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G Supplementary Lemmas and Proofs

All the notation follow from the main text and the main online appendix. For a r X ¢ matrix A with r < ¢
and full row rank r we let A;” denote its left pseudoinverse, namely (A’A)~ A" where ' denotes transpose and ~

denotes generalized inverse. We let spmin(A) denote the minimum singular value of a rectangular matrix A.

Let sy = Smin(G;1/2SG;1/2). Throughout the proofs in the appendix we use the identity

W)@ = 0 @)(96,79) 7 s6,
_ 1/)J(QU)/G;UQ(G;UZSG;UQ)I_

which implies that

1?7 (@) (G 2 8) Nl < I (@) Gy 2l (G 2 S G2 lee
< Cuall(GyV28G e
< Cpasik (26)

by definition of ¢y, and the fact that ||A; [|sz < Smin(A)~' (see Lemma F.5).

G.1 Proofs for Appendix A and Section 3.1

Since the proofs of results in Section 3.1 built upon those for results in Appendix A, we shall present the proofs
for Appendix A first.

G.1.1 Proofs for Appendix A

Proof of Lemma A.1. First note that 7; > 0 for all J by compactness and injectivity of 7. Then:

SJK — inf HHKThHLZ(W) S inf HTh||L2(W) ZTJ_l
hE‘l’J1||hHL2(X):1 he‘l’vﬁ”hufﬂ(x):l



holds uniformly in J because I1j is a contraction, whence 7; < S}}(. To derive a lower bound on 7y, the triangle

inequality and Assumption 4(i) yield:

= inf |[|[IIxTh
SJK hel{ll}mﬂ KTh| 2w

v

inf ||[Th — S T —T)h
50 TRl = s [T = T)hl )
= (1—o(V)r;™.

Therefore, s 75 < (1 —o0(1))"'7;. O

It is clear that Lemma A.2 is implied by the following lemma.

Lemma G.1. Let Assumptions 1(iii) and 4(ii) hold. Then:

(1) (a) [[ho — mrhol[2(x) < [|ho — T sholl L2(x); and
(b) 75 x |T'(ho — 7TJh0)||L2(W) < const x ||hg — 7TJh0||L2(X).

(2) If Assumption 4(i) also holds, then: (a) ||Qrho — wrho| r2(x) < o(1) X ||ho — mrho||L2(x); and
() lho — WyhollL2(x) < [[ho — Qhol|L2(x)-

(3) If Assumption 4(iii’) also holds, then: ||Q ho — 7 rhollee < O(1) X ||ho — myho||L2(x)-

(4) Further, if Condition (24) also holds, then Assumption 4(iii) is satisfied.

Proof of Lemma G.1. In what follows, “const” denotes a generic positive constant that may be different

from line to line. Assumption 1(iii) guarantees 7; and 7 ho are well defined. For part (1.a), we have:

lho —Wshollz2(xy < [lho — mrhollL2(x)
< |lho = Hyhollp2(x) + 1TLyho — 7 rhol| L2(x)
< |lho = ILshollL2(x) + 71T (msho — ILsho)l L2(w)
= |lho = Wrhollr2(x) + 75| T (ho — Lrho)llL2(w)
< lho = ThollL2(x) + 72T (ho — TLrho) L2 (w)

(1 + CODSt) X Hho — HJhQHLQ(X)

where the third line is by definition of 7, the fourth is because m;h = h for all h € U, the final line is by
Assumption 4(ii), and the fifth is because 7; is a weak contraction under the norm h — ||Th| 2(w). More

precisely by the definition of 7 ;hg we have:
(Th,T(ho —mho))w =0 (27)
for all h € W, where (-, )y denotes the L?(W) inner product. With h = 7 hg — I17hg € ¥ this implies
(T(myho — M shg), T(ho — mrho))w = 0.

(T'(myho —lsho), T(ho — ILyho))w = (T(msho — sho), T(msho — ILsho))w .

Thus ||T(mrho — ho)l| 2wy < 1T (ho — ILrho)| 2 (w)-



For part (1.b):

T (ho = msho)lzawy < TlIT(ho = Tsho) 2 qw)
< const X ||hg — ILsho| £2(x)
< const X ||hg — mrhol|L2(x)

where the first and final inequalities are by definition of 7mjhg and II;hy and the second inequality is by
Assumption 4(ii).

For part (2.a), Lemma A.1 guarantees that @ jhg is well defined and that s}}( < 27y for all J sufficiently large.
By definition of @ ;hy we have:
(TTh,T(ho — Q ho))w =0 (28)

for all h € ¥, where we use the fact that (Ilx f, ¢)w = (Ilx f,Hxg)w holds for any f,g € L?(W) since Ik is
a projection). Substituting h = Qjho — msho € U into the two equations (27) and (28) yields:

(T = Ok T)(Qsho — msho), T'(ho — msho))w + (kT (Qrho — 7sho), T(ho — msho))w = 0 (29)
(OrT(Qrho — msho), T(ho — Qiho))w = 0 (30)
By subtracting (30) from (29) we obtain
(T =gT)(Qrho — wrho), T(ho — msho))w + [Nk T(Qrho — wrho)| T2y = 0
We have therefore proved
IMT(@uho — moho)lEagy = (T = TT)(Qusho — msho), T(ho — msho )| (31)
It follows from (31), the Cauchy-Schwarz inequality, and Assumption 4(i) that:
s7xllQrho = wrholli2xy < IMkT(Qrho — mrho)llZ2 ()
< (T - OgT)(Qrho — 7rho)ll L2ow) I T (ho — 7rho) |l 2 (w) (32)
< o(ryHIQsho = mholl L2 (x) I T (ho — m.rho) || 2w - (33)

It follows by (33) and the relation s < 27, for all J large that:

IN

1Qrho — mrhollL2(x) o(1) x 77| T(ho — mrho)ll L2 (w)

IN

o(1) x const x [[hg — 7 rhol|12(x)

where the final line is by part (1.b). For part (2.b), by definition of @, IT; and results in part (1.a) and part

(2.a), we have:

lho = shollz2(xy < [lho — QrhollL2(x)
< lho = mrhollz2(x) + Imrho — Qrholl L2 (x)
< ||h0—7TJh0“L2(X)—|—O(1) X HhO_ﬂ'JhOHLQ(X)

(14 const) x [[hg — IshollL2(x)-

This proves part (2.b).



For part (3), it follows from (32) and Assumption 4(iii’) that
S?IKHQJhO — 7TJh0||L2(X) S const X (Cw)JTJ)_lllT(hO — 7TJh0)HL2(W) .
and hence

1Quho — mrhollL2x)y < comst x (Y x 75T (ho — 7rho) | L2 (w)

< (JlJ x const X ||hg — 7 rhollL2(x) (34)
by Part (1.b) and the fact that 8}11( < 27y for all J large. Therefore,

Qrho — miholloe < CullQuho — mrhollL2(x)

const X [|ho — myho||L2(x)

A

where the last inequality is due to (34).

For part (4), by the triangle inequality, the results in part (1.a) and (3) and Condition (24) we have:

1Qs(ho = sho)llec < [|Qrho — Trholles + [[mrho — ILrholoo
< const X “hO_HJh0|‘L2(X)+||h0_HJh0||OO
< 0(1) X HhO_HJhOHoo
which completes the proof. O

Note that we may write I ho(z) = 7 (z)c; for some c; in R7. We use this notation hereafter.

Proof of Lemma A.3. We first prove Result (1). We begin by writing

(x) —Tyho(z) = Qy(ho —yho)(z)
+7 (2)(Gy V2 8) Gy A (B (Hy — Weg) /n — BB (W) (ho(X:) — TLyho(X:)))}
+ (@) {(G, 28); G, PGy (G P8) Y6y VB! (Hy — Weg) fn
= T1+T+1T3

where Q; : L?(X) — W is the sieve 2SLS projection operator given by
Qrh(z) = o7 (2)'[S'Gy 1 S| THS Gy BIbS (Wi)h(X,)].

Note that Q h = h for all h € ¥ ;.
Control of ||T1]|ec: [|T1]lce = O(1) X ||ho — I shgl|co by Assumption 4(iii).

Control of ||T3]|eo: Using equation (26), the Cauchy-Schwarz inequality, and Lemma F.9, we obtain:

[Telloe < sup |l (2)(Gy /)7 el Gy /(B (Ho — Wes) /m — EIX (W) (ha(X:) = TLsho (X))

IN

CoasTillGy P (B (Ho — Wey) fn — BT (W) (ho(X;) — TLrho(X:)))) |2
= Cpsyr X Op(V/K/n) x |ho — skl -



It then follows by the relations s = 7; (Lemma A.1) and (p 7 > v/J < VK and Assumption 3(ii) that:

1T2]loo = Op(75Cy,7v/ /1) X [[ho — T 1hollco = Op(1) X [[ho — TLrho|| oo -

Control of ||T5]|eo: Similar to T5 in the proof of Lemma 3.1, we may use Lemmas F.10(b) and A.1 to obtain:

-~

oG (G V28) Gy PGy — (G P9 Y| Gy VB (Hy — Weg) /nlee
Cpor X Op(r3¢\/(l0g T) /) x |Gy /> B (Ho — We ) /nlez - (35)

IN

Then by Lemma F.9 and the triangle inequality, we have:

G, 2B (Hy — Wey)/nlle < Op(v/K/n) X |lho — Wahollso + Mk T (ho — Lrho) || 2w
< Op(VEK/n) x ||hog = I jho|lso + | T'(ho — ILyho) | 2wy - (36)

Substituting (36) into (35) and using Assumptions 3(ii) and 4(ii):

A

T3]0 < Op(15¢%/v/n) X (Op(TJv K(log J)/n) x [[ho — ILyho|lsc + 75 |T'(ho — HJhO)HL2(W))
= 0p(1) x (0p(1) x [[ho = M hole + Op(1) X [lho = Trho|l L2(x))
< 0p(1) X [|ho = Tholloo
where the final line is by the relation between the L?(X) and sup norms.

