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G Supplementary Lemmas and Proofs

All the notation follow from the main text and the main online appendix. For a r ⇥ c matrix A with r  c

and full row rank r we let A�
l

denote its left pseudoinverse, namely (A0A)�A0 where 0 denotes transpose and �

denotes generalized inverse. We let s
min

(A) denote the minimum singular value of a rectangular matrix A.

Let s
JK

= s
min

(G�1/2

b

SG�1/2

 

). Throughout the proofs in the appendix we use the identity

 J(x)0(G�1/2

b

S)�
l

=  J(x)0(S0G�1

b

S)�1S0G�1/2

b

=  J(x)0G�1/2

 

(G�1/2

 

S0G�1

b

SG�1/2

 

)�1G�1/2

 

S0G�1/2

b

=  J(x)0G�1/2

 

(G�1/2

b

SG�1/2

 

)�
l

which implies that

k J(x)0(G�1/2

b

S)�
l

k
`

2  k J(x)0G�1/2

 

k
`

2k(G�1/2

b

SG�1/2

 

)�
l

k
`

2

 ⇣
 ,J

k(G�1/2

b

SG�1/2

 

)�
l

k
`

2

 ⇣
 ,J

s�1

JK

(26)

by definition of ⇣
 ,J

and the fact that kA�
l

k
`

2  s
min

(A)�1 (see Lemma F.5).

G.1 Proofs for Appendix A and Section 3.1

Since the proofs of results in Section 3.1 built upon those for results in Appendix A, we shall present the proofs

for Appendix A first.

G.1.1 Proofs for Appendix A

Proof of Lemma A.1. First note that ⌧
J

> 0 for all J by compactness and injectivity of T . Then:

s
JK

= inf
h2 J :khkL2(X)=1

k⇧
K

Thk
L

2
(W )

 inf
h2 J :khkL2(X)=1

kThk
L

2
(W )

= ⌧�1

J
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holds uniformly in J because ⇧
K

is a contraction, whence ⌧
J

 s�1

JK

. To derive a lower bound on ⌧
J

, the triangle

inequality and Assumption 4(i) yield:

s
JK

= inf
h2 J,1

k⇧
K

Thk
L

2
(W )

� inf
h2 J,1

kThk
L

2
(W )

� sup
h2 J,1

k(⇧
K

T � T )hk
L

2
(W )

= (1� o(1))⌧�1

J

.

Therefore, s�1

JK

 (1� o(1))�1⌧
J

.

It is clear that Lemma A.2 is implied by the following lemma.

Lemma G.1. Let Assumptions 1(iii) and 4(ii) hold. Then:

(1) (a) kh
0

� ⇡
J

h
0

k
L

2
(X)

⇣ kh
0

�⇧
J

h
0

k
L

2
(X)

; and

(b) ⌧
J

⇥ kT (h
0

� ⇡
J

h
0

)k
L

2
(W )

 const⇥ kh
0

� ⇡
J

h
0

k
L

2
(X)

.

(2) If Assumption 4(i) also holds, then: (a) kQ
J

h
0

� ⇡
J

h
0

k
L

2
(X)

 o(1)⇥ kh
0

� ⇡
J

h
0

k
L

2
(X)

; and

(b) kh
0

�⇧
J

h
0

k
L

2
(X)

⇣ kh
0

�Q
J

h
0

k
L

2
(X)

.

(3) If Assumption 4(iii’) also holds, then: kQ
J

h
0

� ⇡
J

h
0

k1  O(1)⇥ kh
0

� ⇡
J

h
0

k
L

2
(X)

.

(4) Further, if Condition (24) also holds, then Assumption 4(iii) is satisfied.

Proof of Lemma G.1. In what follows, “const” denotes a generic positive constant that may be di↵erent

from line to line. Assumption 1(iii) guarantees ⌧
J

and ⇡
J

h
0

are well defined. For part (1.a), we have:

kh
0

�⇧
J

h
0

k
L

2
(X)

 kh
0

� ⇡
J

h
0

k
L

2
(X)

 kh
0

�⇧
J

h
0

k
L

2
(X)

+ k⇧
J

h
0

� ⇡
J

h
0

k
L

2
(X)

 kh
0

�⇧
J

h
0

k
L

2
(X)

+ ⌧
J

kT (⇡
J

h
0

�⇧
J

h
0

)k
L

2
(W )

= kh
0

�⇧
J

h
0

k
L

2
(X)

+ ⌧
J

kT⇡
J

(h
0

�⇧
J

h
0

)k
L

2
(W )

 kh
0

�⇧
J

h
0

k
L

2
(X)

+ ⌧
J

kT (h
0

�⇧
J

h
0

)k
L

2
(W )

= (1 + const)⇥ kh
0

�⇧
J

h
0

k
L

2
(X)

where the third line is by definition of ⌧
J

, the fourth is because ⇡
J

h = h for all h 2  
J

, the final line is by

Assumption 4(ii), and the fifth is because ⇡
J

is a weak contraction under the norm h 7! kThk
L

2
(W )

. More

precisely by the definition of ⇡
J

h
0

we have:

hTh, T (h
0

� ⇡
J

h
0

)i
W

= 0 (27)

for all h 2  
J

, where h·, ·i
W

denotes the L2(W ) inner product. With h = ⇡
J

h
0

�⇧
J

h
0

2  
J

this implies

hT (⇡
J

h
0

�⇧
J

h
0

), T (h
0

� ⇡
J

h
0

)i
W

= 0.

hT (⇡
J

h
0

�⇧
J

h
0

), T (h
0

�⇧
J

h
0

)i
W

= hT (⇡
J

h
0

�⇧
J

h
0

), T (⇡
J

h
0

�⇧
J

h
0

)i
W

.

Thus kT (⇡
J

h
0

�⇧
J

h
0

)k
L

2
(W )

 kT (h
0

�⇧
J

h
0

)k
L

2
(W )

.
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For part (1.b):

⌧
J

kT (h
0

� ⇡
J

h
0

)k
L

2
(W )

 ⌧
J

kT (h
0

�⇧
J

h
0

)k
L

2
(W )

 const⇥ kh
0

�⇧
J

h
0

k
L

2
(X)

 const⇥ kh
0

� ⇡
J

h
0

k
L

2
(X)

where the first and final inequalities are by definition of ⇡
J

h
0

and ⇧
J

h
0

and the second inequality is by

Assumption 4(ii).

For part (2.a), Lemma A.1 guarantees that Q
J

h
0

is well defined and that s�1

JK

 2⌧
J

for all J su�ciently large.

By definition of Q
J

h
0

we have:

h⇧
K

Th, T (h
0

�Q
J

h
0

)i
W

= 0 (28)

for all h 2  
J

, where we use the fact that h⇧
K

f, gi
W

= h⇧
K

f,⇧
K

gi
W

holds for any f, g 2 L2(W ) since ⇧
K

is

a projection). Substituting h = Q
J

h
0

� ⇡
J

h
0

2  
J

into the two equations (27) and (28) yields:

h(T �⇧
K

T )(Q
J

h
0

� ⇡
J

h
0

), T (h
0

� ⇡
J

h
0

)i
W

+ h⇧
K

T (Q
J

h
0

� ⇡
J

h
0

), T (h
0

� ⇡
J

h
0

)i
W

= 0 (29)

h⇧
K

T (Q
J

h
0

� ⇡
J

h
0

), T (h
0

�Q
J

h
0

)i
W

= 0 . (30)

By subtracting (30) from (29) we obtain

h(T �⇧
K

T )(Q
J

h
0

� ⇡
J

h
0

), T (h
0

� ⇡
J

h
0

)i
W

+ k⇧
K

T (Q
J

h
0

� ⇡
J

h
0

)k2
L

2
(W )

= 0

We have therefore proved

k⇧
K

T (Q
J

h
0

� ⇡
J

h
0

)k2
L

2
(W )

= |h(T �⇧
K

T )(Q
J

h
0

� ⇡
J

h
0

), T (h
0

� ⇡
J

h
0

)i
W

| . (31)

It follows from (31), the Cauchy-Schwarz inequality, and Assumption 4(i) that:

s2
JK

kQ
J

h
0

� ⇡
J

h
0

k2
L

2
(X)

 k⇧
K

T (Q
J

h
0

� ⇡
J

h
0

)k2
L

2
(W )

 k(T �⇧
K

T )(Q
J

h
0

� ⇡
J

h
0

)k
L

2
(W )

kT (h
0

� ⇡
J

h
0

)k
L

2
(W )

(32)

 o(⌧�1

J

)kQ
J

h
0

� ⇡
J

h
0

k
L

2
(X)

kT (h
0

� ⇡
J

h
0

)k
L

2
(W )

. (33)

It follows by (33) and the relation s�1

JK

 2⌧
J

for all J large that:

kQ
J

h
0

� ⇡
J

h
0

k
L

2
(X)

 o(1)⇥ ⌧
J

kT (h
0

� ⇡
J

h
0

)k
L

2
(W )

 o(1)⇥ const⇥ kh
0

� ⇡
J

h
0

k
L

2
(X)

where the final line is by part (1.b). For part (2.b), by definition of Q
J

, ⇧
J

and results in part (1.a) and part

(2.a), we have:

kh
0

�⇧
J

h
0

k
L

2
(X)

 kh
0

�Q
J

h
0

k
L

2
(X)

 kh
0

� ⇡
J

h
0

k
L

2
(X)

+ k⇡
J

h
0

�Q
J

h
0

k
L

2
(X)

 kh
0

� ⇡
J

h
0

k
L

2
(X)

+ o(1)⇥ kh
0

� ⇡
J

h
0

k
L

2
(X)

= (1 + const)⇥ kh
0

�⇧
J

h
0

k
L

2
(X)

.

This proves part (2.b).
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For part (3), it follows from (32) and Assumption 4(iii’) that

s2
JK

kQ
J

h
0

� ⇡
J

h
0

k
L

2
(X)

 const⇥ (⇣
 ,J

⌧
J

)�1kT (h
0

� ⇡
J

h
0

)k
L

2
(W )

.

and hence

kQ
J

h
0

� ⇡
J

h
0

k
L

2
(X)

 const⇥ ⇣�1

 ,J

⇥ ⌧
J

kT (h
0

� ⇡
J

h
0

)k
L

2
(W )

 ⇣�1

 ,J

⇥ const⇥ kh
0

� ⇡
J

h
0

k
L

2
(X)

(34)

by Part (1.b) and the fact that s�1

JK

 2⌧
J

for all J large. Therefore,

kQ
J

h
0

� ⇡
J

h
0

k1  ⇣
 

kQ
J

h
0

� ⇡
J

h
0

k
L

2
(X)

 const⇥ kh
0

� ⇡
J

h
0

k
L

2
(X)

where the last inequality is due to (34).

For part (4), by the triangle inequality, the results in part (1.a) and (3) and Condition (24) we have:

kQ
J

(h
0

�⇧
J

h
0

)k1  kQ
J

h
0

� ⇡
J

h
0

k1 + k⇡
J

h
0

�⇧
J

h
0

k1
 const⇥ kh

0

�⇧
J

h
0

k
L

2
(X)

+ kh
0

�⇧
J

h
0

k1
 O(1)⇥ kh

0

�⇧
J

h
0

k1

which completes the proof.

Note that we may write ⇧
J

h
0

(x) =  J(x)0c
J

for some c
J

in RJ . We use this notation hereafter.

Proof of Lemma A.3. We first prove Result (1). We begin by writing

eh(x)�⇧
J

h
0

(x) = Q
J

(h
0

�⇧
J

h
0

)(x)

+ J(x)0(G�1/2

b

S)�
l

{G�1/2

b

(B0(H
0

� c
J

)/n� E[bK(W
i

)(h
0

(X
i

)�⇧
J

h
0

(X
i

))])}
+ J(x)0{( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

}G�1/2

b

B0(H
0

� c
J

)/n

=: T
1

+ T
2

+ T
3

where Q
J

: L2(X) !  
J

is the sieve 2SLS projection operator given by

Q
J

h(x) =  J(x)0[S0G�1

b

S]�1S0G�1

b

E[bK(W
i

)h(X
i

)] .

Note that Q
J

h = h for all h 2  
J

.

