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1 Introduction

This is a technical note that explains how to use the MATLAB codes to replicate

the results in Fernández-Villaverde and Levintal (2016). The codes implement per-

turbation solutions of orders 1 to 5, Taylor projection of orders 1 to 3, and Smolyak

collocation of any order.

A simple example can be found in folder Simple Example, where the neoclassical

model is solved by all methods.

If you are interested only in the Taylor projection method, read the enclosed User

Guide, which explains this method in further detail.

∗Correspondence: jesusfv@econ.upenn.edu (Fernández-Villaverde) and oren.levintal@idc.ac.il
(Oren Levintal). Fernández-Villaverde gratefully acknowledges financial support from the National
Science Foundation under Grant SES 1223271.
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2 External files

The following external files are included in the package:

• The files Monomials 1.m and Monomials 2.m written by Judd, Maliar, Maliar,

and Valero (2014) to discretize Gaussian shocks by monomial rules.

• The file sym Smolyak Polynomial.m is a symbolic version of Smolyak Polynomial.m

written by Judd, Maliar, Maliar, and Valero (2014) to compute the Smolyak

basis function.

• The files Smolyak Grid.m and Smolyak Elem Isotrop.m written by Judd, Maliar,

Maliar, and Valero (2014) construct a Smolyak grid.

• The folder Perturbation contains the perturbation package written by Levin-

tal (2015) to compute a fifth-order perturbation solution. It uses the external

files gx hx.m written by Schmitt-Grohé and Uribe (2004) and gensylv.mexw64

written by Dynare team.

• The folder Taylor projection contains the Taylor projection package written

by Levintal (2016).

3 Installation

Requirements: MATLAB, MATLAB symbolic toolbox, MATLAB optimization

toolbox, MATLAB control system toolbox (optional), Intel Fortran compiler (op-
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tional). The package was tested on MATLAB version R2014b working on WIN-

DOWS10 (64bit).

To install the package follow these steps:

• Add the folder Solution Methods and its subfolders to the search path. For

example, if the folder location is c:\Solution Methods type in the command

prompt:

addpath(genpath(’c:\Solution Methods’)).

• MEX files: The package includes MEX files that were compiled on WIN-

DOWS10 (64bit). In case that these files do not work on your computer go

to folder Solution Methods\Taylor Projection\MEX files and run the file

do mex.m to compile the FORTRAN source codes on your system. To do so,

you will need an Intel Fortran compiler that works with MATLAB.

4 Simple example

The folder Simple Example solves the neoclassical growth model by the three

solution methods: perturbation, Taylor projection and Smolyak collocation. Here is

a brief description of these codes.
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4.1 Perturbation

The folder Simple Example\Perturbation solves the neoclassical growth model

by perturbation. The model is solved in two stages. The first stage is performed by

prepare model.m. This file differentiates the model and prepares files and data that

are used when the model is solved. The second stage is performed by solve model.m,

which solves the model for given parameter values.

The model is defined in prepare model.m. The notation of the model follows

Schmitt-Grohé and Uribe (2004):

Etf (yt+1, yt, xt+1, xt) = 0, (1)

xt+1 = h (xt) + ηǫt+1, (2)

yt = g (xt) , (3)

h (xt) =







h̃ (xt)

Φ (x2
t )






, η =







0

η̃






. (4)

The state and control variables are defined by symbolic vectors x and y for period t

and xp and yp for period t + 1. The model conditions are defined by the symbolic

vector f.

The algorithm allows to define the function Φ by a separate symbolic variable

Phi. This function is the lower block of h, which is known. It determines the

evolution law of the exogenous state variables. Since this function is known, it is not

approximated by the algorithm. Therefore, the evolution law of the exogenous state
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variables should not be included in f.

After running prepare model.m, you can solve the model by running solve model.m.

This file defines the parameter values, the matrix η, the steady state and the cross

moments of the shocks up to fifth order. These cross moments are stored in structure

M, where M.M2 is Eǫ⊗2, M.M3 is Eǫ⊗3, and so on up to fifth order. The only restriction

on the distribution of ǫ is that Eǫ = 0.

Finally, you need to choose a solver for the Sylvester equation solved by the

algorithm. There are three possibilities: 1. ’vectorize’ is good only for small

models. 2. ’dlyap’ is good for larger models, but requires the MATLAB control

system toolbox. 3. ’gensylv’ is recommended for very large models. It applies

the algorithm of Kameńık (2005), which is provided by Dynare as a compiled MEX

file.1 The current package includes the WINDOWS (64bit) version of this MEX file.

If you work on a different operating system, you can get the appropriate version by

downloading Dynare from www.dynare.org and searching for the MEX file gensylv.