Result (2) then follows because

Ih = hollee < Il7 = TLrholloo + |[TLrho — hollss
< (14 0p(1))[[Mrho — hollo
< A+ 0,(M))A+ [Wylloc)lho = ho,slloo -
where the second inequality is by Result (1) and the final line is by Lebesgue’s lemma. O
G.1.2 Proofs for Section 3.1
Proof of Lemma 3.1. Let u = (uq,...,uy)". Let M, be a sequence of positive constants diverging to +oo,
and decompose u; = u1,; + u2; Where
ur; = willui| < My} — Elui{|ug| < My, }[Wi]
ug = wiflui| > My} — Elui{[us| > My} W]
uy = (U1,1, cee aul,n)/
(5 = (’U,Q,l,...,’UJQ,n)/.

For Result (1), recall that &, ; = sup, ||¢»7 (z)||,. By Holder’s inequality we have

I = hlloo = sup [0 (2)' (€= )] < &p.s = D)= -



To derive the sup-norm convergence rate of the standard deviation term h— ?L, it suffices to bound the £*°
norm of the J x 1 random vector (¢ — ¢). Although this appears like a crude bound, £y, grows slowly in J for
certain sieves whose basis functions have local support. For such bases the above bound, in conjunction with

the following result

&= @llex = Oy (74 /Qog 1)/ (ne)) (37)
leads to a tight bound on the convergence rate of Hﬁ — D|oe-

To prove (37), we begin by writing

c—¢ = (G, '*8); G, ?Bu/n
= (G,8)Gy B u/n (G, P8) G = (G P8) Gy Bl
= T1+T2.

We will show that ||T1]/¢~ = O, (8;11{ (log J)/(nej)) and || Tz||¢e = O, (s;}( (log J)/(nej)).

Control of ||T1]|¢=. Note that T3 = (G;l/zs)l—G 1/23’u1/n + (G 1/25)1 12y 2/n.

Let (a); denote the jth element of a vector a. By the definition of || - ||¢~ and the union bound,

P (G, *9)r G Bl > 1) < UI b 29); Gy B )| > t

IN

J
Z]P’ ( Y2862 By fn) | > t)

> t) (38)

E QJ,JK U1 z/n
Z

where ¢; jxk(W;) = ((G;l/QS)I_G 1/2bK( W;));. The summands may be bounded by noting that

(W)l < Gy 29T el Gy 25 (W) e
_ HG;W[ SRS SG G S G e Gy PR (W) e
< G, PllellG, 28 Gy SG PG RS G el Gy S (W) e
Co, K0
- , 39
T syrves (39)
uniformly in ¢ and j. Therefore,
2M, Gy,
ok (Wi)ur i /n| < ———— 40
|gj.75 (Wi)ur i /nl P (40)

uniformly in ¢ and j.

Let (A);| denote the jth row of the matrix A and let (A);; denote its jth diagonal element. The second moments



of the summands may be bounded by observing that

Elg;x(Wi)?] = EI(G,/28));G, 205 (Wi))?)
= Bl(G, 28)7);Gy PR (Wb (W) Gy R (G 28 )) ]
(G, 28) (G4 28) )i
((S'Gy18)™Y);5
IS’ Gbls> e
||G;l/z[G;UZS'G;ISG;l/Q]_lG;/Q||p
1

2
SJKGJ

IAIE

(41)

and so )
o

Bl(4j.1x (Wi)uri/n)?] < (42)

2.2
n?ss ey

by Assumption 2(i) and the law of iterated expectations. Bernstein’s inequality and expressions (38), (40) and
(42) yield

P (H(G;I/QS);G—l/QB’ul/n||eoo > Csyc\/(log J)/(neJ))
C%(log J)/(ns%xer) }
c1/(nsTges) + c2CMuGpr\/log T/ (3257 ce)
C2(10g 1)/ (nsce)
1/(ns3gers)ler + caC MGy i/ (log J) /n] }

< 2exp {logJ -

= 2exp {log J— (43)

for finite positive constants ¢; and co. Then (43) is o(1) for all large C provided M,,( x+/(log J)/n = o(1).

By the triangle and Markov inequalities and (39), we have

—1/2 —1/2 ! _
<||( S), G Blug /n]| e >t) = <1r<nja<xJ E g0 (Wi)uai/n >t>
Ch, K
< E t
- (sy{f fuzi/nl >
2Ch, i
—— Fl|u;|{|u;| > M,
o (] > M)
2
K2 | > M)
tsy+/egMy

which, by Assumption 2(ii), is o(1) when t = CSJK\/ log J)/(ney) provided ¢y x+/n/(log J) = O(M}+°).

Choosing M}*9 < ¢, cy/n/log J satisfies the condition (, x+/n/(log J) = O(M}+9) trivially, and satisfies the
condition M, ¢y k+/(log J)/n = o(1) provided (;2;5)/5 (log J)/n = o(1), which holds by Assumption 3(iii).



Control of || Ty ||¢=: Using the fact that || - |[g~ < || - ||z on R’ and Lemmas F.10(a) and F.8, we have:

(G, 28) G Y26y — (G Y28) 3Gy P Bl

||< 88, G - (G S el Bl
(sJKcm ) % Op(VE )

Oy (574 /(o 1)/ (nes)) Oy (s7kCV/K )

= O (s;}( (logJ)/(neJ))

T2 ¢=

AN

where the last equality follows from Assumption 3(ii) and the facts that ¢ > v/K and J < K.
For Result (2), we begin by writing
h(z)—hz) = ¢’ ()(G,"*8); G, ?Bu/n
= @) (G, 79 G B/ 0 () (G P8 G (G ES) Gy B
=: Tl + T2 .

We will show that || T1]|cc = Op (T,]Cd,“] (logn)/n) and || Tz|lec = Op (TJCMJ (logn)/n).

Control of ||T1]|co. Note that Ty = z/JJ(m)’(Ggl/QS)fG;l/ZB'ul/n + w‘](x)’(G;I/ZS)ngl/QB’uQ/n.

Let X, C X be a grid of finitely many points such that for each x € X there exits a Z,(z) € A}, such that
[z — Zp(@)]| S (CpsJ~@T2) /" where w,w’ are as in Assumption 3(i). By compactness and convexity of the

support X of X;, we may choose X, to have cardinality # (&, ) < n? for some 0 < 3 < oo. Therefore,

sup 107 () (G, 2 8); Gy ? Bluy /| oo

< max [0 (20) (G, *8); Gy P Blus /] + sup {47 () = 7 (@ (2)} (G, 8); Gy P Bua

T €Xp

< max [ (2,) (G 2 9); Gy P Buy fn| + Cud“Cy g ) s LGy By /| 2

Tp EXp
= max [¢/(2,) (G, Y29y =G P Bluy fn| + Cud“Cy g ") 7 % 0,(+/T/n)
= max W7 (€)' (G 28); Gy M2 Bluy | + 0p (57 G/ (log J) /n)

for some finite positive constant C,,, where the first inequality is by the triangle inequality, the second is by
Hélder continuity of the basis for ¥ ; and similar reasoning to that used in equation (26), the first equality is
by Lemma F.8 and the fact that J < K, and the final equality is because (log.J)~/? = o(1). For each z,, € &,

we may write

w‘](xn)'(Gb_l/QS)be_l/zB’ul/n = lE:gnﬂ-(:vn)ul’i, where
n

=1
gnilen) = 07 (2,) (G 28); Gy PR (W)

It follows from equation (26) and the Cauchy-Schwarz inequality that the bounds

|gn,i(zn)] < S}}(Cw,JCb,K
Elgni(z2)?] = 07 (2,) (G, 297 (G280 )0 (wn) < sypCEy



hold uniformly for z,, € X,,. Therefore, by Assumption 2(i) and iterated expectations, the bounds

gni(Tn)urs] < 2855 CpaCo e My,
Blgni(za)?ud;] < 727 (2,)(Gy V28 (G290 )0 () < TPs52C2

hold uniformly for z,, € &),. It follows by the union bound and Bernstein’s inequality that
P ( max |7 (z,) (G 28); Gy /? B'uy /n| > Cs7 k. Cp.sv/(log n)/n)

Tn€Xp
1 n
n E In,i(Tn)ua

i=1
CQCi’J(logn)/(nng) }
163 7/ (ns% g )[1 + (c2/e1)(C MG,/ (logn) /n]

IN

T €Xp

#(X,) max ]P’(

> Cs;}(@u (log n)/n)

< exp {6 logn — (44)

for finite positive constants ¢; and cg. Then (44) is o(1) for all large C provided M,y x+/(logn)/n = o(1).

By the triangle and Markov inequalities and equation (26), we have

P (I’ @)(Gy V28)7 Gy VP B s s > t) < P (s7hCua Gy V2B s/l > t)

< P <S}11(Cw,JCb,K >_luzi/n| > t)
=1
2
tsik
2
< O g 2 () > M, )
tS]KMn

which, by Assumption 2(ii), is o(1) when t = Cs;;Cyp,71/(logn)/n provided (, x/n/(logn) = O(M}+?).

Choosing M}*? < ¢, K\/W satisfies the condition (p, KW O(M}*?) trivially, and satisfies the
condition M,,(p x+/(logn)/n = o(1) prov1ded C(2+5 /8 (logn)/n = o(1), which holds by Assumption 3(iii). We
have therefore proved that ||T}|/eo = Op(s55Cp.71/(logn)/n). It follows by the relation 7; < 575 (Lemma A.1)
that [T [lec = Op(75Cp, s/ (logn)/n).