Control of kT
1

k1: kT
1

k1 = O(1)⇥ kh
0

�⇧
J

h
0

k1 by Assumption 4(iii).

Control of kT
2

k1: Using equation (26), the Cauchy-Schwarz inequality, and Lemma F.9, we obtain:

kT
2

k1  sup
x

k J(x)(G�1/2

b

S)�
l

k
`

2kG�1/2

b

(B0(H
0

� c
J

)/n� E[bK(W
i

)(h
0

(X
i

)�⇧
J

h
0

(X
i

))])k
`

2

 ⇣
 ,J

s�1

JK

kG�1/2

b

(B0(H
0

� c
J

)/n� E[bK(W
i

)(h
0

(X
i

)�⇧
J

h
0

(X
i

))])k
`

2

= ⇣
 ,J

s�1

JK

⇥O
p

(
p
K/n)⇥ kh

0

�⇧
J

h
0

k1 .
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It then follows by the relations s�1

JK

⇣ ⌧
J

(Lemma A.1) and ⇣
 ,J

� p
J ⇣ p

K and Assumption 3(ii) that:

kT
2

k1 = O
p

(⌧
J

⇣
 ,J

p
J/n)⇥ kh

0

�⇧
J

h
0

k1 = O
p

(1)⇥ kh
0

�⇧
J

h
0

k1 .

Control of kT
3

k1: Similar to T
2

in the proof of Lemma 3.1, we may use Lemmas F.10(b) and A.1 to obtain:

kT
3

k1  ⇣
 ,J

kG1/2

 

{( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

}k
`

2kG�1/2

b

B0(H
0

� c
J

)/nk
`

2

= ⇣
 ,J

⇥O
p

(⌧2
J

⇣
p
(log J)/n))⇥ kG�1/2

b

B0(H
0

� c
J

)/nk
`

2 . (35)

Then by Lemma F.9 and the triangle inequality, we have:

kG�1/2

b

B0(H
0

� c
J

)/nk
`

2  O
p

(
p

K/n)⇥ kh
0

�⇧
J

h
0

k1 + k⇧
K

T (h
0

�⇧
J

h
0

)k
L

2
(W )

 O
p

(
p

K/n)⇥ kh
0

�⇧
J

h
0

k1 + kT (h
0

�⇧
J

h
0

)k
L

2
(W )

. (36)

Substituting (36) into (35) and using Assumptions 3(ii) and 4(ii):

kT
3

k1  O
p

(⌧
J

⇣2/
p
n)⇥

⇣
O

p

(⌧
J

p
K(log J)/n)⇥ kh

0

�⇧
J

h
0

k1 + ⌧
J

kT (h
0

�⇧
J

h
0

)k
L

2
(W )

⌘
= O

p

(1)⇥ �o
p

(1)⇥ kh
0

�⇧
J

h
0

k1 +O
p

(1)⇥ kh
0

�⇧
J

h
0

k
L

2
(X)

�
 O

p

(1)⇥ kh
0

�⇧
J

h
0

k1

where the final line is by the relation between the L2(X) and sup norms.

Result (2) then follows because

keh� h
0

k1  keh�⇧
J

h
0

k1 + k⇧
J

h
0

� h
0

k1
 (1 +O

p

(1))k⇧
J

h
0

� h
0

k1
 (1 +O

p

(1))(1 + k⇧
J

k1)kh
0

� h
0,J

k1 .

where the second inequality is by Result (1) and the final line is by Lebesgue’s lemma.

G.1.2 Proofs for Section 3.1

Proof of Lemma 3.1. Let u = (u
1

, . . . , u
n

)0. Let M
n

be a sequence of positive constants diverging to +1,

and decompose u
i

= u
1,i

+ u
2,i

where

u
1,i

= u
i

{|u
i

|  M
n

}� E[u
i

{|u
i

|  M
n

}|W
i

]

u
2,i

= u
i

{|u
i

| > M
n

}� E[u
i

{|u
i

| > M
n

}|W
i

]

u
1

= (u
1,1

, . . . , u
1,n

)0

u
2

= (u
2,1

, . . . , u
2,n

)0 .

For Result (1), recall that ⇠
 ,J

= sup
x

k J(x)k
`

1 . By Hölder’s inequality we have

kbh� ehk1 = sup
x

| J(x)0(bc� ec)|  ⇠
 ,J

k(bc� ec)k
`

1 .
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To derive the sup-norm convergence rate of the standard deviation term bh � eh, it su�ces to bound the `1

norm of the J ⇥ 1 random vector (bc� ec). Although this appears like a crude bound, ⇠
 ,J

grows slowly in J for

certain sieves whose basis functions have local support. For such bases the above bound, in conjunction with

the following result

kbc� eck
`

1 = O
p

⇣
s�1

JK

p
(log J)/(ne

J

)
⌘

(37)

leads to a tight bound on the convergence rate of kbh� ehk1.

To prove (37), we begin by writing

bc� ec = ( bG�1/2

b

bS)�
l

bG�1/2

b

B0u/n

= (G�1/2

b

S)�
l

G�1/2

b

B0u/n+ {( bG�1/2

b

bS)�
l

bG�1/2

b

� (G�1/2

b

S)�
l

G�1/2

b

}B0u/n

=: T
1

+ T
2

.

We will show that kT
1

k
`

1 = O
p

⇣
s�1

JK

p
(log J)/(ne

J

)
⌘
and kT

2

k
`

1 = O
p

⇣
s�1

JK

p
(log J)/(ne

J

)
⌘
.

Control of kT
1

k
`

1 . Note that T
1

= (G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n+ (G�1/2

b

S)�
l

G�1/2

b

B0u
2

/n.

Let (a)
j

denote the jth element of a vector a. By the definition of k · k
`

1 and the union bound,

P
⇣
k(G�1/2

b

S)�
l

G�1/2

b

B0u
1

/nk
`

1 > t
⌘

 P

0@ J[
j=1

|((G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n)
j

| > t

1A


JX
j=1

P
⇣
|((G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n)
j

| > t
⌘

=
JX

j=1

P
 �����

nX
i=1

q
j,JK

(W
i

)u
1,i

/n

����� > t

!
(38)

where q
j,JK

(W
i

) = ((G�1/2

b

S)�
l

G�1/2

b

bK(W
i

))
j

. The summands may be bounded by noting that

|q
j,JK

(W
i

)|  k(G�1/2

b

S)�
l

k
`

2kG�1/2

b

bK(W
i

)k
`

2

= kG�1/2

 

[G�1/2

 

S0G�1

b

SG�1/2

 

]�1G�1/2

 

S0G�1/2

b

k
`

2kG�1/2

b

bK(W
i

)k
`

2

 kG�1/2

 

k
`

2k[G�1/2

 

S0G�1

b

SG�1/2

 

]�1G�1/2

 

S0G�1/2

b

k
`

2kG�1/2

b

bK(W
i

)k
`

2

 ⇣
b,K

s
JK

p
e
J

(39)

uniformly in i and j. Therefore,

|q
j,JK

(W
i

)u
1,i

/n|  2M
n

⇣
b,K

ns
JK

p
e
J

(40)

uniformly in i and j.

Let (A)
j| denote the jth row of the matrix A and let (A)

jj

denote its jth diagonal element. The second moments

6



of the summands may be bounded by observing that

E[q
j,JK

(W
i

)2] = E[((G�1/2

b

S)�
l

)
j|G

�1/2

b

bK(W
i

))2]

= E[((G�1/2

b

S)�
l

)
j|G

�1/2

b

bK(W
i

)bK(W
i

)0G�1/2

b

((G�1/2

b

S)�
l

)0
j|]

= ((G�1/2

b

S)�
l

((G�1/2

b

S)�
l

)0)
jj

= ((S0G�1

b

S)�1)
jj

 k(S0G�1

b

S)�1k
`

2

= kG�1/2

 

[G�1/2

 

S0G�1

b

SG�1/2

 

]�1G�1/2

 

k
`

2

 1

s2
JK

e
J

(41)

and so

E[(q
j,JK

(W
i

)u
1,i

/n)2]  �2

n2s2
JK

e
J

(42)

by Assumption 2(i) and the law of iterated expectations. Bernstein’s inequality and expressions (38), (40) and

(42) yield

P
⇣
k(G�1/2

b

S)�
l

G�1/2B0u
1

/nk
`

1 > Cs�1

JK

p
(log J)/(ne

J

)
⌘

 2 exp

⇢
log J � C2(log J)/(ns2

JK

e
J

)

c
1

/(ns2
JK

e
J

) + c
2

CM
n

⇣
b,K

p
log J/(n3/2s2

JK

e
J

)

�
= 2 exp

(
log J � C2(log J)/(ns2

JK

e
J

)

1/(ns2
JK

e
J

)[c
1

+ c
2

CM
n

⇣
b,K

p
(log J)/n]

)
(43)

for finite positive constants c
1

and c
2

. Then (43) is o(1) for all large C provided M
n

⇣
b,K

p
(log J)/n = o(1).

By the triangle and Markov inequalities and (39), we have

P
⇣
k(G�1/2

b

S)�
l

G�1/2B0u
2

/nk
`

1 > t
⌘

= P
 

max
1jJ

�����
nX

i=1

q
j,JK

(W
i

)u
2,i

/n

����� > t

!

 P
 

⇣
b,K

s
JK

p
e
J

nX
i=1

|u
2,i

/n| > t

!

 2⇣
b,K

ts
JK

p
e
J

E[|u
i

|{|u
i

| > M
n

}]

 2⇣
b,K

ts
JK

p
e
J

M1+�

n

E[|u
i

|2+�{|u
i

| > M
n

}]

which, by Assumption 2(ii), is o(1) when t = Cs�1

JK

p
(log J)/(ne

J

) provided ⇣
b,K

p
n/(log J) = O(M1+�

n

).

Choosing M1+�

n

⇣ ⇣
b,K

p
n/ log J satisfies the condition ⇣

b,K

p
n/(log J) = O(M1+�

n

) trivially, and satisfies the

condition M
n

⇣
b,K

p
(log J)/n = o(1) provided ⇣(2+�)/�

b,K

p
(log J)/n = o(1), which holds by Assumption 3(iii).
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Control of kT
2

k
`

1 : Using the fact that k · k
`

1  k · k
`

2 on RJ and Lemmas F.10(a) and F.8, we have:

kT
2

k
`

1 = k{( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

}G�1/2

b

B0u/nk
`

1

 k( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

k
`

2kG�1/2

b

B0u/nk
`

2

= O
p

⇣
s�2

JK

⇣
p

(logK)/(ne
J

)
⌘
⇥O

p

(
p

K/n)

= O
p

⇣
s�1

JK

p
(log J)/(ne

J

)
⌘
⇥O

p

(s�1

JK

⇣
p
K/n)

= O
p

⇣
s�1

JK

p
(log J)/(ne

J

)
⌘

where the last equality follows from Assumption 3(ii) and the facts that ⇣ � p
K and J ⇣ K.

For Result (2), we begin by writing

bh(x)� eh(x) =  J(x)0( bG�1/2

b

bS)�
l

bG�1/2

b

B0u/n

=  J(x)0(G�1/2

b

S)�
l

G�1/2

b

B0u/n+  J(x)0{( bG�1/2

b

bS)�
l

bG�1/2

b

� (G�1/2

b

S)�
l

G�1/2

b

}B0u/n

=: T
1

+ T
2

.

We will show that kT
1

k1 = O
p

⇣
⌧
J

⇣
 ,J

p
(log n)/n

⌘
and kT

2

k1 = O
p

⇣
⌧
J

⇣
 ,J

p
(log n)/n

⌘
.

Control of kT
1

k1. Note that T
1

=  J(x)0(G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n+  J(x)0(G�1/2

b

S)�
l

G�1/2

b

B0u
2

/n.

Let X
n

⇢ X be a grid of finitely many points such that for each x 2 X there exits a x̄
n

(x) 2 X
n

such that

kx� x̄
n

(x)k . (⇣
 ,J

J�(!+

1
2 ))1/!