Then, add this file to folder Solution Methods\Perturbation\gensylv.

The output of the perturbation algorithm is a structure, whose fields are the

derivatives of g and h with respect to the state variables and the perturbation pa-

rameter. Note that the perturbation parameter is treated as an additional state

variable, which is located as the last element of the state vector. Hence, derivatives

with respect to the perturbation parameter are stored as derivatives with respect to

the last element of x. For example gx(:,end) is the derivative of g with respect to

the perturbation parameter (denoted gσ in Schmitt-Grohé and Uribe (2004)). For

1For a description of Dynare see Adjemian, Bastani, Juillard, Mihoubi, Ratto, and Villemot
(2011).
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further details, see Levintal (2015).

4.2 Taylor projection

The folder Simple Example\Taylor projection performs the Taylor projection

method. This algorithm is also implemented in two stages, which are performed

by prepare model.m and solve model.m. The notation of the model is identical

to the perturbation algorithm. The only difference is that it allows to define auxil-

iary variables and auxiliary functions to speed up computations. For example, you

can declare a symbolic variable logmpkp, which is defined by the symbolic function

logmpkp =log(ALPHA)+logap+(ALPHA-1)*logkp. When logmpkp is used in a cer-

tain model condition (e.g. in the Euler condition), the algorithm differentiates the

model condition by using the chain rule. This speeds up the differentiation of the

model, in particular for complicated functional forms (e.g. Epstein-Zin preferences).

The model is solved in solve model.m. Few things should be noted. First, the

distribution of the shocks ǫ should be discretized. This is done by the realization

matrix nep and the probability vector P. Second, you need to supply an initial guess.

The easiest way is to solve the model near the steady state and use a perturbation

solution for the initial guess. To get a perturbation solution, you do not need to

run the perturbation algorithm separately. You can do it directly from the Taylor

projection algorithm, by the function get pert. Finally, you need to choose the

nonlinear solver (could be a simple Newton method, or some other version that is

available by the MATLAB functions fsolve or lsqnonlin). For further details, see

the enclosed User Guide.
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4.3 Smolyak collocation

The Smolyak algorithm is also performed in two stages. The model is defined

in prepare model exactly as in the Taylor projection algorithm. The solution is

computed in solve model. First, we construct a Smolyak grid by the function

Smolyak Grid.m written by Judd, Maliar, Maliar, and Valero (2014). We use this

(scaled) grid to construct the unscaled grid (the collocation points). Then, we take

an initial guess and transform it into a Smolyak polynomial by interpolation. Finally,

we solve the Smolyak coefficients by the Newton method.

5 Replication of the results

The file replicate all results.m solves the 8 models described in Fernández-

Villaverde and Levintal (2016) and reports all the results of the paper. It takes

about 30 hours to run. If your computer does not have sufficient memory, some

algorithms may fail to solve the largest models. We were able to solve all models

with 16GB RAM. It is possible to run only the cheap solutions, which takes about

3 hours. You can also choose to run only a subset of the models. To do so, go to

prepare all models.m and define the models to be solved.

The next sections describe the different components of the package.

5.1 The models

The models are defined in folder all models. This folder contains 8 subfolders for

the 8 versions of the model. In each subfolder, the model is defined in two ways: one
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for the perturbation algorithm and the other for the Taylor projection and Smolyak

algorithms.

The equilibrium conditions of the full model are provided in the appendix of this

note. Smaller versions are obtained by dropping or changing some equations, as

explained in Fernández-Villaverde and Levintal (2016). We recommend to start with

the perturbation code of the full model, which follows closely the model conditions

presented in the appendix.

The Taylor projection and Smolyak algorithms use a slightly different code. The

differences from the perturbation code are the following: (1) The size of the system is

reduced as much as possible by substituting out control variables that can be defined

as functions of other control and state variables. This reduces computational costs

and also improves accuracy, because we approximate only the necessary variables.

(2) The code uses auxiliary variables to speed up the differentiation of the model, as

explained in section 4.2.

5.2 Parameters

The package contains five sets of parameters. The no-disaster parameters are de-

fined in folder params SS0. The disaster parameters are defined in folder params SS1.

Other parameter values used as robustness tests are defined in folders params SS2,

params SS3, and params SS4. The other codes call these parameters, whenever nec-

essary.
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5.3 Preparing files

The models are solved in two stages. The first stage prepares files and data

that are necessary for solving the models. This stage is performed by the MATLAB

code prepare all models.m. You can specify which models to solve and for which

orders. Running this code for all models and orders may take about half an hour.

The generated files and data are stored in three folders generated automatically:

files for perturbation, files for smolyak and files for TaylorProjection.

5.4 Computing the solutions

The second stage solves the models. This is done by the MATLAB code do solve.m.