Control of ||Tz||co: Using the fact that ||kl < Gy, sl|h||L2(x) on ¥y and Lemmas F.10(b) and F.8 and the

relation 75 < 5;110 we have:
Dol < GuullGY(G,Y28) G Y26 = (G, 29) )6, P Blu/nl e
< Gl GG PG RG — (G PS) T ellGy P B/l e
G0y (T3¢ Tog 7)) x O (VE /)
Op (TJQ/J,J\/W) x O, (17¢\/K/n)
= 0y (1s¢us/Tog I)/n) x 0,(1)

where the last equality follows from Assumption 3(ii) and the fact that ¢ > v/J < VK. O



Proof of Theorem 3.1. We decompose Hﬁ — hol|co into three parts:
7 = holloe < I = Rllos + 17 = TLholloe + [TLrho — hollos

where |[h — hl|oo = Op(7s€4.51/(0g J)/(ne,)) by Lemma 3.1(1) and || — I holloe = Op(1) x |ILyhg — holls by
Lemma A.3. O

Proof of Corollary 3.1. For Result (1), note that Assumption 3(ii) is satisfied with ¢ = O(J/?) for ¥
and By being spline, or wavelet or cosine sieves. Next, by the lemmas in Appendix E, &y 7/v/€7 = O(J'/?)
for U being spline or wavelet sieves. Also, [|I1;]|o < 1 for ¥ being a spline sieve (Huang (2003)) or a tensor
product CDV wavelet sieve (Chen and Christensen (2015)). For hg € Bs(p, L) and ¥ being spline or wavelet

sieves, Lemma A.3 implies that
1h = holloe = Op(J77/9).

Note that Bernstein inequalities (or inverse estimates) from approximation theory imply that
10°hllo = O(T V)[R
for all h € ¥ (see Schumaker (2007) for splines and Cohen (2003) for wavelets on domains). Therefore,

18R — 8ol < |0%h — 8*(TLyho)|| oo + |0 (TLrho) — 8ol
< O(J1VD)|[h —TLrho|| oo + [|0%(ILrho) — 8% hol|s
< Op(J~@71eD/dy L 19%(TT ko) — 0% ho |

Let hy be any element of W ;. Since I h; = hy, we have:

10%(I1sho) — 0%holleo = [|0*(I1s(ho — hy)) + 0%y — 0%ho| o
< O(JIV 4|15 (ho — hy))llso + [0%hy — 8%ho |
< O(J1*1 %) x const x ||ho — hylles + [|0%hs — 0%ho]|os -

The above inequality holds uniformly in Ay € ¥ ;. Choosing h; such that ||hg — e = O(JP/?) and ||0%h s —
0%hgl|oe = O(J~P=12D/4) yields the desired result.

For Result (2), Theorem 3.1 implies that

7= holloe = Op(J P4 +151/(Jlog J) /n).

By similar arguments to the above, we have:

10%h — 8%hollso < [[0%h — 8%h|jos + |0%h — 0%ho || nc
< O(J1V)|[h — hl|og + [|0%R — 8% ho | oo
<0, (J‘o‘l/d (TJ (Jlog J)/n)) +[|0%h — 0%ho||
and the result follows by Result (1).

For Results (2.a) and (2.b), Assumption 3(ii)(iii) is satisfied if 7; x.J/y/n = O(1) and J?+9)/3(logn) /n = o(1).
This is satisfied given the stated conditions with the optimal choice of J for mildly ill-posed case and severely

10



ill-posed case respectively. O

G.2 Proofs for Section 3.2

Proof of Theorem 3.2. Consider the Gaussian reduced-form NPIR model with known operator 7"

Y; = Tho(W;) +u;

u|W;  ~ N(0,0*(W;)) (45)

for 1 <4 < n, where W; is continuously distributed over VW with density uniformly bounded away from 0 and oco.
As in Chen and Reiss (2011), Theorem 3.2 is proved by (i) noting that the risk (in sup-norm loss) for the NPIV
model is at least as large as the risk (in sup-norm loss) for the NPIR model, and (ii) calculating a lower bound
(in sup-norm loss) for the NPIR model. Theorem 3.2 therefore follows from a sup-norm analogue of Lemma 1 of
Chen and Reiss (2011) and Theorem G.1, which establishes a lower bound on minimax risk over Holder classes

under sup-norm loss for the NPIR model. O

Theorem G.1. Let Condition LB hold for the NPIR model (45) with a random sample {(W;,Y;)}_,. Then
for any 0 < |a| < p:

liminfinf sup Py (Hﬁn — 0%h]|0e > ¢(n/log n)*(p*‘o‘l)/@(p“)*d)) >cd >0
N0 Gn heBoo (p,L)

in the mildly ill-posed case, and

timinfinf sup By, (|[Gn — 0hl > cllogn) PTID/) > ¢ > 0
n=0 Gn h€Bo(p,L)

in the severely ill-posed case, where infg, denotes the infimum over all estimators of 0“h based on the sample

of size n, SUPpep__ (p.r) P denotes the sup over h € Boo(p, L) and distributions (W, u;) which satisfy Condition

LB with v fized, and the finite positive constants c,c’ depend only on p, L,d,c and oy.

Proof of Theorem G.1. We establish the lower bound by applying Theorem 2.5 of Tsybakov (2009) (see
Theorem G.2 below). We first explain the scalar (d = 1) case in detail. Let {¢; x,%;r}; 1 be a wavelet basis of
regularity v > p for L?([0,1]) as described in Appendix E. Recall that this basis is generated by a Daubechies
pair (p, %) where ¢ has support [-N + 1, N]. We will define a family of submodels in which we perturb hq
by elements of the wavelet space W}, where we choose j deterministically with n. For given j, recall that the

wavelet space W} consists of 27 functions {j .k Yo<k<ai—1, such that {1; 1 },<p<2i_n_1 are interior wavelets for
which 1; 5 () = 29/24(27(-) — k).

By construction, the support of each interior wavelet is an interval of length 277 (2r—1). Thus for all j sufficiently
large (hence the lim inf in our statement of the Lemma) we may choose a set M C {r,...,2/ — N —1} of interior
wavelets with #(M) 2> 27 such that support(t;,m,) N support(¢; /) = 0 for all m,m’ € M with m # m’. Note

also that by construction we have #(M) < 27 (since there are 2/ — 2N interior wavelets).

Recall the norms || - [|z, _ defined in Appendix E. Let ho € Boo(p, L) be such that ||hol/pz, < L/2, and for
each m € M let
hm = ho + 002_j(p+1/2)'(/}j,m

11



where ¢g is a positive constant to be defined subsequently. Noting that

o2 7P e . S 2 TPl s,
<

Co

it follows by the triangle inequality that ||h,[|pz, . < L uniformly in m for all sufficiently small co. By Condition
LB, let W; be distributed such that X; has uniform marginal distribution on [0, 1]. For m € {0} UM let P,, be
the joint distribution of {(W;,Y;)}7, with Y; = Th,,(W;) 4+ u; for the Gaussian NPIR model (45).

For any m € M

10%ho — 0B llos = 002_j(p+1/2)||8a¢j,m||oo
— COQ—j(p—Ia\)||¢(\ocl)||oo

where (1) denotes the |ath derivative of 1. Moreover, for any m,m’ € M with m # m/

[0%hm — 0% ||oo = COQ?j(erl/Q)”aawj,m = 0%Yjm oo
— QCOQ—j(p—IaI)Hw(\aI)||OO

by virtue of the disjoint support of {t; m }menr-

By Condition LB(iii),
1T (Wil 2wy S v(27) (W ¥jm) % = v(27)?

(because co2~7 P+ e, € Ho(p, L) for sufficiently small ¢y) where v(27) = 277 in the mildly ill-posed case
and v(27) = exp(—27°) in the severely ill-posed case. The KL distance K (P,,, Py) is

1<, T4 (Wi))?

K (Pm7PO) < *2 ZE 1(002 i 1/2))2E |:( jz(I(Vi) )) :|
- , E [(T4.m(W;))?

< ;i 1(602_J(P+1/2))2 [( 1/}1’2( ) ]

< n(COij(p+1/2))2y(2j)2.
In the mildly ill-posed case (v(27) = 277¢) we choose 2/ < (n/(logn))'/ @+ This yields:

K(Pp, Py)
log(#(M))

cZlogn  uniformly in m

VA

logn + loglogn.
since #(M) < 27.
In the severely ill-posed case (v(27) = exp(—127%)) we choose 27 = (c; logn)/s with ¢; > 1. This yields:

K (P, Py)
log(#(M))

<p~(@=Y  yniformly in m
2

loglogn .

In both the mildly and severely ill-posed cases, we may choose ¢ sufficiently small that both ||h,[lgr = < L
and K(P,,, Py) < & log(#(M)) hold uniformly in m for all n sufficiently large. All conditions of Theorem 2.5 of
Tsybakov (2009) are satisfied and hence we obtain the lower bound result.

12



In the multivariate case (d > 1) we let %kg(aﬁ) denote an orthonormal tensor-product wavelet for L2([0,1]¢)
at resolution level j (see Appendix E). We construct a family of submodels analogously to the univariate case,
setting h,, = ho + 002_j(p+d/2)1zj’m,g where Jj’m,g is now the tensor product of d interior univariate wavelets
at resolution level j with G = (wy)? and where # (M) < 2/¢. By condition LB we obtain

0% — 0% hm || 00 = co2 I P=lel)
for each m,m’ € {0} UM with m # m/, and
K(Pn,Py) < n(cg2?PHd/2y2y(27)?

for each m € M, where v(27) = 277¢ in the mildly ill-posed case and v(27) =< exp(—27¢) in the severely ill-posed
case. We choose 2/ < (n/logn)t/(P+<)+d) in the mildly ill-posed case and 27 = (c;logn)'/< in the severely
ill-posed case. The result follows as in the univariate case. O

The following theorem is a special case of Theorem 2.5 on p. 99 of Tsybakov (2009) which we use to prove
the minimax lower bounds in sup- and L?-norm loss for hg and its derivatives. We state the result here for

convenience.

