolF and maxiter. The

function returns the following outputs: (1) the solution ncoeffs; (2) the variable

model which contains some additional data computed during the first iteration of

the Newton method (see below).

tpsolve solves the nonlinear system by a simple Newton solver. If the algorithm

does not converge within the specified tolerance parameters, it switches automatically

to fsolve, with the same tolerance parameters. You can control the tolerance of

fsolve by the function optimoptions. You can also choose the lsqnonlin algorithm

instead (as shown in the example). lsqnonlin is a nonlinear least squares algorithm.

It is more appropriate when the nonlinear system does not have an exact solution.

5If the initial guess is a perturbation solution obtained by get pert, then c0 should be the
steady state.

9



5.3 Moving to adjacent points

Once the model is solved at x0, the solution can be used as an initial guess for

solving the model at an adjacent point x1. Note that you do not need to change the

center c0 when you move to other points. The algorithm will do it automatically,

and return the solution as a power series centered at c0.

6 More options

6.1 The variable model

The variable model stores data that speed up the computation of the solution.

Some of the data were generated in the first step by the function prepare tp. The

remaining data are generated on the first call to get pert and the first Newton

iteration of tpsolve. After you run these functions for the first time and return the

variable model, you can save it. Further calls to these (or other) functions will not

generate any new data.6

6.2 The nonlinear system

The function tp is the main part of the algorithm. It computes the nonlinear

system T and the Jacobian J by the command:

[T,J,model]=tp(coeffs,x0,model,params,eta,c0,nep,P);

6If a perturbation solution is not used, you just need to call tpsolve.

10



The first call to this function (like the first call to tpsolve) computes all the necessary

data for model. Note that if x0 6= c0, the function automatically shifts the center of

the initial guess to x0. It issues a warning, because the Jacobian in this case refers

to the shifted coefficients, not the original coefficients.

6.3 Policy functions and model residuals

You can use the function eval model to evaluate the model residuals over a grid.

The function also outputs the policy functions, the function Φ and the auxiliary

variables.

If you only want to evaluate the policy functions over a grid x grid, use eval policy.

6.4 The variable coeffs

The solution is given by a vector coeffs of length nΘ. This vector stores the

unique Taylor coefficients of nf power series centered at c0. By typing:

coeffs=reshape(coeffs,model.n f,model.n b),

we get a nf × nb matrix, where nf denotes the number of endogenous variables

and nb is the size of the basis function. The upper block coeffs(1:model.n y,:)

contains the solution of the control variables yt as a function of xt, and the lower

block coeffs(model.n y+1:end,:) is the solution of the endogenous state variables

x1
t+1 as a function of xt.

The solution is given in the form of unique Taylor coefficients about c0 (the

11



center of the power series). For example, a second order solution to g (x) contains

the following unique Taylor coefficients:

[

g (x) ,
∂g (x)

∂x1
, . . . ,

∂g (x)

∂xnx

,
1

2!

∂2g (x)

∂x1∂x1
,
1

2!

∂2g (x)

∂x2∂x1
, . . . ,

1

2!

∂2g (x)

∂xnx
∂x1

,
1

2!

∂2g (x)

∂x2∂x2
,
1

2!

∂2g (x)

∂x3∂x2
, . . . ,

1

2!

∂2g (x)

∂xnx
∂xnx

]

where g and all its derivatives are evaluated at c0. Note that these are only the

unique coefficients. To get the full Taylor coefficients you need to type (it can also

be done automatically, as explained below):

coeffs=reshape(coeffs,model.n f,[]);

GH0=coeffs(:,1);

GH1=coeffs(:,2:1+model.n x);

GH2=coeffs(:,2+model.n x:1+model.n x+nchoosek(model.n x+1,2))*model.W{2};

GH3=coeffs(:,2+model.n x+nchoosek(model.n x+1,2):1+model.n x+...

nchoosek(model.n x+1,2)+nchoosek(model.n x+2,3))*model.W{3};

Then, you can evaluate these Taylor series at any point x0 by typing:

vars=GH0+GH1*(x0-c0)+GH2*kron(x0-c0,x0-c0)+GH3*kron(x0-c0,kron(x0-c0,x0-c0));

12



These are the values of the endogenous variables. The endogenous control vari-

ables are in vars(1:model.n y) and the endogenous state variables are in vars(model.n y+1:end).

However, a more efficient way to get the endogenous variables is to call the function

eval policy, as shown in the example.

6.5 Transform derivatives into unique Taylor coefficients

Suppose you have a guess for the functions g and h̃ and you want to use it as an

initial guess. You can use the function derivs2coeffs to convert the guess into a

column vector of the unique Taylor coefficients. To do so, type:

coeffs=derivs2coeffs(model,[g0;h0],[gx;hx],[gxx;hxx],[gxxx;hxxx]).

Here, [g0;h0] is the value of the guess at the point of interest x0. [gx;hx] is a

matrix of first derivatives at x0. [gxx;hxx] is a tensor of second derivatives, and so

on. The vector coeffs is the unique Taylor coefficients about x0. You can use it as

an initial guess for tpsolve by setting c0 = x0.

References

Adjemian, S., H. Bastani, M. Juillard, F. Mihoubi, M. Ratto, and

S. Villemot (2011): “Dynare: Reference Manual, Version 4,” Dynare Work-

ing Papers 1, CEPREMAP.

13



Judd, K. L., L. Maliar, S. Maliar, and R. Valero (2014): “Smolyak Method

for Solving Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid

and Adaptive Domain,” Journal of Economic Dynamics and Control, 44, 92–123.

Kameńık, O. (2005): “Solving SDGE Models: A New Algorithm for the Sylvester

Equation,” Computational Economics, 1412.8659v1, 167–187.

Levintal, O. (2015): “Fifth Order Perturbation Solution to DSGE Models,”

Manuscript, Interdisciplinary Center Herzliya.

(2016): “Taylor Projection: A New Solution Method for Dynamic General

Equilibrium Models,” Manuscript, Interdisciplinary Center Herzliya.

Schmitt-Grohé, S., and M. Uribe (2004): “Solving Dynamic General Equi-

librium Models Using a Second-Order Approximation to the Policy Function,”

Journal of Economic Dynamics and Control, 28, 755–775.

14