0
, where !,!0 are as in Assumption 3(i). By compactness and convexity of the

support X of X
i

, we may choose X
n

to have cardinality #(X
n

) . n� for some 0 < � < 1. Therefore,

sup
x

k J(x)0(G�1/2

b

S)�
l

G�1/2

b

B0u
1

/nk1

 max
xn2Xn

| J(x
n

)0(G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n|+ sup
x

|{ J(x)�  J(x̄
n

(x))}0(G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n|

 max
xn2Xn

| J(x
n

)0(G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n|+ C
!

J!⇣
 ,J

J�(!+

1
2 )s�1

JK

kG�1/2

b

B0u
1

/nk
`

2

= max
xn2Xn

| J(x
n

)0(G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n|+ C
!

J!⇣
 ,J

J�(!+

1
2 )s�1

JK

⇥O
p

(
p
J/n)

= max
xn2Xn

| J(x
n

)0(G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n|+ o
p

(s�1

JK

⇣
 ,J

p
(log J)/n)

for some finite positive constant C
!

, where the first inequality is by the triangle inequality, the second is by

Hölder continuity of the basis for  
J

and similar reasoning to that used in equation (26), the first equality is

by Lemma F.8 and the fact that J ⇣ K, and the final equality is because (log J)�1/2 = o(1). For each x
n

2 X
n

we may write

 J(x
n

)0(G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n =
1

n

nX
i=1

g
n,i

(x
n

)u
1,i

, where

g
n,i

(x
n

) =  J(x
n

)0(G�1/2

b

S)�
l

G�1/2

b

bK(W
i

) .

It follows from equation (26) and the Cauchy-Schwarz inequality that the bounds

|g
n,i

(x
n

)|  s�1

JK

⇣
 ,J

⇣
b,K

E[g
n,i

(x
n

)2] =  J(x
n

)0(G�1/2

b

S)�
l

((G�1/2

b

S)�
l

)0 J(x
n

)  s�2

JK

⇣2
 ,J

8



hold uniformly for x
n

2 X
n

. Therefore, by Assumption 2(i) and iterated expectations, the bounds

|g
n,i

(x
n

)u
1,i

|  2s�1

JK

⇣
 ,J

⇣
b,K

M
n

E[g
n,i

(x
n

)2u2

1,i

]  �2 J(x
n

)0(G�1/2

b

S)�
l

((G�1/2

b

S)�
l

)0 J(x
n

)  �2s�2

JK

⇣2
 ,J

hold uniformly for x
n

2 X
n

. It follows by the union bound and Bernstein’s inequality that

P
✓

max
xn2Xn

| J(x
n

)0(G�1/2

b

S)�
l

G�1/2

b

B0u
1

/n| > Cs�1

JK

⇣
 ,J

p
(log n)/n

◆
 #(X

n

) max
xn2Xn

P
 ����� 1n

nX
i=1

g
n,i

(x
n

)u
1,i

����� > Cs�1

JK

⇣
 ,J

p
(log n)/n

!

. exp

(
� log n� C2⇣2

 ,J

(log n)/(ns2
JK

)

c
1

⇣2
 ,J

/(ns2
JK

)[1 + (c
2

/c
1

)(CM
n

⇣
b,K

p
(log n)/n]

)
(44)

for finite positive constants c
1

and c
2

. Then (44) is o(1) for all large C provided M
n

⇣
b,K

p
(log n)/n = o(1).

By the triangle and Markov inequalities and equation (26), we have

P
⇣
k J(x)(G�1/2

b

S)�
l

G�1/2

b

B0u
2

/nk1 > t
⌘

 P
⇣
s�1

JK

⇣
 ,J

kG�1/2

b

B0u
2

/nk
`

2 > t
⌘

 P
 
s�1

JK

⇣
 ,J

⇣
b,K

nX
i=1

|u
2,i

/n| > t

!

 2⇣
 ,J

⇣
b,K

ts
JK

E[|u
i

|{|u
i

| > M
n

}]

 2⇣
 ,J

⇣
b,K

ts
JK

M1+�

n

E[|u
i

|2+�{|u
i

| > M
n

}]

which, by Assumption 2(ii), is o(1) when t = Cs�1

JK

⇣
 ,J

p
(log n)/n provided ⇣

b,K

p
n/(log n) = O(M1+�

n

).

Choosing M1+�

n

⇣ ⇣
b,K

p
n/ log n satisfies the condition ⇣

b,K

p
n/(log n) = O(M1+�

n

) trivially, and satisfies the

condition M
n

⇣
b,K

p
(log n)/n = o(1) provided ⇣(2+�)/�

b,K

p
(log n)/n = o(1), which holds by Assumption 3(iii). We

have therefore proved that kT
1

k1 = O
p

(s�1

JK

⇣
 ,J

p
(log n)/n). It follows by the relation ⌧

J

⇣ s�1

JK

(Lemma A.1)

that kT
1

k1 = O
p

(⌧
J

⇣
 ,J

p
(log n)/n).

Control of kT
2

k1: Using the fact that khk1  ⇣
 ,J

khk
L

2
(X)

on  
J

and Lemmas F.10(b) and F.8 and the

relation ⌧
J

⇣ s�1

JK

, we have:

kT
2

k1  ⇣
 ,J

kG1/2

 

{( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

}G�1/2

b

B0u/nk
`

2

 ⇣
 ,J

kG1/2

 

{( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

}k
`

2kG�1/2

b

B0u/nk
`

2

= ⇣
 ,J

O
p

⇣
⌧2
J

⇣
p

(log J)/n
⌘
⇥O

p

(
p

K/n)

= O
p

⇣
⌧
J

⇣
 ,J

p
(log J)/n

⌘
⇥O

p

(⌧
J

⇣
p

K/n)

= O
p

⇣
⌧
J

⇣
 ,J

p
(log J)/n

⌘
⇥O

p

(1)

where the last equality follows from Assumption 3(ii) and the fact that ⇣ � p
J ⇣ p

K.
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Proof of Theorem 3.1. We decompose kbh� h
0

k1 into three parts:

kbh� h
0

k1  kbh� ehk1 + keh�⇧
J

h
0

k1 + k⇧
J

h
0

� h
0

k1 .

where kbh�ehk1 = O
p

(⌧
J

⇠
 ,J

p
(log J)/(ne

J

)) by Lemma 3.1(1) and keh�⇧
J

h
0

k1 = O
p

(1)⇥k⇧
J

h
0

�h
0

k1 by

Lemma A.3.

Proof of Corollary 3.1. For Result (1), note that Assumption 3(ii) is satisfied with ⇣ = O(J1/2) for  
J

and B
K

being spline, or wavelet or cosine sieves. Next, by the lemmas in Appendix E, ⇠
 ,J

/
p
e
J

= O(J1/2)

for  
J

being spline or wavelet sieves. Also, k⇧
J

k1 . 1 for  
J

being a spline sieve (Huang (2003)) or a tensor

product CDV wavelet sieve (Chen and Christensen (2015)). For h
0

2 B1(p, L) and  
J

being spline or wavelet

sieves, Lemma A.3 implies that

keh� h
0

k1 = O
p

(J�p/d).

Note that Bernstein inequalities (or inverse estimates) from approximation theory imply that

k@↵hk1 = O(J |↵|/d)khk1

for all h 2  
J

(see Schumaker (2007) for splines and Cohen (2003) for wavelets on domains). Therefore,

k@↵eh� @↵h
0

k1  k@↵eh� @↵(⇧
J

h
0

)k1 + k@↵(⇧
J

h
0

)� @↵h
0

k1
 O(J |↵|/d)keh�⇧

J

h
0

k1 + k@↵(⇧
J

h
0

)� @↵h
0

k1
 O

p

(J�(p�|↵|)/d) + k@↵(⇧
J

h
0

)� @↵h
0

k1

Let h
J

be any element of  
J

. Since ⇧
J

h
J

= h
J

, we have:

k@↵(⇧
J

h
0

)� @↵h
0

k1 = k@↵(⇧
J

(h
0

� h
J

)) + @↵h
J

� @↵h
0

k1
 O(J |↵|/d)k⇧

J

(h
0

� h
J

))k1 + k@↵h
J

� @↵h
0

k1
 O(J |↵|/d)⇥ const⇥ kh

0

� h
J

k1 + k@↵h
J

� @↵h
0

k1 .

The above inequality holds uniformly in h
J

2  
J

. Choosing h
J

such that kh
0

�h
J

k1 = O(J�p/d) and k@↵h
J

�
@↵h

0

k1 = O(J�(p�|↵|)/d) yields the desired result.

For Result (2), Theorem 3.1 implies that

kbh� h
0

k1 = O
p

(J�p/d + ⌧
J

p
(J log J)/n).

By similar arguments to the above, we have:

k@↵bh� @↵h
0

k1  k@↵bh� @↵ehk1 + k@↵eh� @↵h
0

k1
 O(J |↵|/d)kbh� ehk1 + k@↵eh� @↵h

0

k1
 O

p

⇣
J |↵|/d

⇣
⌧
J

p
(J log J)/n

⌘⌘
+ k@↵eh� @↵h

0

k1

and the result follows by Result (1).

ForResults (2.a) and (2.b), Assumption 3(ii)(iii) is satisfied if ⌧
J

⇥J/
p
n = O(1) and J (2+�)/�(log n)/n = o(1).

This is satisfied given the stated conditions with the optimal choice of J for mildly ill-posed case and severely

10



ill-posed case respectively.

G.2 Proofs for Section 3.2

Proof of Theorem 3.2. Consider the Gaussian reduced-form NPIR model with known operator T :

Y
i

= Th
0

(W
i

) + u
i

u
i

|W
i

⇠ N(0,�2(W
i

))
(45)

for 1  i  n, where W
i

is continuously distributed over W with density uniformly bounded away from 0 and 1.

As in Chen and Reiss (2011), Theorem 3.2 is proved by (i) noting that the risk (in sup-norm loss) for the NPIV

model is at least as large as the risk (in sup-norm loss) for the NPIR model, and (ii) calculating a lower bound

(in sup-norm loss) for the NPIR model. Theorem 3.2 therefore follows from a sup-norm analogue of Lemma 1 of

Chen and Reiss (2011) and Theorem G.1, which establishes a lower bound on minimax risk over Hölder classes

under sup-norm loss for the NPIR model.

Theorem G.1. Let Condition LB hold for the NPIR model (45) with a random sample {(W
i

, Y
i

)}n
i=1

. Then

for any 0  |↵| < p:

lim inf
n!1 inf

bgn
sup

h2B1(p,L)

P
h

⇣
kbg

n

� @↵hk1 � c(n/ log n)�(p�|↵|)/(2(p+&)+d)

⌘
� c0 > 0

in the mildly ill-posed case, and

lim inf
n!1 inf

bgn
sup

h2B1(p,L)

P
h

⇣
kbg

n

� @↵hk1 � c(log n)�(p�|↵|)/&
⌘
� c0 > 0

in the severely ill-posed case, where infbgn denotes the infimum over all estimators of @↵h based on the sample

of size n, sup
h2B1(p,L)

P
h

denotes the sup over h 2 B1(p, L) and distributions (W
i

, u
i

) which satisfy Condition

LB with ⌫ fixed, and the finite positive constants c, c0 depend only on p, L, d, & and �
0

.

Proof of Theorem G.1. We establish the lower bound by applying Theorem 2.5 of Tsybakov (2009) (see

Theorem G.2 below). We first explain the scalar (d = 1) case in detail. Let {�
j,k

, 
j,k

}
j,k

be a wavelet basis of

regularity � > p for L2([0, 1]) as described in Appendix E. Recall that this basis is generated by a Daubechies

pair (', ) where ' has support [�N + 1, N ]. We will define a family of submodels in which we perturb h
0

by elements of the wavelet space W
j

, where we choose j deterministically with n. For given j, recall that the

wavelet space W
j

consists of 2j functions { 
j,k

}
0k2

j�1

, such that { 
j,k

}
rk2

j�N�1

are interior wavelets for

which  
j,k

(·) = 2j/2 (2j(·)� k).

By construction, the support of each interior wavelet is an interval of length 2�j(2r�1). Thus for all j su�ciently

large (hence the lim inf in our statement of the Lemma) we may choose a set M ⇢ {r, . . . , 2j �N �1} of interior

wavelets with #(M) & 2j such that support( 
j,m

) \ support( 
j,m

0) = ; for all m,m0 2 M with m 6= m0. Note
also that by construction we have #(M)  2j (since there are 2j � 2N interior wavelets).