Theorem G.2 (Tsybakov (2009)). Assume that #(M) > 2 and suppose that (H,|| - ||») contains elements
{hm :m € {0} UM} such that:

(i) [|0%hy, — O%hpns ||l > 28 > 0 for each m,m’ € M U{0} with m # m/;

(i) Pp, < Py for each m € M and

1

meM

with 0 < a < % and where P, denotes the distribution of the data when h = hy, for each m € {0} U M. Then:

. ~_ Ao ﬂ — — 273
inf sup P (g — 0"l > 5) > W(l 2 1og<#<M>>>>0'

G.3 Proofs for Section 3.3

Proof of Lemma 3.2. We first prove Result (1). Let Py_1 ., = clsp{¢o1,z,. .., Pos-1,.} and let Pj‘_LZ denote
its orthogonal complement in L?(X1|Z = z). Observe that by definition of the singular values, for each z we

have:
2 o *
N sup HTZhZ”LZ(Wl\Z:z) - L sSup <(Tz Tz )hzvh2>X1|Z:z
he€Py_q :llhzllp2 (xy 1 2=2)=1 hz€Py_y :llhzllp2(xy 1 z=2)=1

=u3.. (46)

13



Thenlet P | = {h(z1,2) € L*(X) : h(-,2) € Pj‘_LZ for each z}. Note that ¢o; € {h € Py, : |h(-, 2)||12(x,|2=2) =
1Vz} for each j > J. Then:

L, . 2
T; " = inf ||Th||
N e L

< inf | Th|?
— L2(W)
heql]mpj_—l:”hHL2(X1\Z:z):l vz

2
< . sup ||Th||L2(W)
he® NPy _1:lbllL2(x, 1 2=2)=1 V7

< sup ||Th||%2(vv) . (47)

hePy_ :llhll L2 (x, 1 z=z)=1 2

Let Fz denote the distribution of Z. For any h € Pj;l let h,(x1) = h(x1, 2z) and observe that h, € le1,z- By
iterated expectations and (46), for any h € P# | with lhzlz2(x,)2z=2) = 1 for each z, we have:

TR ) = / IE[h(X1i, 2)|Whi, Zi = 2|72 w222y AF2(2)
- / IThe |3 v 2=s) AF 2 (2)
< [ 18 ey AP
= /u?;z dFz(z) = E[M%Z] (48)

It follows by substituting (48) into (47) that 7; > E[M?in]_l/2~

To prove Result (2), note that any h € U; with h # 0 can be written as ijl a;¢o; for constants a; = a;(h)

where
2

J
1Bl Z2x) = E | E Zaj¢0j<X1iaZi) Zi| | = Za?

j=1 j=1

since E[¢o;,(X;)bok,-(X;)|Z; = 2] = 0, where §;;, denotes the Kronecker delta. Moreover:

[ r 2
J
TP 20y = B | | B | D ajéo;(Xui, Zi)| Whi, Zi
j=1
P 2
J
=E||E Zflj%j,zi(Xu) Whi, Z;
_‘j:1
r 2
J
=L Zaj/ﬁj,zi%j,zi(Wu)
=
r 2
J J
=L |E Zajﬂj,Ziqblj,Zi (Wli> Zi = ZaiE [Mizl] Z ||hH%2(X)E[M3,ZI]
Jj=1 j=1

14



since E[¢1; (W) b1k,-(W1i)|Z; = 2] = 0. Therefore,

Tj = Sup ||hHL2(X) < !
new, TRl 2wy = Elu3 4

]1/2

k3

as required.

G.4 Proofs for Appendix D and Section 4

Since the proofs for uniform inference theories (in Section 4) built upon that for the pointwise normality Theorem

D.1 (in Appendix D), we shall present the proof of Theorem D.1 first.

G.4.1 Proofs for Appendix D

Proof of Theorem D.1. We first prove Result (1). By Assumption 5’(a) or 5’(b)(i)(ii) we have:
el ) = ) _ DI (o)l — ]

() ol o

Define
(Df(ho)["))[S'Gy 18] 1S Gy 0" (W)

on(f)
where wu,,(f) = vn(f)/on(f) is the scaled sieve 2SLS Riesz representer. Note that E[(Z,(W;)u;)?] = 1. Then

= Mg Tun(f) (W)

Df(ho)lh~h] _ 1§ N
o v v PO L

L (DF )W) (8'Gy 975Gy — (5'Gy18) 715Gy (B'u/v/n)
on(f)
= T'+1T5.

We first show T —4 N(0, 1) by the Lindeberg-Feller theorem. To verify the Lindeberg condition, note that

H(Df(ho)W‘]])'(S’G;lg)flS/Gb—yzH

’Gb_l/QbK(Wi)

1Za (W) > L < o)
(inf, E[u?|[W; = w])/2 | (Df (ho) 0] (5'G; 19)-18'G, |
by the Cauchy-Schwarz inequality and Assumption 2(iii). Therefore,
Blu; Zy(Wi)*{| Za(Wi)us| > nv/n}] < sup E[ui{|ui| Z n(vn/GE))} W =w] = o(1)

by Assumption 2(iv’) and the condition on J. Therefore, Ty —4 N(0, 1).

15



For T5, observe that

T = ‘(Df(h(’)w (G, 28)0 G, 1 2Gy* = (G 28)0 )Gy 2 Bru/ /)

Un(f)
_ ‘{(Df(hoW])'(Gb”an] Gy PS{(G,P8) Gy PGy — (G P91 (Gy B/ )
B Un(f)
| sl @ 28y | |62 50@, 28 6, e - (6 )y |6y By v

(inf,, E[uZ|W; = w])1/? H(Df(ho)[i/f] G_1/2 H

IN

o} HG—I/QS{(é—1/2§)_éb—1/2Gi/2 ( —1/2 }H HG—l/QB,u/\/»H

o(575C\/ (Jlog J) /n)

where the first inequality is by the Cauchy-Schwarz inequality, the second is by Assumption 2(iii), and the final

line is by Lemmas F.10(c) and F.8. The result follows by the equivalence 7; < s;}< (see Lemma A.1) and the
condition 7;¢+/(Jlogn)/n = o(1)

Result (2) follows directly from Result (1) and Lemma G.2. O
Lemma G.2. Let Assumptions 1(iii), 2(i)—(%i), 3(iii) and 4(i) hold, 7;¢/(logn)/n = o(1), and Assumption
5°(b)(iii) hold (with, = 0 if f(-) is lincar). Let [h—holloo = Op(dn,n) = 0p(1), and Sy, = [¢F <2+‘”/5 (log &) /n)*/ "4

T7Cy/(log J)/n + 6pn. Then:

on(f) /
— 1| = = 1).
Un(f) ‘ OP((SV,TL + nn) OP( )
Proof of Lemma G.2. First write
() | _ (%QO% - 1) A Vs
on(f)? on(f)? on(f)?
(Y — )2 (% +7)\ | Al@° — Q%)
= = TN +1T
( on(f) T L
where
00 =a, %G, = Gy?CYS[S'G S D f ()]
00 = ;200 = Gy 2S[S'GL ST D f(ho) 1Y)
and observe that 7/,Q°y,, = o,,(f)? and 7, 1107, = an(f)?.
Control of T}: We first show that
B =2l — 0, g o 17+ 1) = (1), (19)
To simplify notation, let R
D (ho)[4”] 5 _ Df()[Y’]
d=—"—""""— and 9= —""""—
on(f) on(f)

a1/%g

and note that ||0'(G, '°S); |l2 = sn(f)/on(f) < 1 under Assumptions 2(i)(iii) and that d=0if f() is linear.
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Then we have:

”7”02(}’;”2 10/(G, M28), Gy PGy — /(G RS) e
<10(G, 29 e |Gy RS (G, 28 G VRGP = (G 2S) e + 18 = )Gy P e
= 0,(0) % (s og 7)) + L=l e
= 0,(1) x O(575¢\/(og T)/n) + Op(n))

where the third line is Lemma F.10(c) and the final line is by Assumption 5’(b)(iii). Therefore, (49) holds by
the equivalence s = 7; (Lemma A.1) and the condition 7,¢\/(logn)/n = o(1)

Finally, since all eigenvalues of ° are bounded between ¢? and @2 under Assumption 2(i)(iii), it follows from
(49) and Cauchy-Schwarz that |T1| = o,(1).

Control of T5: Equation (49) implies that |7,/ (f) = Op(1). Therefore, |T5| < O,(1) x ||§0 — Q%2 = 0p(1)
by Lemma G.3. O

Lemma G.3. Let Assumptions 2(i)(i) hold, let ¢y x+/(log K)/n = o(1), and let WAL — holloo = Op(8p,n) with
Sh.n = 0(1). Then:

0o o /(1496

107 = e = 0, (577 /Tog K) )+ 810 )

Proof of Lemma G.3. By the triangle inequality:

10° = Q2 <

_ 1 _
G, (n Zu?bﬂmx)bK(Wi)’) G,

i=1

02

”2( i i —u)b (W»bK(W»') G,

G, ? (;Z i — ug) 205 (Wy)bE (W) ) G, '\”?