This file calls solve all models.m that solves the models by perturbation, Taylor

projection and Smolyak collocation. Again, you can specify a subset of models or

solutions. However, you must have the 3rd order perturbation solution, because it is

used as an initial guess for the other solutions.

5.5 Getting the results

After you run do solve.m, you can get the results reported in Fernández-Villaverde

and Levintal (2016). The file accuracy and simulation.m computes the model

residuals across the ergodic set, and performs simulations of all models, starting at

the steady state. It takes few minutes to run.

The file present tables.m produces the tables in the paper. It takes few seconds.

The files make Figure I.m, make Figure II.m, make Figure III.m and make Figure IV.m
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produce the figures. To run these files, you must first solve version no. 8 by all so-

lution methods.

Appendix: the detrended model

This section follows section 3.2 of the baseline DSGEmodel of Fernández-Villaverde

and Rubio-Ramı́rez (2006) to detrend the model conditions described in Fernández-

Villaverde and Levintal (2016). Here, we provide the full version of the model. It is

coded in the MATLAB file:

all models\RBC EZ adjCost Calvo Taylor2 shock3\Perturbation\get model pert.m.

Simpler versions of the model are coded in their respective folders by dropping/changing

the relevant equations.

To stationarize the model we define: c̃t =
ct
zt
, λ̃t = λtz

ψ
t , r̃t = rtµt, q̃t = qtµt,

x̃t = xt
zt
, w̃t = wt

zt
, k̃t = kt

ztµt
, k̃∗

t =
k∗t
ztµt

, ỹt = yt
zt
, Ũt = Ut

zt
, Ũl,t =

Ul,t
zt
, Ṽt = Vt

zt
.

In addition, denote: Ât =
At
At−1

, µ̂t =
µt
µt−1

, ẑt =
zt
zt−1

. Last, the detrended utility

variables are normalized by their steady state value to avoid scaling problems.

Under the notation of Schmitt-Grohé and Uribe (2004), the exogenous state vari-

ables must be linear in the shocks. Hence, we define the following exogenous state

variables:

10



dt+1 = µd +
(

ǫd,t+1 − µd
)

(5)

log θt+1 = (1− ρθ) log θ̄ + ρθ log θt + σθǫθ,t+1 (6)

zA,t+1 = σAǫA,t+1 (7)

log µ̂t+1 = Λµ + σµǫµ,t+1 (8)

mt+1 = σmǫm,t+1 (9)

ξt+1 = ρξξt + σξǫξ,t+1 (10)

The disaster state variable is denoted dt. It is determined by the disaster shock

ǫd,t+1, which takes the values 1 or 0. The mean of this shock is µd. Since the

mean is nonzero, the shock is demeaned in (5). The state variable log θt is the log

disaster size. The state variable zA,t is introduced to capture Gaussian TFP shocks,

which affect the TFP growth log Ât. The state variable log µ̂t denotes the growth

of investment technology. Finally, mt and ξt are the monetary shock and the time

preference shock, respectively.

The following variables depend only on the exogenous variables:

log Ât = ΛA + zA,t − (1− α) dtθt

log ẑt =
1

1− α
log Ât +

α

1− α
log µ̂t.

The model conditions are given by the following equations:
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(

Ṽt

Ṽ ss

)1−ψ

=

(

Ũt

Ũ ss

)1−ψ (

Ũ ss

Ṽ ss

)1−ψ

+ βEt





(

Ṽt+1

Ṽ ss

)1−γ

ẑ1−γt+1





1−ψ
1−γ

(11)

Ũt = c̃t (1− lt)
ν eξt (12)

Uc,t = (1− lt)
ν eξt (13)

Ũl,t = −νc̃t (1− lt)
ν−1 eξt (14)

(1− ψ)
(

Ũt

)−ψ

Ũl,t = −λ̃tw̃t (15)

(1− ψ)
(

Ũt

)−ψ

Uc,t = λ̃t (16)

Mt+1 = β
λ̃t+1

λ̃t
(ẑt+1)

−ψ

(

Ṽt+1/Ṽ
ss
)ψ−γ

(ẑt+1)
ψ−γ

Et

(

(

Ṽt+1/Ṽ ss
)1−γ

(ẑt+1)
1−γ

)
ψ−γ

1−γ

(17)

Et

(

Mt+1 exp (−dt+1θt+1)
1

µ̂t+1
[r̃t+1 + q̃t+1 (1− δ)]

)

= q̃t (18)

1 = q̃t

[

1− S

[

x̃t
x̃t−1

ẑt

]

− S′

[

x̃t
x̃t−1

ẑt

]

x̃t
x̃t−1

ẑt

]

+ (19)