Recall the norms k · k
b

p
1,1 defined in Appendix E. Let h

0

2 B1(p, L) be such that kh
0

k
B

p
1,1  L/2, and for

each m 2 M let

h
m

= h
0

+ c
0

2�j(p+1/2) 
j,m

11



where c
0

is a positive constant to be defined subsequently. Noting that

c
0

2�j(p+1/2)k 
j,m

k
B

p
1,1 . c

0

2�j(p+1/2)k 
j,m

k
b

p
1,1

 c
0

it follows by the triangle inequality that kh
m

k
B

p
1,1  L uniformly in m for all su�ciently small c

0

. By Condition

LB, let W
i

be distributed such that X
i

has uniform marginal distribution on [0, 1]. For m 2 {0}[M let P
m

be

the joint distribution of {(W
i

, Y
i

)}n
i=1

with Y
i

= Th
m

(W
i

) + u
i

for the Gaussian NPIR model (45).

For any m 2 M

k@↵h
0

� @↵h
m

k1 = c
0

2�j(p+1/2)k@↵ 
j,m

k1
= c

0

2�j(p�|↵|)k (|↵|)k1

where  (|↵|) denotes the |↵|th derivative of  . Moreover, for any m,m0 2 M with m 6= m0

k@↵h
m

� @↵h
m

0k1 = c
0

2�j(p+1/2)k@↵ 
j,m

� @↵ 
j,m

0k1
= 2c

0

2�j(p�|↵|)k (|↵|)k1

by virtue of the disjoint support of { 
j,m

}
m2M

.

By Condition LB(iii),

kT 
j,m

(W
i

)k
L

2
(W )

. ⌫(2j)2h 
j,m

, 
j,m

i2
X

= ⌫(2j)2

(because c
0

2�j(p+1/2) 
j,m

2 H
2

(p, L) for su�ciently small c
0

) where ⌫(2j) = 2�j& in the mildly ill-posed case

and ⌫(2j) = exp(�2j&) in the severely ill-posed case. The KL distance K(P
m

, P
0

) is

K(P
m

, P
0

)  1

2

nX
i=1

(c
0

2�j(p+1/2))2E


(T 

j,m

(W
i

))2

�2(W
i

)

�

 1

2

nX
i=1

(c
0

2�j(p+1/2))2
E
⇥
(T 

j,m

(W
i

))2
⇤

�2

. n(c
0

2�j(p+1/2))2⌫(2j)2 .

In the mildly ill-posed case (⌫(2j) = 2�j&) we choose 2j ⇣ (n/(log n))1/(2(p+&)+1). This yields:

K(P
m

, P
0

) . c2
0

log n uniformly in m

log(#(M)) & log n+ log log n .

since #(M) ⇣ 2j .

In the severely ill-posed case (⌫(2j) = exp(� 1

2

2j&)) we choose 2j = (c
1

log n)1/& with c
1

> 1. This yields:

K(P
m

, P
0

) . n�(c1�1) uniformly in m

log(#(M)) & log log n .

In both the mildly and severely ill-posed cases, we may choose c
0

su�ciently small that both kh
m

k
B

p
1,1  L

and K(P
m

, P
0

)  1

8

log(#(M)) hold uniformly in m for all n su�ciently large. All conditions of Theorem 2.5 of

Tsybakov (2009) are satisfied and hence we obtain the lower bound result.
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In the multivariate case (d > 1) we let e 
j,k,G

(x) denote an orthonormal tensor-product wavelet for L2([0, 1]d)

at resolution level j (see Appendix E). We construct a family of submodels analogously to the univariate case,

setting h
m

= h
0

+ c
0

2�j(p+d/2) e 
j,m,G

where e 
j,m,G

is now the tensor product of d interior univariate wavelets

at resolution level j with G = (w
 

)d and where #(M) ⇣ 2jd. By condition LB we obtain

k@↵h
m

� @↵h
m

0k1 & c
0

2�j(p�|↵|)

for each m,m0 2 {0} [M with m 6= m0, and

K(P
m

, P
0

) . n(c
0

2�j(p+d/2))2⌫(2j)2

for each m 2 M , where ⌫(2j) = 2�j& in the mildly ill-posed case and ⌫(2j) ⇣ exp(�2j&) in the severely ill-posed

case. We choose 2j ⇣ (n/ log n)1/(2(p+&)+d) in the mildly ill-posed case and 2j = (c
1

log n)1/& in the severely

ill-posed case. The result follows as in the univariate case.

The following theorem is a special case of Theorem 2.5 on p. 99 of Tsybakov (2009) which we use to prove

the minimax lower bounds in sup- and L2-norm loss for h
0

and its derivatives. We state the result here for

convenience.

Theorem G.2 (Tsybakov (2009)). Assume that #(M) � 2 and suppose that (H, k · kH) contains elements

{h
m

: m 2 {0} [M} such that:

(i) k@↵h
m

� @↵h
m

0kH � 2s > 0 for each m,m0 2 M [ {0} with m 6= m0;
(ii) P

m

⌧ P
0

for each m 2 M and

1

#(M)

X
m2M

K(P
m

, P
0

)  a log(#(M))

with 0 < a < 1

8

and where P
m

denotes the distribution of the data when h = h
m

for each m 2 {0} [M . Then:

inf
bg

sup
h2H

P
h

(kbg � @↵hkH � s) �
p
#(M)

1 +
p
#(M)

 
1� 2a�

s
2a

log(#(M))

!
> 0 .

G.3 Proofs for Section 3.3

Proof of Lemma 3.2. We first proveResult (1). Let P
J�1,z

= clsp{�
01,z

, . . . ,�
0J�1,z

} and let P?
J�1,z

denote

its orthogonal complement in L2(X
1

|Z = z). Observe that by definition of the singular values, for each z we

have:

sup
hz2P

?
J�1,z :khzkL2(X1|Z=z)=1

kT
z

h
z

k2
L

2
(W1|Z=z)

= sup
hz2P

?
J�1,z :khzkL2(X1|Z=z)=1

h(T ⇤
z

T
z

)h
z

, h
z

i
X1|Z=z

= µ2

J,z

. (46)

13



Then let P?
J�1

= {h(x
1

, z) 2 L2(X) : h(·, z) 2 P?
J�1,z

for each z}. Note that �
0j

2 {h 2 P?
J�1

: kh(·, z)k
L

2
(X1|Z=z)

=

1 8z} for each j � J . Then:

⌧�2

J

= inf
h2 J :khkL2(X)=1

kThk2
L

2
(W )

 inf
h2 J\P

?
J�1:khkL2(X1|Z=z)=1 8z

kThk2
L

2
(W )

 sup
h2 J\P

?
J�1:khkL2(X1|Z=z)=1 8z

kThk2
L

2
(W )

 sup
h2P

?
J�1:khkL2(X1|Z=z)=1 8z

kThk2
L

2
(W )

. (47)

Let F
Z

denote the distribution of Z. For any h 2 P?
J�1

let h
z

(x
1

) = h(x
1

, z) and observe that h
z

2 P?
J�1,z

. By

iterated expectations and (46), for any h 2 P?
J�1

with kh
z

k
L

2
(X1|Z=z)

= 1 for each z, we have:

kThk2
L

2
(W )

=

Z
kE[h(X

1i

, z)|W
1i

, Z
i

= z]k2
L

2
(W1|Z=z)

dF
Z

(z)

=

Z
kT

z

h
z

k2
L

2
(W1|Z=z)

dF
Z

(z)


Z

µ2

J,z

kh
z

k2
L

2
(X1|Z=z)

dF
Z

(z)

=

Z
µ2

J,z

dF
Z

(z) = E[µ2

J,Zi
] . (48)

It follows by substituting (48) into (47) that ⌧
J

� E[µ2

J,Zi
]�1/2.

To prove Result (2), note that any h 2  
J

with h 6= 0 can be written as
P

J

j=1

a
j

�
0j

for constants a
j

= a
j

(h)

where

khk2
L

2
(X)

= E

264E
264
0@ JX

j=1

a
j

�
0j

(X
1i

, Z
i

)

1A2

�������Zi

375
375 =

JX
j=1

a2
j

since E[�
0j,z

(X
i

)�
0k,z

(X
i

)|Z
i

= z] = �
jk

where �
jk

denotes the Kronecker delta. Moreover:

kThk2
L

2
(W )

= E

264
0@E

24 JX
j=1

a
j

�
0j

(X
1i

, Z
i

)

������W1i

, Z
i

351A2

375
= E

264
0@E

24 JX
j=1

a
j

�
0j,Zi(X1i

)

������W1i

, Z
i

351A2

375
= E

264
0@ JX

j=1

a
j

µ
j,Zi�1j,Zi(W1i

)

1A2

375
= E

264E
264
0@ JX

j=1

a
j

µ
j,Zi�1j,Zi(W1i

)

1A2

�������Zi

375
375 =

JX
j=1

a2
j

E
⇥
µ2

j,Zi

⇤ � khk2
L

2
(X)

E[µ2

J,Zi
]

14



since E[�
1j,z

(W
1i

)�
1k,z

(W
1i

)|Z
i

= z] = �
jk

. Therefore,

⌧
J

= sup
h2 J

khk
L

2
(X)

kThk
L

2
(W )

 1

E[µ2

J,Zi
]1/2

as required.

G.4 Proofs for Appendix D and Section 4

Since the proofs for uniform inference theories (in Section 4) built upon that for the pointwise normality Theorem

D.1 (in Appendix D), we shall present the proof of Theorem D.1 first.

G.4.1 Proofs for Appendix D

Proof of Theorem D.1. We first prove Result (1). By Assumption 5’(a) or 5’(b)(i)(ii) we have:

p
n
(f(bh)� f(h

0

))

�
n

(f)
=

p
n
Df(h

0

)[bh� eh]
�
n

(f)
+ o

p

(1) .

Define

Z
n

(W
i

) =
(Df(h

0

)[ J ])0[S0G�1

b

S]�1S0G�1

b

bK(W
i

)

�
n

(f)
= ⇧

K

Tu
n

(f)(W
i

)

where u
n

(f) = v
n

(f)/�
n

(f) is the scaled sieve 2SLS Riesz representer. Note that E[(Z
n

(W
i

)u
i

)2] = 1. Then

p
n
Df(h

0

)[bh� eh]
�
n

(f)
=

1p
n

nX
i=1

Z
n

(W
i

)u
i

+
(Df(h

0

)[ J ])0((bS0 bG�
b

bS)� bS0 bG�
b

� (S0G�1

b

S)�1S0G�1

b

)(B0u/
p
n)

�
n

(f)

=: T
1

+ T
2

.

We first show T
1

!
d

N(0, 1) by the Lindeberg-Feller theorem. To verify the Lindeberg condition, note that

|Z
n

(W
i

)| 

���(Df(h
0

)[ J ])0(S0G�1

b

S)�1S0G�1/2

b

��� ���G�1/2

b

bK(W
i

)
���

(inf
w

E[u2

i

|W
i

= w])1/2
���(Df(h

0

)[ J ])0(S0G�1

b

S)�1S0G�1/2

b

���  ��1⇣
b

(K)

by the Cauchy-Schwarz inequality and Assumption 2(iii). Therefore,

E[u2

i

Z
n

(W
i

)2{|Z
n

(W
i

)u
i

| > ⌘
p
n}]  sup

w

E[u2

i

{|u
i

| & ⌘(
p
n/⇣

b

(K))}|W
i

= w] = o(1)

by Assumption 2(iv’) and the condition on J . Therefore, T
1

!
d

N(0, 1).
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For T
2

, observe that

|T
2

| =

����� (Df(h
0

)[ J ])0(( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

)(G�1/2

b

B0u/
p
n)

�
n

(f)

�����
=

����� [(Df(h
0

)[ J ])0(G�1/2

b

S)�
l

]G�1/2

b

S{( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

}(G�1/2

b

B0u/
p
n)

�
n

(f)

�����


���(Df(h
0

)[ J ])0(G�1/2

b

S)�
l

��� ���G�1/2

b

S{( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

}
��� ���G�1/2

b

B0u/
p
n
���

(inf
w

E[u2

i

|W
i

= w])1/2
���(Df(h

0

)[ J ])0(G�1/2

b

S)�
l

���
 ��1

���G�1/2

b

S{( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

}
��� ���G�1/2

b

B0u/
p
n
���

= O
p

(s�1

JK

⇣
p
(J log J)/n)

where the first inequality is by the Cauchy-Schwarz inequality, the second is by Assumption 2(iii), and the final

line is by Lemmas F.10(c) and F.8. The result follows by the equivalence ⌧
J

⇣ s�1

JK

(see Lemma A.1) and the

condition ⌧
J

⇣
p
(J log n)/n = o(1).