02

2

< O\ Mog K) ) 1+ [l — holloe x Op(1) + [[h — hol12 x Op(1)

where the first term may easily be deduced from the proof of Lemma 3.1 of Chen and Christensen (2015),
the second then follows because 2u;(; — u;) < (1 + u2)|[h — ho|los, and the third follows similarly because
Hég”p = Op(1) by Lemma F.7. O

G.4.2 Proofs for Section 4

Proof of Lemma 4.1. Recall that

1qr 1/ n
Z,(1) = R0 575G, 2(;%205”26K(Wi)m>,

Jn(ft)
(Dfi(ho)[7])[S'G, ' S) 18 G, M?

Znlt) = on ()

2, where 2, ~ N(0,9°) with Q° = G, /20, V2.
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Step 1: Uniform Bahadur representation. By Assumption 5(a) or (b)(i)(ii), we have

sup \/ﬁift( ) = fillho) —Zn(t)] < sup \/H—th(ho)[h_ /] — Zin ()| + Op(1) X sup zn(ft)
teT ( ) teT Un(ft) teT Jn(ft)
on(fe) D fi(ho)[h — 1]
s A ERr R e 2 N
=: T1 + T2 + T3 .
Control of T7: As in the proof of Theorem D.1,
T sup | PRI (G 8) GG — (G129 )Gy B )

teT Un(ft)
| (R (G916, PG, P 8) Gy PG — (G S HG, B i)

teT Un(ft)
_N@reowyG s | oy 2s1@ 296 ey - 6 s |6 Bt v
< sup

teT (inf,, E[uz|W = w)) 1/2 H Df,(ho)[”]) (G —1/25)l H

IN

—_1HG 1/25{( 1/25)1 be1/2G;/2 ( 1/2 }H HG UQB/u/\fH

= p T!]C\/m) = OP(T”)

where the first inequality is by the Cauchy-Schwarz inequality, the second is by Assumption 2(iii), and the final
line is by Lemmas F.10(c) and F.8 and the equivalence 7; < s (see Lemma A.1), and the last o0,(r,) is by
Assumption 6(ii.2).

Control of Ty: Lemma G.4 below shows that

on(ft)
Un(ft)

from which it follows that To = Op(n,) x Op(1) = Op(ny).

sup
teT

40A%m+mg%u>

Control of T5: By Lemma G.4 below and the bound for 77, we have:

D fi(ho)[h — 1]
ATy

= Op((st + 77;) X [SUP Izn(t)l + Op(rn)]
teT

T3 = Op(dvin +11p,) X sUp
teT

= Op((svm + 7741) X [Op(rn> + fu$ |Zn(t)‘ + Op(rn)]
€

= 0,(0v.p + 1) X [op(rn) + Op(cn)]

where the second-last line is by display (54) step 2 below and the final line is by Lemma G.5 below. Therefore
we have proved:

sup |V Lt Ilto) _ 5 )| — 0, (ry¢/(TTogT) /) + Oplt1a) + OplBm + 1) X [09(ra) + Oplen)]

= 0p(7n) (50)
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where the final line is by Assumption 6(ii.2).

Step 2: Approximating ZL(t) by a Gaussian process Z,(t). We use Yurinskii’s coupling (Pollard, 2002,
Theorem 10, p. 244) to show that there exists a sequence of N(0,2°) random vectors Z,, such that

n

_ _ K J
> Bl 2y A (W) € w2 BN, v = S~ o (S
i=1

= 0p(rn). (51)
62

1 n 12,k
— Z Gb b (Wi)ui — Zn
Vi

By Assumption 2(iv) we have

Existence of Z,, follows under the condition (Assumption 6(ii.1))

Co,xJ? _
r3v/n

The process Z,(t) is a centered Gaussian process with the covariance function

o(1).

(Dfry (ho)[”])'[S'Gy " S] 1 8'Gy 1 QG ' S[S'Gy S| D f, (ho) 1]

EIZ, (t)Z.. ()] = . 52
[ ( 1) ( 2)] Un(ftl)an(ftz) ( )
Now observe that 1/2
D JIN T —1 —1Qr—
qup || LB [S'G 811Gy R sl (53)
T on(ft) o €T an(ft)
by Assumption 2(i)(iii). Therefore,
sup |Z,(t) — Zn(t)‘ = 0p(Tn) (54)
teT
by equations (51) and (53) and Cauchy-Schwarz. -

Lemma G.4. Let Assumptions 1(ii), 2(i)-(iii), 3(ii) (i) and 4 (i) hold, T;¢/(logn)/n = o(1), and Assumption
5(b)(iit) hold (with n), = 0 if fi(-) is linear). Let ||E — holloe = Op(On,n) with O n = o(1). Then:

an(ft) ‘ ’
sup | = — 1| = Op(dv,n + 1) = 0p(1).
teT | on(ft) p( v ) p( )
Proof of Lemma G.4. The proof follows by identical arguments to the proof of Lemma G.2. O

Proof of Theorem 4.1. Recall that

(Dfi()[w")[S'G; ' 8] 8'G, !

Z:(t) = 507 (\/Iﬁ ; bK(Wi)ﬂiwi> foreacht € T .

Step 1: Approximating Z:(t) by a Gaussian process i;ﬁ Each of the terms n_l/ZG;I/QbK(Wi)ﬂiwi is
centered under P* because E[w;|Z"] =0 for i = 1,...,n. Moreover,
> El(n726 P (W) (726 P (W) 27 =

i=1
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where Gb_l/zﬁGb_l/2 = ?207 and
n n

SB[ 26, P (Wt 3127 < n 72 BIIGy VA E (W) |3 )
i=1 i=1

because E||w;|3|Z"] < co uniformly in i, and where

n
_ K
w2y BGy Y W fa] $ A

holds wpal (by Markov’s inequality using |u;|> < |u;|® + ||E— ho||2, and Assumption 2(iv)). A second application

of Yurinskii’s coupling conditional on the data Z™ then yields existence of a sequence of N (0, (AZO) random vectors
Z* such that

Zy(t) —

= 0p+(Tn)
f2

1 = —1/2, 5 .
— Y G, Wi - 2,
\/ﬁizl

wpal. Therefore:

(DA [5G, 518G
/U\n(ft) n

sup
teT

= 0p= () (55)

wpal. Now observe that we can define a centered Gaussian process Z:‘L under P* by

(Dfi(ho)[7))[8'G; 1 S) 18 Gy

0\1/2/0\—1/2 z*
o 7)) Qo) Q)= 2,

Zx:(t) =

which has the same covariance function as Z, (see equation (52)) whenever {)° is invertible (which it is wpal).

Therefore, by Lemma G.6 below we have:

(Df(W[')[S'G, 818G,

() Z, = Ly ()| = 0p+(rn) (56)

sup
teT

wpal. It follows from equations (55) and (56) and Assumption 6(ii) that

sup | Zy,(t) — zZ(t) = 0p(Tn) +0pe(tn) = 0pe(rn) (57)

teT

wpal.

Step 2: Consistency. By Lemma 4.1 and display (54), we have:

Vi fi(h) = fi(ho))
5l Zn(®)

sup
teT

= 0p(Tn) + 0p(1n) = 0p(1) -

Therefore, we may choose a sequence of positive constants €, with €, = o(1) such that

Va(fi(h) = fi(ho))
8n(flt)

sup —Zy(t)| < €ntn (58)

teT

holds wpal. By an anti-concentration inequality (Chernozhukov, Chetverikov, and Kato, 2014, Theorem 2.1)
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and Lemma G.5 below, we have:

sup P (sup |Z,(t) — 8| < enrn> S enrnE[sup |Z,(t)|] S enrnen = o(1)
seR  \teT teT

due to rnc, $1 (Assumption 6(ii.1)). This, together with (58), yields:

P (Sup < s) -P (sup |Z, ()] < s>
teT teT

Moreover, by (57) we may choose a sequence of positive constants €, with €/, = o(1) such that

Va(fi(h) = fi(ho))
8n(ft>

sup =o(1). (59)

seR

sup
teT

Zi(t) ~ (1) < urn
holds wpal. Similar arguments then yield:

supP* (sup Zi() — sl < ) < e, = o(l)
sER teT

wpal. This, together with equation (57), yields:

sup
seR

P (sup iz (0] < s) - 7 (sup 23 (0] < )‘ —0,(1). (60)

teT

The result is immediate from equations (59) and (60) and the fact that

P <sup |Z,(t)] < s> =P <sup |Zfl(t)| < 5) wpal in P
teT teT

holds uniformly in s. O
Lemma G.5. Let Assumption 6(i) hold. Then: E[sup,;et|Zy(t)|] S ¢n and sup,cq |Zn(t)| = Op(cn).

Proof of Lemma G.5. Observe that d,(t1,ts) := E[(Z,(t1) — Zn(t2))?]*/2. By Corollary 2.2.8 of van der

Vaart and Wellner (1996) and Assumption 6(i), there exists a universal constant C' such that

Elsup,|Zy(t)|] < E[|Zn()]] + C/OOO V1og N(T,d,, €) de

for any ¢ € T, where E[|Z,(?)|]] = 1/2/7 because Z,(t) ~ N(0,1). Therefore, E[sup;|Z,(t)|] < ¢,. The second
result follows by Markov’s inequality. O

Lemma G.6. Let Assumptions 1(iii), 2, 3(i)(iii), 4(i) and 6 hold, T7;(+/(logn)/n = o(1) and ||E — holloo =
Op(6n.n) with 6. = o(1). Let Assumption 5(b)(iii) hold with n,x/J = o(ry,) for nonlinear f;(). Let Z and
Z:(t) be as in the proof of Theorem 4.1. Then:

wup | LI G55 G
teT on(ft)

Zr 7)) = op+(rn) wpal in P.