+ Et

(

Mt+1q̃t+1S
′

[

x̃t+1

x̃t
ẑt+1

](

x̃t+1

x̃t
ẑt+1

)2
)

ỹt = c̃t + x̃t (20)

k̃∗t − (1− δ) k̃t −

(

1− S

[

x̃t
x̃t−1

ẑt

])

x̃t = 0 (21)

k̃t =
k̃∗t−1

ẑtµ̂t
exp (−dtθt) (22)
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q̃et = Et

(

Mt+1ẑt+1

(

d̃ivt+1 + q̃et+1

))

(23)

˜divt = ỹt − w̃tlt − x̃t (24)

qft = EtMt+1 (25)

The Calvo block:

g̃1t = mctỹ
d
t + θpEtMt+1

(

Πχ
t

Πt+1

)−ǫ

g̃1t+1ẑt+1 (26)

g̃2t = Π∗

t ỹ
d
t + θpEtMt+1

(

Πχ
t

Πt+1

)1−ǫ(
Π∗

t

Π∗

t+1

)

g̃2t+1ẑt+1 (27)

ǫg̃1t = (ǫ− 1) g̃2t (28)

1 = θp

(

Πχ
t−1

Πt

)1−ǫ

+ (1− θp) (Π
∗

t )
1−ǫ (29)

mct =

(

1

1− α

)1−α(
1

α

)α

w̃1−α
t r̃αt (30)

Optimal factor composition:

k̃t

lt
=

α

1− α

w̃t

r̃t
(31)

Aggregate conditions:

13



ỹt =

Ât
ẑt

(

k̃∗

t−1 exp (−dtθt)
)α

l1−αt − φ

v
p
t

(32)

v
p
t = θp

(

Πχ
t−1

Πt

)−ǫ

v
p
t−1 + (1− θp) (Π

∗

t )
−ǫ

, (33)

The Taylor rule:

Rt

R
=

(

Rt−1

R

)γR
(

(

Πt

Π

)γΠ
(

ỹt
ỹt−1

ẑt

exp (Λy)

)γy)1−γR

emt (34)

1 = EtMt+1
Rt

Πt+1
(35)

We define the state of the economy by the endogenous variables log k̃∗

t−1 log x̃t−1,

log Πt−1, log v
p
t−1, log ỹt−1 and logRt−1, and the exogenous variables dt, log θt, zA,t, log µ̂t

mt and ξt.

In flexible price models we use the following conditions instead of (26)-(35):

r̃t = αÂtµ̂t

(

k̃∗

t−1 exp (−dtθt)
)α−1

l1−αt (36)

w̃t = (1− α)
Ât

ẑt

(

k̃∗

t−1 exp (−dtθt)
)α

l−αt (37)

ỹt =
Ât

ẑt

(

k̃∗

t−1 exp (−dtθt)
)α

l1−αt − φ (38)
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5.6 Technical tips

We found that accuracy is higher when utility variables are changed to logs.

This is crucial for perturbation solutions, but improves also the other solutions. In

addition, it is recommended to normalize the utility variables by their steady state

values to avoid scaling problems.

Equity prices should not be normalized by dividends, because dividends could be

negative. Instead, it is better to normalize equity prices by the TFP trend variable

zt, as all other variables.

The projection algorithms (i.e., Taylor projection and Smolyak collocation) work

smoothly when all variables are bounded within their natural domain. For instance,

a positive variable should be changed to log. Similarly, a variable that is bounded

within (0, 1) is changed to exp(x)
1+exp(x)

.

In addition, projection solutions are more accurate when the number of endoge-

nous variables that are approximated is minimal. Hence, we substitute out control

variables as much as possible. One of the variables that can be substituted out

is Π∗

t , because it can be defined as a function of the control variable Πt and the

(predetermined) state variable Πt−1 through (29):

1 = θp

(

Πχ
t−1

Πt

)1−ǫ

+ (1− θp) (Π
∗

t )
1−ǫ

.

The problem is that we cannot ensure that (Π∗

t )
1−ǫ is always positive. For instance, if

θp

(

Πχt−1

Πt

)1−ǫ

is larger than 1, then Π∗

t is a complex number and the Newton algorithm

would fail.
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To resolve this problem, note that:

Π1−ǫ
t = θpΠ

χ(1−ǫ)
t−1 + (1− θp) (ΠtΠ

∗

t )
1−ǫ

. (39)

Hence, instead of substituting out Π∗

t , we introduce a new control variable auxt =

ΠtΠ
∗

t . Then, we approximate the control variable log auxt and the state variable

log Πt−1, while substituting out the control variable Πt through (39), which is positive

by construction. This transformation achieves our goal to reduce the number of

control variables but maintains the restriction that the inflation variables should be

positive.
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