Result (2) follows directly from Result (1) and Lemma G.2.

Lemma G.2. Let Assumptions 1(iii), 2(i)–(iii), 3(iii) and 4(i) hold, ⌧
J

⇣
p

(log n)/n = o(1), and Assumption

5’(b)(iii) hold (with ⌘0
n

= 0 if f(·) is linear). Let kbh�h
0

k1 = O
p

(�
h,n

) = o
p

(1), and �
V,n

⌘ ⇥⇣(2+�)/�
b,K

p
(logK)/n

⇤
�/(1+�)

+

⌧
J

⇣
p

(log J)/n+ �
h,n

. Then: ���� b�n(f)�
n

(f)
� 1

���� = O
p

(�
V,n

+ ⌘0
n

) = o
p

(1) .

Proof of Lemma G.2. First write

b�
n

(f)2

�
n

(f)2
� 1 =

✓b�0
n

⌦ob�
n

�
n

(f)2
� 1

◆
+
b�0
n

(b⌦o � ⌦o)b�
n

�
n

(f)2

=

✓
(b�

n

� �
n

)0⌦o(b�
n

+ �
n

)

�
n

(f)2

◆
+
b�0
n

(b⌦o � ⌦o)b�
n

�
n

(f)2
=: T

1

+ T
2

where

b⌦o = G�1/2

b

b⌦G�1/2

b

b�
n

= G1/2

b

bG�1

b

bS[bS0 bG�1

b

bS]�1Df(bh)[ J ]

⌦o = G�1/2

b

⌦G�1/2

b

�
n

= G�1/2

b

S[S0G�1

b

S]�1Df(h
0

)[ J ]

and observe that �0
n

⌦o�
n

= �
n

(f)2 and b�0
n

b⌦ob�
n

= b�
n

(f)2.

Control of T
1

: We first show that

kb�
n

� �
n

k
`

2

�
n

(f)
= O

p

(⌧
J

⇣
p

(log J)/n+ ⌘0
n

) = o
p

(1) . (49)

To simplify notation, let

@ =
Df(h

0

)[ J ]

�
n

(f)
and b@ =

Df(bh)[ J ]

�
n

(f)

and note that k@0(G�1/2

b

S)�
l

k
`

2 = s
n

(f)/�
n

(f) ⇣ 1 under Assumptions 2(i)(iii) and that b@ = @ if f(·) is linear.
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Then we have:

kb�
n

� �
n

k
`

2

�
n

(f)
= kb@0( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� @0(G�1/2

b

S)�
l

k
`

2

 kb@0(G�1/2

b

S)�
l

k
`

2kG�1/2

b

S{( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

}k
`

2 + k(b@0 � @0)(G�1/2

b

S)�
l

)k
`

2

= O
p

(1)⇥O
p

(s�1

JK

⇣
p

(log J)/n) +
k⇧

K

T (bv
n

(f)� v
n

(f))k
L

2
(W )

�
n

(f)

= O
p

(1)⇥O
p

(s�1

JK

⇣
p

(log J)/n) +O
p

(⌘0
n

)

where the third line is Lemma F.10(c) and the final line is by Assumption 5’(b)(iii). Therefore, (49) holds by

the equivalence s�1

JK

⇣ ⌧
J

(Lemma A.1) and the condition ⌧
J

⇣
p

(log n)/n = o(1).

Finally, since all eigenvalues of ⌦o are bounded between �2 and �2 under Assumption 2(i)(iii), it follows from

(49) and Cauchy-Schwarz that |T
1

| = o
p

(1).

Control of T
2

: Equation (49) implies that kb�
n

k/�
n

(f) = O
p

(1). Therefore, |T
2

|  O
p

(1)⇥ kb⌦o � ⌦ok
`

2 = o
p

(1)

by Lemma G.3.

Lemma G.3. Let Assumptions 2(i)(ii) hold, let ⇣
b,K

p
(logK)/n = o(1), and let kbh � h

0

k1 = O
p

(�
h,n

) with

�
h,n

= o(1). Then:

kb⌦o � ⌦ok
`

2 = O
p

⇣�
⇣(2+�)/�
b,K

p
(logK)/n

�
�/(1+�)

+ �
h,n

⌘
Proof of Lemma G.3. By the triangle inequality:

kb⌦o � ⌦ok
`

2 
�����G�1/2

b

 
1

n

nX
i=1

u2

i

bK(W
i

)bK(W
i

)0
!
G�1/2

b

�����
`

2

+

�����G�1/2

b

 
1

n

nX
i=1

2u
i

(bu
i

� u
i

)bK(W
i

)bK(W
i

)0
!
G�1/2

b

�����
`

2

+

�����G�1/2

b

 
1

n

nX
i=1

(bu
i

� u
i

)2bK(W
i

)bK(W
i

)0
!
G�1/2

b

�����
`

2

 O
p

((⇣(2+�)/�
b,K

p
(logK)/n)�/(1+�)) + kbh� h

0

k1 ⇥O
p

(1) + kbh� h
0

k21 ⇥O
p

(1)

where the first term may easily be deduced from the proof of Lemma 3.1 of Chen and Christensen (2015),

the second then follows because 2u
i

(bu
i

� u
i

)  (1 + u2

i

)kbh � h
0

k1, and the third follows similarly because

k bGo

b

k
`

2 = O
p

(1) by Lemma F.7.

G.4.2 Proofs for Section 4

Proof of Lemma 4.1. Recall that

bZ
n

(t) =
(Df

t

(h
0

)[ J ])0[S0G�1

b

S]�1S0G�1/2

b

�
n

(f
t

)

 
1p
n

nX
i=1

G�1/2

b

bK(W
i

)u
i

!
,

Z
n

(t) =
(Df

t

(h
0

)[ J ])0[S0G�1

b

S]�1S0G�1/2

b

�
n

(f
t

)
Z

n

where Z
n

⇠ N(0,⌦o) with ⌦o = G�1/2

b

⌦G�1/2

b

.
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Step 1: Uniform Bahadur representation. By Assumption 5(a) or (b)(i)(ii), we have

sup
t2T

�����pn
f
t

(bh)� f
t

(h
0

)b�
n

(f
t

)
� bZ

n

(t)

�����  sup
t2T

�����pn
Df

t

(h
0

)[bh� eh]
�
n

(f
t

)
� bZ

n

(t)

�����+O
p

(⌘
n

)⇥ sup
t2T

�����n(ft)b�
n

(f
t

)

����
+sup

t2T

�����n(ft)b�
n

(f
t

)
� 1

����⇥ sup
t2T

�����pn
Df

t

(h
0

)[bh� eh]
�
n

(f
t

)

�����
=: T

1

+ T
2

+ T
3

.

Control of T
1

: As in the proof of Theorem D.1,

T
1

= sup
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p
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= O
p

(⌧
J

⇣
p
(J log J)/n) = o

p

(r
n

)

where the first inequality is by the Cauchy-Schwarz inequality, the second is by Assumption 2(iii), and the final

line is by Lemmas F.10(c) and F.8 and the equivalence ⌧
J

⇣ s�1

JK

(see Lemma A.1), and the last o
p

(r
n

) is by

Assumption 6(ii.2).

Control of T
2

: Lemma G.4 below shows that
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t2T

���� b�n(ft)�
n
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)
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+ ⌘0
n

) = o
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from which it follows that T
2

= O
p
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n

)⇥O
p

(1) = O
p

(⌘
n

).

Control of T
3

: By Lemma G.4 below and the bound for T
1

, we have:

T
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(t)|+ o
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n

)⇥ ⇥o
p

(r
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n

)
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where the second-last line is by display (54) step 2 below and the final line is by Lemma G.5 below. Therefore

we have proved:
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f
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⇣
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) +O
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p
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n
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where the final line is by Assumption 6(ii.2).

Step 2: Approximating

bZ
n

(t) by a Gaussian process Z
n

(t). We use Yurinskii’s coupling (Pollard, 2002,

Theorem 10, p. 244) to show that there exists a sequence of N(0,⌦o) random vectors Z
n

such that����� 1p
n

nX
i=1

G�1/2

b

bK(W
i

)u
i

� Z
n

�����
`

2

= o
p

(r
n

) . (51)

By Assumption 2(iv) we have

nX
i=1

E[kn�1/2G�1/2

b

bK(W
i

)u
i
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2 ] . n�1/2⇣
b,K

E[kG�1/2

b

bK(W
i

)k2
`

2 ] =
⇣
b,K

Kp
n

= O

✓
⇣
b,K

Jp
n

◆
.

Existence of Z
n

follows under the condition (Assumption 6(ii.1))

⇣
b,K

J2

r3
n

p
n

= o(1) .

The process Z
n

(t) is a centered Gaussian process with the covariance function

E[Z
n

(t
1

)Z
n

(t
2

)] =
(Df

t1(h0

)[ J ])0[S0G�1

b

S]�1S0G�1

b

⌦G�1

b

S[S0G�1

b

S]�1Df
t2(h0

)[ J ]

�
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(f
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. (52)

Now observe that

sup
t2T

����� (Df
t
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0
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b
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b

�
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(f
t

)

�����
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2

= sup
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s
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(f
t

)

�
n

(f
t

)
⇣ 1 (53)

by Assumption 2(i)(iii). Therefore,

sup
t2T

���bZ
n

(t)� Z
n

(t)
��� = o

p

(r
n

) (54)

by equations (51) and (53) and Cauchy-Schwarz.

Lemma G.4. Let Assumptions 1(iii), 2(i)–(iii), 3(ii)(iii) and 4(i) hold, ⌧
J

⇣
p

(log n)/n = o(1), and Assumption

5(b)(iii) hold (with ⌘0
n

= 0 if f
t

(·) is linear). Let kbh� h
0

k1 = O
p

(�
h,n

) with �
h,n

= o(1). Then:
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t2T

�����n(ft)b�
n

(f
t

)
� 1

���� = O
p

(�
V,n

+ ⌘0
n

) = o
p

(1).

Proof of Lemma G.4. The proof follows by identical arguments to the proof of Lemma G.2.

Proof of Theorem 4.1. Recall that

Z⇤
n

(t) =
(Df

t

(bh)[ J ])0[bS0 bG�1

b

bS]�1 bS0 bG�1

bb�(f
t

)

 
1p
n

nX
i=1

bK(W
i

)bu
i

$
i

!
for each t 2 T .

Step 1: Approximating Z⇤
n

(t) by a Gaussian process

eZ⇤
n

. Each of the terms n�1/2G�1/2

b

bK(W
i

)bu
i

$
i

is

centered under P⇤ because E[$
i

|Zn] = 0 for i = 1, . . . , n. Moreover,

nX
i=1
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b

bK(W
i

)bu
i

$
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)(n�1/2G�1/2

b
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$
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)0|Zn] = b⌦o
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where G�1/2

b

b⌦G�1/2

b

= b⌦o, and

nX
i=1

E[kn�1/2G�1/2

b
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i

)bu
i

$
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k3
`
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i
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2 |bu
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2 |bu
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|3] . ⇣
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Kp
n

holds wpa1 (by Markov’s inequality using |bu
i

|3 . |u
i

|3+kbh�h
0

k31 and Assumption 2(iv)). A second application

of Yurinskii’s coupling conditional on the data Zn then yields existence of a sequence of N(0, b⌦o) random vectors

Z⇤
n

such that ����� 1p
n

nX
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b
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i

)bu
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$
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� Z⇤
n
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`

2

= o
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)

wpa1. Therefore:
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t

(bh)[ J ])0[bS0 bG�1

b

bS]�1 bS0 bG�1/2
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)
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) (55)

wpa1. Now observe that we can define a centered Gaussian process eZ⇤
n

under P⇤ by

eZ⇤
n

(t) ⌘ (Df
t

(h
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b

S]�1S0G�1/2

b

�
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(f
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)
(⌦o)1/2(b⌦o)�1/2Z⇤

n

which has the same covariance function as Z
n

(see equation (52)) whenever b⌦o is invertible (which it is wpa1).