Proof of Lemma G.6. First note that because Z} ~ N (0, (AZ") and the minimum and maximum eigenvalues
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of Q° are uniformly bounded away from 0 and co wpal (by Lemma G.3 and Assumptions 2(i)(iii)), we have
| 22]| = O, (VK) wpal by Chebyshev’s inequality.

Now, writing out term by term we have:

qup | [(PEO)ISCISITSCM (Dflho) 7)) [5Gy 578Gy @) 2@
teT on(fi) on(ft) "
(s’ - DRGOW) (G5 *8); G, 818G, 1811 5/G;
< sup = Z,
teT Un(ft)
(Dfuho)w”]) (I8'C7 18] 181G, 2 — /Gy 8] 718Gy 2 (00)2(00) 7 12) on(f2)
+ sup 2Z*| x sup 2 t
teT Un(ft) " teT 3n(ft)
Toup |22 4] s sup (DA (o) ])18'Gy 5|18 Gy TH @) (@) 2 Zr =T +Ta+T;.
teT Un(ft) teT n(ft)
Control of T7: By Cauchy-Schwarz, we have:
HgT A" —Yn 2 - arA-13a 1 o o *
T, < fgf [T T (v (fin(fi’) (fo)llL2w) sup Zn 7 HG 12 S[5'G; 18] 1A 1/2H < [|(2 )1/2(Q )22 x || 22 ll¢2

= 0p(1,) X Op(1) x Op(1) x Op(1) x Oy (f) = 0p+ ()

where the first term is by Assumption 5(b)(iii) (or zero if the f; are linear functionals), the second term is by
Lemma G.4, the third is by Lemma F.10(c) (using the fact that sjx =< 7, see Lemma A.1) and the fact that
HG;UQS[S’G;lS]*IS’Gb_l/Z||p =1, and the fourth term is by Lemma G.3. Therefore, T} = O, (1,v/J) wpal
(since K < J), and is therefore = o, (r,,) wpal by the condition stated in this Lemma.

Control of Ty: Let AZ,(t) denote the Gaussian process (under P*) defined by
(Dfelho)]) ([8'Gy ' 8)718'G, 2 = [5Gy 18] 186y /2 () 2 (@) 172
an(ft)

for each t € T. The intrinsic semi-metric Ad,, (t1,t2) of AZ,(t) is Ady(t1,t2)? = E*[(AZy(t1) — AZy(t2))?] for
each ¢1,to € T, where E* denotes expectation under the measure P*. Observe that:

AZn(t) = zx

N(DIa) 7] D (b))
Adn(tr,t2) H( n o) ou(fi)

x (Qo)fl/2Gb—1/2S{[§/éb—IS] 1S/G—1/2 [S/Gb—ls]—1S/Gb—1/2(90)1/2(§o)71/2} (ﬁo)l/2

/
) 5'Gy )86y (@) 2

22
S,dn(tlth) % HGb—l/QS/ {[é\/éb—lg}—lé\/éb—lm . [S/Gb—ls]—1S/G})—1/2(Qo)1/2(§o)71/2}

02

wpal, where the first line uses the fact that Q° is invertible wpal and the second line uses the fact that {2° and

Q° have eigenvalue uniformly bounded away from 0 and oo wpal. It follows by Lemma F.10(c) and Lemmas
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G.3 and F.3 that

|6, 25 {186 817186,V - 9G8R A @e) 2

< HG;UZS’ {18G;187186, - [S’G,le]*lS’Ggl/z}sz + HI - (9051/2@0)*1/2

= 0y(s¢/Mog 1)) + 0, (G5 og K n)” ) 461
= O0p(dv,n) .

02

Therefore,
Ady,(t1,t2) < Op(dvpn) X dy(t1,t2)

wpal. Moreover, by similar arguments we have

sup E*[(AZ,(1))*]'? < Op(dv,0)

teT
wpal. Therefore, we can scale AZ,(t) by dividing through by a sequence of positive constants of order v, to
obtain

E*[sup |[AZy(t)]] S Op(0vn) X cn
teT

wpal by identical arguments to the proof of Lemma G.5. Therefore,

Un(ft)

To < O,(0yy X Cp) X SUP =
2 < Opdv, ) te?an(ft)

= Op(dy,n X ) X Op(1)

wpal by Lemma G.4 and so T = 0p+(r,,) under Assumption 6(ii.2).

Control of T3: The second term in T3 is the supremum of a Gaussian process with the same distribution (under
P*) as Z, (t) (under P). Therefore, by Lemmas G.4 and G.5 we have:

T3 = Op((SV,n + 77;1) X Op~ (cn)

and so T3 = oy (ry,) wpal under Assumption 6(ii.2). O

Proof of Remark 4.2. For any ty,ts € T we have:

dn(tl,t2) < Jn(ft )\Q/Un(ft ) HQl/2Gl:1,S’[S/G;15]—1 (th(ho)[wﬂ . th2<h0)[wj]> .,
— 1
= ZUOSJHGJM (Do, (ho) "] = Dfea (ho)[07) |,
S TJF”||t1 — o[ (61)

N

where the first inequality is because ||z/||z] — y/llyllll < 2|z — yl|/(|z|| V |ly||) whenever ||z, ||| # 0 and the
third is by the equivalence s =< 77 (see Lemma A.1). By (61) and compactness of T, we have N(T,d,,¢) <
C (1T /(ec,,))? /7 v 1 for some finite constant C. O

Proof of Corollary 4.1. We verify the conditions of Lemma 4.1 (or Theorem 4.1). By assumption we may
take ¢, < 7,J% with a = § + ‘%l. Assumption 5 is therefore satisfied with n,, = \/n7; *J~®/4+1/2) by Remark

4.1(a’) and Lemma A.3.
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The continuity condition in Remark 4.2 holds with I',, = O(J“/) for some a’ > 0 and 7, = 1 since ¥, is
spanned by a B-spline basis of order v > (pV 2+ |a|) (DeVore and Lorentz, 1993, Section 5.3). Assumption 6(i)
therefore holds with ¢, = O(y/Iog J) by Remark 4.2 because (751, /(€0,,)) < (J 1), We can therefore take
rn, = (log J)~" for k € [1/2,1] in Assumption 6(ii). The first condition in Assumption 6(ii) then holds provided
J?(log J)b% /n = o(1). Since n/, = 0, the second condition in Assumption 6(ii) holds provided

71Jy/(log J)/n + /ary g ®/4+1/2) ([J% V(og J)/n] T + JP/% 1 7,\/T(log J) /n) Vlog J = o((log J)™*)

(using Corollary 3.1 for dp,,). In applying Corollary 3.1 we require that the conditions 7;J/y/n = O(1) and

J2+9)/25 /(logn)/n = o(1) hold. Finally to apply Theorem 4.1 we also need 7;.J+/(log J)/n = o(1). Sufficient
conditions for all these restrictions on J are provided in the statement of this corollary. In particular, we note

that [J%\/(log n)/n](log J)léi5 decreases as § > 0 increases. Hence the condition J°(logn)%*/n = o(1) (for
k € [1/2,1]) implies that [J% (log n)/n]%(log J)r+05 = o(1) holds for all § > 1. O

G.5 Proofs for Section 5

Proof of Theorem 5.1. The result will follow from Theorem D.1. Assumption 2(i)—(iii)(iv’) is satisfied under
Assumption CS(iii). Assumption 3(i)(ii)(iii) is satisfied by Assumption CS (iv) and the second part of Assump-
tion CS(v), noting that ¢y ; = O(VJ) and ¢ x = O(VK) = O(V/J). Since the basis spanning ¥ is a Riesz
basis for T' Assumption 4 is satisfied with 75 < /,le.

It remains to verify Assumption 5’(b). By the Riesz basis property and Assumption 2(i)—(iii) we have [0, (fcs)]? <
ijl(aj/uj)Q < Ju;? (see Section 6 of Chen and Pouzo (2015)). For fcg we have

1
D fes(ho)lh — ho] = / ({h(P(E),y = Sy(0)) = ho(t,y = S,(£)) ye™ Ji Oshole(ey=S, (DB’ vy ) ) gy

(Hausman and Newey, 1995, p. 1471) which is clearly a linear functional (Assumption 5°(b)(i)). Note that
on(fos) S \[7#}1 and Assumption CS(v) together imply u}1J3/2\/(10g J)/n = o(1). This, p > 2 and Corollary
3.1 together imply that || — ho|[g2. = 0,(1) and || — ho|[g2 = 0,(1), and

0,00 0,00

1h = hollow = Op (J77/2 4 5" /Tl I)n) s NI = ol =

1 — hollse = O, (J‘P/Q) : b~ holl . _ =0, (\/3 (J—W)) . (63)

Applying Lemma Al of Hausman and Newey (1995), we obtain
~ ~ _5JlogJ
[fes) = fostho) = Dies(h)lf - ol| = 0, (V7 (577 4172 252 )
‘chs(ho)ﬁl - ho]’ = 0,(J 7).

Since p > 2, Assumption CS(v) guarantees that Assumption 5’(b)(ii) holds with

Vn e o J3?logJ
= ———— x (J7P/ ) =0(1).
= n(fos) . T n o)
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Finally, for Assumption 5’(b)(iii), we have

[T T @ (fes) — vnlfes) ey T[Sl (Presh(Gy 26)) - Dfeshol(@; *v),1)

on(fes) ~ on(fes)

where 75 < ,u;l. Moreover,
Dfes MG, *07),) = Dfesho)l(Gy 07 )1 VT x 0, (VI (7772 + w3/ (Tlog /) )

(uniformly in j = 1,...J) by Lemma A1l of Hausman and Newey (1995). Therefore

Tk T (Vn(fos) — valfes)) Lz ow) < T u5 0 (prﬂ +py'V/(Jlog ‘])/n)
o ~ /
nlJes) (Sritas/m?)