Therefore, by Lemma G.6 below we have:
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t
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) (56)

wpa1. It follows from equations (55) and (56) and Assumption 6(ii) that
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Step 2: Consistency. By Lemma 4.1 and display (54), we have:
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n

) = o
p

(r
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Therefore, we may choose a sequence of positive constants ✏
n
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)
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n
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n

r
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(58)

holds wpa1. By an anti-concentration inequality (Chernozhukov, Chetverikov, and Kato, 2014, Theorem 2.1)
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and Lemma G.5 below, we have:

sup
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P
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n

(t)� s|  ✏
n

r
n

◆
. ✏

n

r
n

E[sup
t2T

|Z
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n

c
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. 1 (Assumption 6(ii.1)). This, together with (58), yields:
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Moreover, by (57) we may choose a sequence of positive constants ✏0
n
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= o(1) such that
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holds wpa1. Similar arguments then yield:
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The result is immediate from equations (59) and (60) and the fact that
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✓
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holds uniformly in s.

Lemma G.5. Let Assumption 6(i) hold. Then: E[sup
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(t)|] . c
n

and sup
t2T |Z

n

(t)| = O
p
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n
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Proof of Lemma G.5. Observe that d
n

(t
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, t
2

) := E[(Z
n

(t
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) � Z
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))2]1/2. By Corollary 2.2.8 of van der

Vaart and Wellner (1996) and Assumption 6(i), there exists a universal constant C such that
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(t̄) ⇠ N(0, 1). Therefore, E[sup
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result follows by Markov’s inequality.

Lemma G.6. Let Assumptions 1(iii), 2, 3(ii)(iii), 4(i) and 6 hold, ⌧
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Proof of Lemma G.6. First note that because Z⇤
n

⇠ N(0, b⌦o) and the minimum and maximum eigenvalues
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of b⌦o are uniformly bounded away from 0 and 1 wpa1 (by Lemma G.3 and Assumptions 2(i)(iii)), we have
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Now, writing out term by term we have:

sup
t2T

�����
 
(Df

t

(bh)[ J ])0[bS0 bG�1

b

bS]�1 bS0 bG�1/2

bb�
n

(f
t

)
� (Df

t

(h
0

)[ J ])0[S0G�1

b

S]�1S0G�1/2

b

(⌦o)1/2(b⌦o)�1/2

�
n

(f
t

)

!
Z⇤

n

�����
 sup

t2T

�������
⇣
Df

t

(bh)[ J ]�Df
t

(h
0

)[ J ]
⌘0

(G�1/2

b

S)�
l

G�1/2

b

S[bS0 bG�1

b

bS]�1 bS0 bG�1/2

bb�
n

(f
t

)
Z⇤

n

�������
+ sup

t2T

������
(Df

t

(h
0

)[ J ])0
⇣
[bS0 bG�1

b

bS]�1 bS0 bG�1/2

b

� [S0G�1

b

S]�1S0G�1/2

b

(⌦o)1/2(b⌦o)�1/2

⌘
�
n

(f
t

)
Z⇤

n

������⇥ sup
t2T

�
n

(f
t

)b�
n

(f
t

)

+ sup
t2T

�����n(ft)b�
n

(f
t

)
� 1

����⇥ sup
t2T

����� (Df
t

(h
0

)[ J ])0[S0G�1

b

S]�1S0G�1/2

b

(⌦o)1/2(b⌦o)�1/2

�
n

(f
t

)
Z⇤

n

����� =: T
1

+ T
2

+ T
3

.

Control of T
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: By Cauchy-Schwarz, we have:
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are linear functionals), the second term is by
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wpa1, where the first line uses the fact that b⌦o is invertible wpa1 and the second line uses the fact that ⌦o andb⌦o have eigenvalue uniformly bounded away from 0 and 1 wpa1. It follows by Lemma F.10(c) and Lemmas
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where the first inequality is because kx/kxk � y/kykk  2kx � yk/(kxk _ kyk) whenever kxk, kyk 6= 0 and the
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The continuity condition in Remark 4.2 holds with �
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G.5 Proofs for Section 5

Proof of Theorem 5.1. The result will follow from Theorem D.1. Assumption 2(i)–(iii)(iv’) is satisfied under
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Finally, for Assumption 5’(b)(iii), we have
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remaining condition then holds provided 2p > 6 _ (8� 2a)� 2a.

Proof of Theorem 5.2. The proof follows by identical arguments to those of Theorem 5.1, noting that
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Proof of Theorem 5.3. The result will follow from Theorem D.1, and is very similar to that of Theorem 5.1.
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Proof of Theorem 5.4. We verify the conditions of Lemma 4.1 and Theorem 4.1. Assumptions 1 and 2

are satisfied by Assumption CS(i)(ii)(iv) and U-CS(i). Assumption 3(iii) is satisfied by Assumption U-CS(iii).
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whence Assumption 5(b)(iii) holds with

⌘0
n

=
J3/2µ�1

J

�
n

⇥
⇣
J�p/2 + µ�1

J

p
J(log J)/n

⌘
.

which is o(1) by Assumption U-CS(iv). This verifies Assumption 5(b).

Finally, Assumption 6(i) holds with c
n

= O(
p
log J) by Assumption U-CS(ii) and Remark 4.2. For Assumption

6(ii) we take r
n

= [log J ]�1/2. Assumption 6(ii.1) then holds provided J5(log J)3/n = o(1). Assumption 6(ii.2)

holds provided

⌧
J

J
p
(log J)/n+ ⌘

n

+
⇣
[J

2+�
2�

p
(log J)/n]

�
1+� + J�p/d + ⌧

J

p
J(log J)/n+ ⌘0

n

⌘p
log J = o((log J)�1/2)

(using Corollary 3.1 for �
h,n

), which is satisfied provided

⌧
J

J
p
(log J)/n+ ⌘

n

+ ⌘0
n

p
log J = o((log J)�1/2)

which is in turn implied by Assumption U-CS(iii) and U-CS(iv.1) and the property �
n

.
p
Jµ�1

J

. Thus Lemma

4.1 applies to f
t

= f
CS,t

with a rate r
n

= [log J ]�1/2.

Next we note that the condition ⌘0
n

p
J = o((log J)�1/2) needed for Theorem 4.1 is directly implied by Assump-

tion U-CS(iv.2).
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G.6 Proofs for Appendix B

Proof of Theorem B.1. As with the proof of Theorem 3.1, we first decompose the error into three parts:

kbh� h
0

k
L

2
(X)

 kbh� ehk
L

2
(X)

+ keh�⇧
J

h
0

k
L

2
(X)

+ k⇧
J

h
0

� h
0

k
L

2
(X)

=: T
1

+ T
2

+ kh
0

�⇧
J

h
0

k
L

2
(X)

.

To prove Result (1) it is enough to show that T
2

 O
p

(1)⇥ kh
0

�⇧
J

h
0

k
L

2
(X)

. To do this, bound

T
2

 kG1/2

 

(S0G�1/2

b

)�
l

G�1/2

b

B0(H
0

� c
J

)/nk
`

2

+kG1/2

 

{( bG�1/2

b

bS)�
l

bG�1/2

b

G1/2

b

� (G�1/2

b

S)�
l

}G�1/2

b

B0(H
0

� c
J

)/nk
`

2 =: T
21

+ T
22

.

28



For T
21

,

T
21

 s�1

JK

kG�1/2

b

B0(H
0

� c
J

)/nk
`

2

 O
p

(⌧
J

⇣
b,K

/
p
n)⇥ kh

0

�⇧
J

h
0

k
L

2
(X)

+ ⌧
J

k⇧
K

T (h
0

�⇧
J

h
0

)k
L

2
(W )

 O
p

(⌧
J

⇣
b,K

/
p
n)⇥ kh

0

�⇧
J

h
0

k
L

2
(X)

+ ⌧
J

kT (h
0

�⇧
J

h
0

)k
L

2
(W )

= O
p

(1)⇥ kh
0

�⇧
J

h
0

k
L

2
(X)

where the second line is by Lemma F.9 and the relations J ⇣ K and ⌧
J

⇣ s�1

JK

, and the final line is by

Assumption 4(ii) and the condition ⌧
J

⇣
p
(log J)/n = o(1). Similarly,

T
22

 kG1/2
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l
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b
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b
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b
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l

}k
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b
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`

2
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⇣
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b,K

/
p
n)⇥ kh

0

�⇧
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h
0

k
L

2
(X)

+ kT (h
0

�⇧
J

h
0
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L

2
(W )

�
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p

(⌧
J

⇣
p
(log J)/n)2 ⇥ kh

0

�⇧
J

h
0

k
L

2
(X)

+O
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(1)⇥ ⌧
J

kT (h
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�⇧
J

h
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L

2
(W )

= O
p

(1)⇥ kh
0

�⇧
J

h
0

k
L

2
(X)

where the second line is by Lemmas F.9 and F.10(b) and the relations J ⇣ K and ⌧
J

⇣ s�1

JK

, and the final line

is by the condition ⌧
J

⇣
p
(log J)/n = o(1) and Assumption 4(ii). This proves Result (1).

To prove Result (2) it remains to control T
1

. To do this, bound

T
1

 kG1/2

 

(S0G�1/2

b

)�
l

G�1/2

b

B0u/nk
`

2 + kG1/2
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l

bG�1/2

b
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b

� (G�1/2

b

S)�
l

}G�1/2

b

B0u/nk
`

2

=: T
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+ T
12

.

For T
11

, by definition of s
JK

and Lemma F.8 we have:

T
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 s�1

JK

kG�1/2

b

B0u/nk
`

2 = O
p

(s�1

JK

p
K/n) = O

p

(⌧
J

p
J/n)

where the final line is because J ⇣ K and ⌧
J

⇣ s�1

JK

(Lemma A.1). Similarly,

T
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 kG1/2
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b
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l

bG�1/2

b
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b

� (G�1/2

b

S)�
l
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`

2kG�1/2
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B0u/nk
`
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= O
p

(⌧2
J

⇣
p
(log J)/n)⇥O

p

(
p

J/n)

= o
p

(⌧
J

p
J/n)

where the second line is by Lemmas F.8 and F.10(b) and the relations J ⇣ K and ⌧
J

⇣ s�1

JK

, and the final line

is by the condition ⌧
J

⇣
p
(log J)/n = o(1).

Proof of Corollary B.1. Analogous to the proof of Corollary 3.1.

Proof of Theorem B.2. As in the proof of Theorem 3.2, it su�ces to prove a lower bound for the Gaussian

reduced-form NPIR model (45). Theorem G.3 below does just this.

Theorem G.3. Let Condition LB hold with B
2

(p, L) in place of B1(p, L) hold for the NPIR model (45) with

a random sample {(W
i

, Y
i

)}n
i=1

. Then for any 0  |↵| < p:

lim inf
n!1 inf

bgn
sup

h2B2(p,L)

P
h

⇣
kbg

n

� @↵hk
L

2
(X)

� cn�(p�|↵|)/(2(p+&)+d)

⌘
� c0 > 0
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in the mildly ill-posed case, and

lim inf
n!1 inf

bgn
sup

h2B2(p,L)

P
h

⇣
kbg

n

� @↵hk
L

2
(X)

� c(log n)�(p�|↵|)/&
⌘
� c0 > 0

in the severely ill-posed case, in the severely ill-posed case, where infbgn denotes the infimum over all estimators of

@↵h based on the sample of size n, sup
h2B2(p,L)

P
h

denotes the sup over h 2 B
2

(p, L) and distributions (W
i

, u
i

)

which satisfy Condition LB with ⌫ fixed, and the finite positive constants c, c0 depend only on p, L, d, & and �
0

.

Proof of Theorem G.3. We use similar arguments to the proof of Theorem G.1, using Theorem 2.5 of Tsy-

bakov (2009) (see Theorem G.2). Again, we first explain the scalar (d = 1) case in detail. Let {�
j,k

, 
j,k

}
j,k

be

a wavelet basis of regularity � > p for L2([0, 1]) as described in Appendix E.

By construction, the support of each interior wavelet is an interval of length 2�j(2r�1). Thus for all j su�ciently

large (hence the lim inf in our statement of the Lemma) we may choose a set M ⇢ {r, . . . , 2j � r� 1} of interior

wavelets with cardinality #(M) ⇣ 2j such that support( 
j,m

) \ support( 
j,m

0) = ; for all m,m0 2 M with

m 6= m0.

Take g
0

2 B(p, L/2) and for each m 2 M define ✓ = {✓
m

}
m2M

where each ✓
m

2 {0, 1} and define

h
✓

= g
0

+ c
0

2�j(p+1/2)

X
m2M

✓
m

 
j,m

for each ✓, where c
0

is a positive constant to be defined subsequently. Note that this gives 2(#(M)) such choices

of h
✓

. By the equivalence k · k
B

p
2,2

⇣ k · k
b

p
2,2

, for each ✓ we have:

kh
✓

k
B

p
2,2

 L/2 +

�����c02�j(p+1/2)

X
m2M

✓
m

 
j,m

�����
B

p
2,2

 L/2 + const⇥
�����c02�j(p+1/2)

X
m2M

✓
m

 
j,m

�����
b

p
2,2

= L/2 + const⇥ c
0

2�j(p+1/2)

 X
m2M

✓2
m

22jp
!

1/2

 L/2 + const⇥ c
0

.

Therefore, we can choose c
0

su�ciently small that h
✓

2 B
2

(p, L) for each ✓.

Since  
j,m

2 C� with � > |↵| is compactly supported and X
i

has density bounded away from 0 and 1, we have

k2j/2 (|↵|)(2jx�m)k
L

2
(X)

⇣ 1 (uniformly in m). By this and the disjoint support of the  
j,m

, for each ✓, ✓0 we
have:

k@↵h
✓

� @↵h
✓

0k
L

2
(X)

= c
0

2�j(p�|↵|+1/2)

 X
m2M

(✓
m

� ✓0
m

)2k2j/2 (|↵|)(2j · �m)k2
L

2
(X)

!
1/2

& c
0

2�j(p�|↵|+1/2)

p
⇢(✓, ✓0)

where ⇢(✓, ✓0) is the Hamming distance between ✓ and ✓0. Take j large enough that #(M) � 8. By the

Varshamov-Gilbert bound (Tsybakov, 2009, Lemma 2.9) we may choose a subset ✓(0), ✓(1), . . . , ✓(M
⇤
) such that

✓0 = (0, . . . , 0), ⇢(✓(a), ✓(b)) � #(M)/8 & 2j for all 0  a < b  M⇤ and M⇤ � 2#(M)/8 (recall that there were
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2(#(M)) distinct vectors ✓ and #(M) ⇣ 2j). For each m 2 {0, 1, . . . ,m⇤} let h
m

:= h
✓

(m) . Then we have

k@↵h
m

� @↵h
m

0k
L

2
(X)

& c
0

2�j(p�|↵|)

for each 0  m < m0  M⇤.

For each 0  m  M⇤, let P
m

denote the joint distribution of {(W
i

, Y
i

)}n
i=1

with Y
i

= Th
m

(W
i

) + u
i

for the

Gaussian NPIR model (45). It follows from Condition LB(ii)(iii) that for each 1  m  M⇤ the KL distance

K(P
m

, P
0

) is

K(P
m

, P
0

)  1

2

nX
i=1

(c
0

2�j(p+

1
2 ))2E

"
(T
P

k2M

✓(m)

k

( 
j,k

(W
i

)))2

�2(W
i

)

#
 n

2�2

(c
0

2�j(p+

1
2 ))2⌫(2j)2

X
k2M

(✓(m)

k

)2k 
j,k

k2
L

2
(X)

. nc2
0

2�2jp⌫(2j)2

where the final line is because X
i

has density bounded away from 0 and 1 and
P

k2M

(✓(m)

k

)2  #(M) ⇣ 2j

for each 1  m  M⇤.

In the mildly ill-posed case (⌫(2j) = 2�j&) we choose 2j ⇣ n1/(2(p+&)+1). This yields:

K(P
m

, P
0

) . c2
0

n
1

2(p+&)+1 uniformly in m

log(M⇤) & 2j ⇣ n1/(2(p+&)+1) .

since M⇤ � 2#(M)/8 and #(M) ⇣ 2j .

In the severely ill-posed case (⌫(2j) = exp(� 1

2

2j&)) we choose 2j = (c
1

log n)1/& with c
1

> 1. This yields:

K(P
m

, P
0

) . c2
0

n�(c1�1) uniformly in m

log(M⇤) & 2j ⇣ (log n)1/& .

In both the mildly and severely ill-posed cases, the result follows by choosing c
0

su�ciently small that both

kh
m

k
B

p
2,2

 L and K(P
m

, P
0

) < 1

8

log(M⇤) hold uniformly in m for all n su�ciently large. All conditions of

Theorem 2.5 of Tsybakov (2009) are satisfied and hence we obtain the lower bound result.

In the multivariate case (d > 1) we let e 
j,k,G

(x) denote an orthonormal tensor-product wavelet for L2([0, 1]d)

at resolution level j. We construct a family of submodels analogously to the univariate case, setting h
✓

=

g
0

+ c
0

2�j(p+d/2)

P
m2M

✓
m

e 
j,m,G

where  
j,m

is now the product of d interior univariate wavelets at resolution

level j with G = (w
 

)d (see Appendix E) and where #(M) ⇣ 2jd. We then use the Varshamov-Gilbert bound

to reduce this to a family of models h
m

with 0  m  M⇤ and M⇤ ⇣ 2jd. We then have:

k@↵h
m

� @↵h
m

0k1 & c
0

2�j(p�|↵|)

for each 0  m < m0  M⇤, and

K(P
m

, P
0

) . n(c
0

2�j(p+d/2))2⌫(2j)2

for each 1  m  M⇤, where ⌫(2j) = 2�j& in the mildly ill-posed case and ⌫(2j) ⇣ exp(�2j&) in the severely

ill-posed case. We choose 2j ⇣ n1/(2(p+&)+d) in the mildly ill-posed case and 2j = (c
1

log n)1/& in the severely
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ill-posed case. The result follows as in the univariate case.

G.7 Proofs for Appendix C

Proof of Theorem C.1. As in the proof of Theorem 3.2, this follows from the lower bound for NPIR in

Theorem G.4.

The following is a slightly stronger “in probability” version of Lemma 1 in Yu (1997), which is used to prove

Theorem G.4. Let P be a family of probability measures, let ✓(P ) be a parameter with values in a pseudo-metric

space (D, d) for some distribution P 2 P, and let ✓̂(P ) be an estimator of ✓(P ) taking values in (D, d). If ✓ 2 D
and D ⇢ D, we let d(✓, D) = inf

✓

02D

d(✓, ✓0). Let co(P) denote the convex hull of a set of measures P. Finally,

if P,Q 2 P we let kP � Qk
TV

denote the total variation distance and a↵(P,Q) = 1 � kP � Qk
TV

denote the

a�nity between P and Q.

Lemma G.7. Suppose there are subsets D
1

, D
2

⇢ D that are 2� separated for some � > 0 (i.e. d(s
1

, s
2

) � 2�

for all s
1

2 D
1

and s
2

2 D
2

) and subsets P
1

,P
2

⇢ P for which ✓(P) 2 D
1

for all P 2 P
1

and ✓(P) 2 D
2

for all

P 2 P
2

. Then:

2 sup
P2P

P(d(b✓, ✓(P)) � �) � sup
P12co(P1),P22co(P2)

a↵(P
1

,P
2

) .

Proof of Lemma G.7. We proceed as in the proof of Lemma 1 in Yu (1997). Let P
1

2 P
1

and P
2

2 P
2

. Then:

2 sup
P2P

P(d(b✓, ✓(P)) � �) � P
1

(d(b✓, ✓(P
1

)) � �) + P
2

(d(b✓, ✓(P
2

)) � �)

� P
1

(d(b✓, D
1

) � �) + P
2

(d(b✓, D
2

) � �) .

Since the inequality 2 supP2P P(d(b✓, ✓(P)) � �) � P
1

(d(b✓, D
1

) � �)+P
2

(d(b✓, D
2

) � �) holds for any fixed P
1

2 P
1

and P
2

2 P
2

, it must also hold for any P
1

2 co(P
1

) and P
2

2 co(P
2

). Also note that

1l{d(b✓, D
1

) � �}+ 1l{d(b✓, D
2

) � �} � 1l{d(b✓, D
1

) + d(b✓, D
2

) � 2�}
� 1l{d(D

1

, D
2

) � 2�} = 1

because d(D
1

, D
2

) � 2�. Now by definition of ↵(·, ·), for any P
1

2 co(P
1

) and P
2

2 co(P
2

) we have:

2 sup
P2P

P(d(b✓, ✓(P)) � �) � P
1

(d(b✓, D
1

) � �) + P
2

(d(b✓, D
2

) � �)

� inf{P
1

f + P
2

g : f, g non negative and measurable with f + g � 1}
= a↵(P

1

,P
2

) .

The result follows by taking the supremum of the right-hand side over P
1

and P
2

.

Theorem G.4. Let Condition LB hold with B
2

(p, L) in place of B1(p, L) for the NPIR model (45) with a

random sample {(W
i

, Y
i

)}n
i=1

.Then for any 0  |↵| < p:

lim inf
n!1 inf

bgn
sup

h2B2(p,L)

P
h

(|bg
n

� f(h)| > cr
n

) � c0 > 0
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where

r
n

=

264 n�1/2 in the mildly ill-posed case when p � & + 2|↵|+ d/4

n�4(p�|↵|)/(4(p+&)+d) in the mildly ill-posed case when & < p < & + 2|↵|+ d/4

(log n)�2(p�|↵|)/& in the severely ill-posed case,

infbgn denotes the infimum over all estimators of f(h
0

) based on the sample of size n, sup
h2B2(p,L)

P
h

denotes

the sup over h 2 B
2

(p, L) and distributions (W
i

, u
i

) which satisfy Condition LB with ⌫ fixed, and the finite

positive constants c, c0 do not depend on n.

Proof of Theorem G.4. We first prove the result for the scalar (d = 1) case, then describe the modifications

required in the multivariate case.

Let {�
j,k

, 
j,k

}
j,k

be a CDV wavelet basis of regularity � > p for L2([0, 1]), as described in Appendix E. As in

the proof of Theorem G.3, we choose a set M ⇢ {r, . . . , 2j � r � 1} of interior wavelets with cardinality m :=

#(M) ⇣ 2j such that support( 
j,m

) \ support( 
j,m

0) = ; for all m,m0 2 M with m 6= m0. Let ✓ = {✓
m

}
m2M

where each ✓
m

2 {�1, 1} and for each ✓ 2 {�1, 1}m define:

h
✓

=
X
m2M

✓
m

c
0

2�jp

p
m

 
j,m

.

and let h
0

= 0. By the equivalence k · k
b

p
2,2

⇣ k · k
B

p
2,2

, we have:
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✓

k
B

p
2,2

. kh
✓

k
b

p
2,2

=

 
22jp

X
m2M

✓2
m

c2
0

2�2jp

m

!
1/2

= c
0

.

Therefore, we may choose c
0

su�ciently small that h
✓

2 B
2

(p, L) for all ✓ 2 {�1, 1}m.

Let  (|↵|) denote the |↵|th derivative of  . By disjoint support of the  
j,m

(x) = 2j/2 (2jx�m), µ(x) � µ > 0,

and a change of variables, we have:

|f(h
✓

)� f(h
0

)| = m�1

X
m2M

Z
(c

0

✓
m

2�jp (|↵|)
j,m

(x))2µ(x) dx

& m�1

X
m2M

Z
(c

0

✓
m

2�jp (|↵|)
j,m

(x))2 dx

= c2
0

2�2jpm�1

X
m2M

Z
2(2|↵|+1)j (|↵|)(2jx�m)2 dx

= c2
0

2�2j(p�|↵|)
Z
 (|↵|)(u)2 du & c2

0

2�2j(p�|↵|) .