/

= Op(11n)

which is 0,(1) by Assumption CS(v). Finally we note that the condition x;'J\/(log J)/n = o(1) of Theorem
D.1 is trivially implied by u;'J%/2,/(logJ)/n = o(1) (which is in turn implied by Assumption CS(v)). This
proves the result. O

Proof of Corollary 5.1. For Result (1), since o, (fog) < J@t<t1/2  the first part of Assumption CS(v) is
satisfied provided

n _
W\/‘T‘U/Q (J p/2 +J§+2\/ (lOgJ)/TL) = 0(1)

for which a sufficient condition is nJ~(Ptetst1) = o(1) and J3+<~(logn)/n = o(1). Moreover, the condition
p; ' J3/%/(log J)/n = o(1) is implied by J3+<=(@"0)(logn)/n = o(1). The condition J3+<=(@"\0(logn)/n = o(1)
also implies that J(+9)/(29) /(logn)/n = o(1) holds whenever § > 2/(2 + < — (a A 0)).

For Result (2), we have 0,,(fcs)? 2 a%/u% < exp(J/? + alog J). Take J = (log(n/(logn)?))?/s. Then

on(fes)® 2 exp (log(n/ (log n)?) + log|(log(n/ (log n)g))%/ﬂ)
= exp (log[n/(log n)? x (log(n/(log n)@))2a/<])
=n/(logn)? x (log(n/(logn)?))2*/s

and so

\/ﬁg/z x (log(n/(logn)?))®/s .

on(fes) 2 (logn)e/?

The first part of Assumption CS(v) is then satisfied provided

(logn)e/?
(log(n/(logn)?))

which holds provided 2p > g¢ — 2a and g5 > 8 — 2a. The condition J(2+9)/(29) /(logn)/n = o(1) holds for any
& > 0. The remaining condition x;'J3/2/(log J)/n = o(1) is implied by

7= ((10g(n/(10g m)2)) /< + (log n)~2 x (10g(n/(1og n)*))*/* loglog n) = o(1)

aog\/nﬁ)g/z(log(n/(logn)g))ii/c\/m0(1)

for which a sufficient condition is g¢ > 6. Now, we may always choose ¢ > 0 so that o¢ > 6 V (8 — 2a). The
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remaining condition then holds provided 2p > 6 V (8 — 2a) — 2a. O

Proof of Theorem 5.2. The proof follows by identical arguments to those of Theorem 5.1, noting that

for(h) — fes(h) = (p' — p2)h(p',y)

and so

fo1(B) = foi(ho) = fes(h) = fes(ho) + (0 = p°) (A(P,y) = ho(p".y))
Dfpu(B)[h ~ hol = Dfes(ho)lh = hol + (6" = p°) (R(p',y) — ho(p",))
Dfpr(] = Dipw(ho)lt] = Dfcs(h)lv] = Dfes(ho)[v]

where clearly |(p* —p®)(h(p',y) —ho(p',y))| < const x |[h—ho||se- Since o (fp1) =< p7 VT, the stated conditions
on J in this theorem imply that Assumption CS(v) holds. O

Proof of Theorem 5.3. The result will follow from Theorem D.1, and is very similar to that of Theorem 5.1.
Assumptions 2(i)—(iii)(iv’), 3(i)(ii)(iii), and 4 are verified as in the proof of Theorem 5.1. It remains to verify
Assumption 5'(b). As in the proof of Theorem 5.1 we have 7; < p; ' and [0, (f4)]? =< E;.]:l(aj/uj)Q (see Section
6 of Chen and Pouzo (2015)). Simple expansion of f4 yields

Dfa(ho)lh — ho] = / w(p)e1oePoey) (b (log p, logy) — ho(log p,logy)) dp

which is clearly a linear functional (Assumption 5’(b)(i)), and
[£4(R) = a(ho) = Dfalho)l — ho

_ /w(p) (eﬁ(log plogy)—ho(logp,logy) _ 1 _ (ﬁ(log p,logy) — ho(log p, log y)))eho(log plogy) qp

Therefore, by Corollary 3.1 we have

[FaB) = Falho) — Dfa(ho)lh — hol| = O, (,]p . szmff>

DS alho)[ = hol| = O,(J77/2) .

Since p > 0, the stated conditions on J in this theorem guarantees that Assumption 5’(b)(ii) holds with

_/n —pj2 —2dlogJ\
”"an<fA)X(J T )0“)'

Finally, for Assumption 5’(b)(iii), we have

& T @ (fa) = vn(fa)ll2wy o 75
Un(fA) ~ Un(fA)

> (DLABIG, 2 07)5] = Diatho) (G QWM)z)

j=1
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where 7; =< u}l and where a first-order Taylor expansion of D f4 yields
DfAMG, 07);] = DIaho) (G 267)51| S G207l x 1 = holloc
=0, (\/7 (J”’/z + 5"/ (T log J)/n)) .
It follows that

I T (@ (fa) = va(fa)llzow) _ p;t x O, (pr/z +u;t /(T log J)/n)
on(f ~ 1/2
lon{fa) (Z}]:l(aj/ﬂj)z)
which is 0, (1) by the displayed condition on .J in this theorem. Finally we note that the condition u;'J/(log J)/n =

o(1) of Theorem D.1 is implied by the displayed condition on J in this theorem and the fact that o, (fa) <
VI u;l. This proves the result. O

= Op(m)

Proof of Theorem 5.4. We verify the conditions of Lemma 4.1 and Theorem 4.1. Assumptions 1 and 2
are satisfied by Assumption CS(i)(ii)(iv) and U-CS(i). Assumption 3(iii) is satisfied by Assumption U-CS(iii).
Assumption 4(i) is satisfied by the Riesz basis condition. For Assumption 5(b), we check the conditions of
Remark 4.1(b’). It is clear that D fcg¢[h — ho] (see display (14)) is a linear functional of h — hq for each ¢ € T.

As in the proof of Theorem 5.1 we have [0y, (foss)]? =< 37

i—1(a;.¢/py)? uniformly in t. Thus, o, < VJpj"
This and Assumption U-CS(iv.1) together imply u;'J3/2,/(log J)/n = o( ). Also we note that the first part of
Assumption U-CS(iii) and § > 1 1mp1y that J(2+9)/(29), /(logn /n = 0(1) holds. These results and p > 2 and

Corollary 3.1 together imply that ||h hollgz = op(1) and R — h0||Bz

00,00 00,00

= 0p(1), and equations (62) and
(63) hold. Therefore, h and h are within an e neighborhood (in Holder norm of smoothness 2) of hy wpal. As
T = [p°p"] x [p',P'] x [y, y] where the intervals [p?, p°] and [p',p'] are in the interior of the support of P; and
ly,¥] is in the interior of the support of Y; and hg € Buo(p, L) with p > 2 and 0 < L < oo, it is straightforward

to extend Lemma Al of Hausman and Newey (1995) to show

_ _oJlogJ
sup | o5 (h) = fes,i(ho) = Dios.i(ho) b - hol| = 0 <\/3<J pszrlg)) |
te
sup [D fes,e(ho)[h — hol ‘ = 0,(J7P/?)
teT

by Corollary 3.1. Since g,, < v/Ju ', Assumption U-CS(iii) guarantees that Assumption 5(b)(ii) holds with

J32Nog J
Np = @ X (J—P/2 +M;2()g> .

a, n

For Assumption 5(b)(iii), we have

Mk T (Wn(fese) — vn(fose))lzov \/Zj_l (chg7t(ﬁ)[(G;1/2wJ)j] - DfCS,t(hO)[(Gll/sz)jDz
sup : . <supTy
teT [on(fes)] teT [on(fes,t)]

where 7; < pu;'. By straightforward extension of Lemma A1 of Hausman and Newey (1995) and (62) and (63):

sup | D fos. (WG *07);] = Diosa(ho)l(Gy*67);)| S VT % 0, (VI (7772 + 17" /(Tlog ) /) )

teT

27



whence Assumption 5(b)(iii) holds with

J3/2,U,71
n, = —"1L x (J*p/2 +u}1\/J(1ogJ)/n) :

I
which is o(1) by Assumption U-CS(iv). This verifies Assumption 5(b).

Finally, Assumption 6(i) holds with ¢, = O(y/log J) by Assumption U-CS(ii) and Remark 4.2. For Assumption
6(ii) we take 7, = [log J]~/2. Assumption 6(ii.1) then holds provided J°(log J)3/n = o(1). Assumption 6(ii.2)
holds provided

77/ (log J)/n + n, + ([J%é (log J)/n]léﬁ + 7P/ 75/ J(log J)/n + n;) Vlog J = o((log J)~1/?)
(using Corollary 3.1 for dj,,,), which is satisfied provided
717/ (og J)/n -+, +),/log ] = of(log J)~'/?)

which is in turn implied by Assumption U-CS(iii) and U-CS(iv.1) and the property g,, < \/jp}l. Thus Lemma
4.1 applies to f; = fcs, with a rate r, = [log J]_l/Q.

Next we note that the condition 7/,v/J = o((log .J)~'/?) needed for Theorem 4.1 is directly implied by Assump-
tion U-CS(iv.2). O

Proof of Theorem 5.5. Follows by similar arguments to the proofs of Theorems 5.2 and 5.4, noting that

[DfpL.t (ho)[h] = Dfpr.ty(ho) k]| < |Dfes.t, (ho)lh] — D fos.e (ho)[A]| + (P — P1)(P1, Y1) — (P2 — P2)A(P2, v2)]
and so ¢, = O(y/log J) by Assumption U-CS(ii) and Remark 4.2 (see the proof of Corollary 4.1). We can then

take r,, = [log J]~'/2. O

G.6 Proofs for Appendix B

Proof of Theorem B.1. As with the proof of Theorem 3.1, we first decompose the error into three parts:

1B —hollzzxy < Ih—Rllzzcxy + 1h = Mahollz2x) + IMsho — holl z2(x)
= T1+Tr,+ ||h0 — HJh0||L2(X) .