Therefore, there exists a constant c⇤ > 0 such that

|f(h
✓

)� f(h
0

)| > 2c⇤2�2j(p�|↵|) (64)

holds for all for each ✓ 2 {�1, 1}m whenever j is su�ciently large.

Let P
0

(respectively P
✓

) denote the joint distribution of {(W
i

, Y
i

)}n
i=1

with Y
i

= Th
0

(W
i

) + u
i

(respectively

Y
i

= Th
✓

(W
i

) + u
i

) for the Gaussian NPIR model (45) where, under Condition LB, we may assume that X
i
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and W
i

have uniform marginals and that the joint density f
XW

(x,w) of (X
i

,W
i

) has wavelet expansion

f
XW

(x,w) =
2

r0�1X
k=0

�
r0'r0,k(x)'r0,k(w) +

1X
j=r0

2

j�1X
k=0

�
j

 
j,k

(x) 
j,k

(w) .

Observe that

T 
j,k

(w) =

Z
 
j,k

(x)f
XW

(x,w) dx = �
j

 
j,k

(w)

for each 0  k  2j � 1 and each j � r
0

(r
0

is fixed) and that |�
j

| ⇣ ⌫(2j) by Condition LB(iii). Let P ⇤ denote

the mixture distribution obtained by assigning weight 2�m to P
✓

for each of the 2m realizations of ✓. Lemma

G.8 yields

kP ⇤ � P
0

k2
TV

. n22�4jp⌫(2j)4

m
. (65)

In the mildly ill-posed case (⌫(2j) = 2j&) we have

kP ⇤ � P
0

k2
TV

. n22�j(4(p+&)+1)

because m ⇣ 2j . Choose 2j ⇣ cn2/(4(p+&)+1) with c su�ciently small so kP ⇤ �P
0

k
TV

 1� ✏ for some 1 > ✏ > 0

and all n large enough, whence:

a↵(P ⇤, P
0

) = 1� kP ⇤ � P
0

k
TV

� ✏ (66)

for all n su�ciently large. It now follows by Lemma G.7 and equations (64) and (66) that for all n su�ciently

large, any estimator bg
n

of f(h) obeys the bound

sup
h2B2(p,L)

P
h

⇣
|bg

n

� f(h)| > c⇤2�2j(p�|↵|)
⌘

� ✏/2 (67)

where 2�2j(p�|↵|) ⇣ n�4(p�|↵|)/(4(p+&)+1). This is slower than n�1/2 whenever p  & + 2|↵|+ 1/4.

In the severely ill-posed case (⌫(2j) = exp(� 1

2

2&j)) we choose 2j = (c log n)1/& for some c 2 (0, 1). This yields

kP ⇤ � P
0

k
TV

= o(1) by (65) and hence there exists ✏ > 0 such that a↵(P ⇤, P
0

) � ✏ for all n su�ciently large.

Then by Lemma G.7 and equation (64), for all n su�ciently large, any estimator ef
n

of f(h) obeys the same

bound (67) with 2�2j(p�|↵|) ⇣ (log n)�2(p�|↵|)/& .

In the multivariate case (d > 1) we let e 
j,k,G

(x) denote an orthonormal tensor-product wavelet for L2([0, 1]d)

at resolution level j, as described in Appendix E. We may choose a subset M of {0, . . . , 2j � 1}d with m :=

#(M) ⇣ 2dj for which each m 2 M indexes a tensor-product of interior wavelets of the form 2j/2 (2jx
l

�m
i

),

which we denote by e 
j,m

(x), such that e 
j,m

and e 
j,m

0 have disjoint support for each m,m0 2 M with m 6= m0.
For each ✓ 2 {�1, 1}m we define

h
✓

=
X
m2M

✓
m

c
0

2�jp

p
m

e 
j,m

(x)

with c
0

su�ciently small such that h
✓

2 B
2

(p, L) for each ✓. Let h
0

(x) = 0 for all x 2 [0, 1]d. By disjoint support
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of the e 
j,m

and a change of variables, we have:

|f(h
✓
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0
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X
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dx & c2
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Letting P
0

, P
✓

, and P ⇤ be defined analogously to in the univariate case, we let X
i

andW
i

have uniform marginals

on [0, 1]d and their joint density f
XW

(x,w) has wavelet expansion

f
XW

(x,w) =
1X

j=r0

X
G2Gj,r0

X
k

�
j

e 
j,k,G

(x) e 
j,k,G

(w) (68)

with |�
j

| ⇣ ⌫(2j). Lemma G.8 again yields

kP ⇤ � P
0

k2
TV

. n22�4jp⌫(2j)4

m
.

The result follows by choosing 2j ⇣ cn2/(4(p+&)+d) with su�ciently small c in the mildly ill-posed case and

2j = (c log n)1/& for some c 2 (0, 1) in the severely ill-posed case.

Lemma G.8. Let the Condition LB hold with B
2

(p, L) in place of B1(p, L) for the NPIR model (45), let P ⇤

and P
0

be as described in the proof of Theorem G.4, and let 2�jp⌫(2j) = o(1). Then:
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TV
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m
.

Proof of Lemma G.8. We prove the result for the multivariate case. For each ✓ 2 {�1, 1}m, the density of

P
✓

with respect to P
0

is
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Since the e 
j,m

have disjoint support, we have
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0
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=
c
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j

�
0

p
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Therefore:
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=
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where

A
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and the second line is again by disjoint support of the e 
j,m

(which implies �
i,j,m

is nonzero for at most one m

for each i).

Let E
0

be expectation under the measure P
0

and observe that E
0

[A
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(✓)] = 0 for each ✓ 2 {�1, 1}m. For each
✓, ✓0 we define the vector 

✓,✓

0 2 Rn whose ith element is:


✓,✓

0(i) = E
0

[A
i,j

(✓)A
i,j

(✓0)]

=
X
m2M

X
m

02M

E
0


exp

⇢
�1

2
�2

i,j,m

� 1

2
�2

i,j,m

0 +
u
i

�
0

(✓
m

�
i,j,m

+ ✓0
m

0�
i,j,m

0)

�
� 1

�
=
X
m2M

X
m

02M

E
0

h
e✓m✓

0
m0�i,j,m�i,j,m0 � 1

i
=
X
m2M

E
0

h
e✓m✓

0
m�

2
i,j,m � 1

i
.

where the final line is again by disjoint support of the e 
j,m

. Using | e 
j,k

| . 2dj/2, E
0

[ e 
j,k

(X
i

)2] = 1, and m ⇣ 2dj ,

it is straightforward to derive the bounds:
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By Taylor’s theorem:
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are remainder terms. Using the Lagrange remainder formula and (69) and (70), we may deduce
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where C is a finite positive constant and we again used the fact that �
i,j,m

is nonzero for at most one m for

each i.
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Lemma 22 of Pollard (2000) provides the bound:
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.

Therefore:
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Since
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0 ✓
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0 = 0 for all m,m0 2 M and
P
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0 1 = 22m, the first-order sum in (71) is:
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Also observe that X
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✓
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(
0 if m 6= m0

22m if m = m0.

The second-order sum in (71) is therefore:
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The higher-order terms in (71) will be of asymptotically smaller order because 2�jp�
j

⇣ 2�jp⌫(2j) = o(1) .

Substituting (72) and (73) into (71) yields:
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as required.
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G.8 Proofs for Appendix E

Proof of Lemma E.1. Part (a) is equation (3.4) on p. 141 of DeVore and Lorentz (1993). For part (b), let

v 2 RJ , let f
X

(x) denote the density of X
i

and let f
X

= inf
x

f
X

(x) and f
X

= sup
x

f
X

(x). Then for any v 2 RJ :
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2

for some finite positive constant c
1

, where the first inequality is by Assumption 1(i), the second is by Theorem

4.2 (p. 145) of DeVore and Lorentz (1993) with p = 2, and the third is by uniform boundedness of the mesh

ratio. By the variational characterization of eigenvalues of selfadjoint matrices, we have:

�
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)�1. The proof of the lower bound for �
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)�1 follows anal-

ogously by Theorem 4.2 (p. 145) of DeVore and Lorentz (1993) with p = 2. Part (c) then follows directly from

part (b).

Proof of Lemma E.2. The `1 norm of the tensor product of vectors equals the product of the `1 norms of

the factors, whence part (a) follows from Lemma E.1. As  J(x) is formed as the tensor-product of univariate B-

splines, each element of  J(x) is of the form
Q

d

l=1

 
Jil(xl

) where  
Jil(xl

) denotes the i
l

th element of the vector of

univariate B-splines. Let v 2 RJ . We may index the elements of v by the multi-indices i
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, . . . , i
d

2 {1, . . . ,m+r}d.
By boundedness of f
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away from zero and Fubini’s theorem, we have:
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Applying Theorem 4.2 (p. 145) of DeVore and Lorentz (1993) to the term in braces, and repeating for x
2

, . . . , x
d

,

we have:
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where the second inequality is by uniform boundedness of the mesh ratio. The rest of the proof follows by

identical arguments to Lemma E.1.
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Proof of Lemma E.3. Each of the interior '
j,k

and  
j,k

have support [2�j(�N+1+k), 2�j(N+k)], therefore

'
j,k

(x) 6= 0 (respectively  
j,k

(x) 6= 0) for less than or equal to 2N interior '
j,k

(resp.  
j,k

) and for any x 2 [0, 1].

Further, there are only N left and right '
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and  
j,k

. Therefore, '
j,k

(x) 6= 0 (respectively  
j,k

(x) 6= 0) for less

than or equal to 3N of the '
j,k

(resp.  
j,k

) at resolution level j for each x 2 [0, 1]. By construction of the basis,

each of ', 'l
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for k = 0, . . . , N � 1 and 'r

j,�k

,  r

j,�k

for k = 1, . . . , N are continuous and therefore attain

a finite maximum on [0, 1]. Therefore, each of the '
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and  
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The result then follows because J = 2L+1. For part (b), because f
X

is uniformly bounded away from 0 and 1
and the wavelet basis is orthonormal for L2[0, 1], we have
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and so all eigenvalues of G
 

are uniformly (in J) bounded away from 0 and 1. Part (c) follows directly.

Proof of Lemma E.4. Lemma E.3 implies that each of the factor vectors in the tensor product at level j

has `1 norm of order O(2dj/2) uniformly for x = (x
1

, . . . , x
d

)0 2 [0, 1]d and in j. There are at most 2d such

tensor products at each resolution level. Therefore, ⇠
 ,J

= O(2dL/2) = O(
p
J) since J = O(2dL). Parts (b) and

(c) follow by the same arguments of the proof of Lemma E.3 since the tensor-product basis is orthonormal for

L2([0, 1]d).

G.9 Proofs for Appendix F

Proof of Lemma F.2. kA�1 � I
r

k
`

2 = kA�1(A� I
r

)k
`

2  kA�1k
`

2kA� I
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Proof of Lemma F.4. The first assertion is immediate by Theorem 3.3 of Stewart (1977) and definition of
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Proof of Lemma F.6. The result follows from Li, Li, and Cui (2013) (see also Stewart (1977)).

Proof of Lemma F.7. We prove the results for bSo; convergence of bGo
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b
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Chen and Christensen (2015). Note that

bSo � So =
nX

i=1

n�1G�1/2

b

{bK(W
i

) J(X
i

)0 � E[bK(W
i

) J(X
i

)0]}G�1/2

 

=:
nX

i=1

⌅o

i

39



where k⌅
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The convergence rate kbSo � Sok
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Proof of Lemma F.9. Let ebK(x) = G�1/2
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The result follows by Chebyshev’s inequality.

Proof of Lemma F.10. We begin by rewriting the target in terms of the orthonormalized matrices
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We first bound the term in braces. By the triangle inequality,
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Lemma F.7 provides that
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on A
n

. It follows by expression (76) and the fact that P(Ac
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by (79) and (80). It follows from equations (81) and (74) that:
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which, together with the condition J  K = O(J), proves part (a). Part (b) follows similarly.
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It follows by substituting (78), (79), and (83) into (82) that
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The remaining term on the right-hand side of (84) is the `2 norm of the di↵erence between the orthogonal

projection matrices associated with So and ( bGo
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)�1/2 bSo. Applying Lemma F.6, we obtain:
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on A
n,1

. Result (c) then follows by (79) and (84).
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