To prove Result (1) it is enough to show that 75 < O,(1) x ||ho — ILyho| £2(x)- To do this, bound

T, < |IGY*(S'Gy )Gy B (Hy — Wey) /nl|e
HIGY (G, 29 G, PG = (G P9 G P B (Hy = Wey) e =i Toy+ T
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For Tgl,

Ty < syxlGy 2B/ (Ho — Wey) /nllee
< Op(TyGh i /Vn) X |[ho = TLshol| L2 (x) 4 sk T (ho — Trho) || L2(w)
< Op(15Ch i /vV/n) X lho = TLyho || L2(x) + TaIT(ho — TLrho) |l 22w

Op(1) x [[ho — TLsholl L2 (x)

where the second line is by Lemma F.9 and the relations J < K and 75 < s;}(, and the final line is by
Assumption 4(ii) and the condition 7;¢+/(log J)/n = o(1). Similarly,

Toy < ||G”2{<é‘”2§>;@‘“201/2—<G‘”2S>;}||p||G;1/2B’<Ho—\Pm/nnp
< Op(s75¢V/ (10g J)/n) x (Op(Coxc/v/n) X [Iho = TshollL2(x) + 1T (ho — TLrho)ll L2 (w))

Op TJC\/ IOgJ /TL X ||h0 - HJhO||L2(X) + Op(].) X TJHT(hO - HJhO)||L2(W)
Op(1) x [[ho — ILshollL2(x)

where the second line is by Lemmas F.9 and F.10(b) and the relations J < K and 75 =< s}}{, and the final line
is by the condition 7;¢+/(log J)/n = o(1) and Assumption 4(ii). This proves Result (1).

To prove Result (2) it remains to control T;. To do this, bound

T

IN

G/ 2(5'Gy ) Gy P Blu/nlle + GGy 2 8)1 Gy PGy — (G 29GP B/l e
=: T +Tia.

For T11, by definition of sjx and Lemma F.8 we have:
Ti1 < s7ellGy 2 Blu/nle = Oy(s75V/K/n) = Oy(15/T /)
where the final line is because J < K and 7; < s (Lemma A.1). Similarly,

||G1/2{( 1/25)1 G;1/2G;/2 _ (G;1/2S)l_}||zz||G;1/23/u/n|“2
= 0,(r2¢\/(log J)/n) x Op(+/T/n)
= Op(TJm)

where the second line is by Lemmas F.8 and F.10(b) and the relations J =< K and 77 =< s}}(, and the final line

T2

IN

is by the condition 7;¢+/(log J)/n = o(1). O
Proof of Corollary B.1. Analogous to the proof of Corollary 3.1. O

Proof of Theorem B.2. As in the proof of Theorem 3.2, it suffices to prove a lower bound for the Gaussian
reduced-form NPIR model (45). Theorem G.3 below does just this. O

Theorem G.3. Let Condition LB hold with Ba(p, L) in place of Boo(p, L) hold for the NPIR model (45) with
a random sample {(W;,Y;)}",. Then for any 0 < |a| < p:

liminfinf sup P, (Hgn —0%||L2(x) > en (p_‘o‘|)/(2(p+§)+d)> >d >0
n—oo (]n hEBQ(I), )
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in the mildly ill-posed case, and

liminfinf sup Py (||§n —0%h|L2(x) > c(logn)_(p_‘al)/g) >cd >0

n—=0 gn heBsy(p,L)
in the severely ill-posed case, in the severely ill-posed case, where infg, denotes the infimum over all estimators of
O%h based on the sample of size n, supycp, 1) Prn denotes the sup over h € Bs(p, L) and distributions (W;, u;)
which satisfy Condition LB with v fized, and the finite positive constants c,c’ depend only on p, L,d,s and og.

Proof of Theorem G.3. We use similar arguments to the proof of Theorem G.1, using Theorem 2.5 of Tsy-
bakov (2009) (see Theorem G.2). Again, we first explain the scalar (d = 1) case in detail. Let {¢; x,¥;.x};.x be
a wavelet basis of regularity v > p for L2([0, 1]) as described in Appendix E.

By construction, the support of each interior wavelet is an interval of length 277 (27 —1). Thus for all j sufficiently
large (hence the lim inf in our statement of the Lemma) we may choose a set M C {r,...,29 —r —1} of interior
wavelets with cardinality #(M) =< 27 such that support(¢;,) N support(y;.,/) = @ for all m,m’ € M with

m#m'.

Take go € B(p, L/2) and for each m € M define 8 = {0, } merr where each 6, € {0,1} and define

ho = go + co2 P2 N 0,005
meM

for each 0, where ¢y is a positive constant to be defined subsequently. Note that this gives 2(#(M)) such choices

of hy. By the equivalence || - [[gr_ =< || - ||z, for each 6 we have:
Ihollpz, < L/2+[co2 723" 0,05
| meM B,
< L/2+const x |2 P N0, 050
meM

v
b3 5

1/2
= L/2+ const x ¢u2 7/ (PF1/2) ( Z 02122”)
meM

< L/2+4 const X ¢ .

Therefore, we can choose cq sufficiently small that hg € Ba(p, L) for each 6.

Since ¢} ,, € C7 with v > |a| is compactly supported and X; has density bounded away from 0 and oo, we have
[|27/24p1eD) (292 — m)|| p2(x) =< 1 (uniformly in m). By this and the disjoint support of the ;. ,, for each 6,60’ we

have:

1/2
[0%he — 0%hg||p2(xy = co27 @I/ (Z (O — 0},)2[[27/29p 01D (27 - —m)”%’z(x))
meM

o271l F1/2) /500, 67)

where p(6,6') is the Hamming distance between 6 and 6. Take j large enough that #(M) > 8. By the
Varshamov-Gilbert bound (Tsybakov, 2009, Lemma 2.9) we may choose a subset () (1) (M) guch that
0° = (0,...,0), p(0,0®)) > #(M)/8 > 2/ for all 0 < a < b < M* and M* > 2#(M)/8 (recall that there were

vV
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2#(M) distinct vectors 6 and #(M) =< 27). For each m € {0,1,...,m*} let Ay, := hym) . Then we have
||8ahm . aahm’HL?(X) > COQ—j(P—IaD

for each 0 <m <m’ < M*.

For each 0 < m < M*, let P, denote the joint distribution of {(W;, )}, with Y; = Th,,(W;) + u, for the
Gaussian NPIR model (45). It follows from Condition LB(ii)(iii) that for each 1 < m < M* the KL distance
K (P, Py) is

1 < o (T 0(7”)(1/}%(‘/1/1,)))2
K(P,,Fy) < = 9—ilp+3)\2 g keM Yk 4,
) = 3 i:1(co Y o*(W;)
n . 1 . m
< 2—72(c02 J(P+2))2V(2])2 Z (9](C ))2||¢j,k ‘%2()()

keM
< nck2m Py (29)?

where the final line is because X; has density bounded away from 0 and oo and 21661\4(9,(:7))2 < H(M) <2
for each 1 < m < M*.

In the mildly ill-posed case (v(27) = 277°) we choose 2/ < n!/(2(P+)+1)_ This yields:
K(P,,, Py) < cgn2<P+1<>+1 uniformly in m
log(M*) > 27 = nt/2P+a)+1)
since M* > 2#(M)/8 and #(M) < 27.
In the severely ill-posed case (v(27) = exp(—127%)) we choose 2/ = (c; logn)!/s with ¢; > 1. This yields:

K(Py, Py) < c%n_(cl_l) uniformly in m

log(M*) > 27 < (logn)*/< .

In both the mildly and severely ill-posed cases, the result follows by choosing ¢y sufficiently small that both
lhmllpr, < L and K(Pp, Py) < 1 log(M*) hold uniformly in m for all n sufficiently large. All conditions of
Theorem 2.5 of Tsybakov (2009) are satisfied and hence we obtain the lower bound result.

In the multivariate case (d > 1) we let %kg(x) denote an orthonormal tensor-product wavelet for L?([0,1]¢)
at resolution level j. We construct a family of submodels analogously to the univariate case, setting hy =
go + o277 (P+d/2) Zme M Hm’(zjj)m’g where v} ,,, is now the product of d interior univariate wavelets at resolution
level j with G = (wy)? (see Appendix E) and where # (M) < 279, We then use the Varshamov-Gilbert bound
to reduce this to a family of models h,, with 0 < m < M* and M* =< 27¢. We then have:

0% o = 0% ot oo 2 027771
for each 0 < m <m' < M*, and
K(Pp,Py) < nfcg2 7 PFd/2))2(27)2

for each 1 < m < M*, where v(27) = 277¢ in the mildly ill-posed case and v(27) =< exp(—27¢) in the severely
ill-posed case. We choose 27 < n!/@®+)+d) in the mildly ill-posed case and 27 = (c1log n)l/g in the severely
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ill-posed case. The result follows as in the univariate case. O

G.7 Proofs for Appendix C

Proof of Theorem C.1. As in the proof of Theorem 3.2, this follows from the lower bound for NPIR in
Theorem G.4. O

The following is a slightly stronger “in probability” version of Lemma 1 in Yu (1997), which is used to prove
Theorem G.4. Let P be a family of probability measures, let 8(P) be a parameter with values in a pseudo-metric
space (D, d) for some distribution P € P, and let (P) be an estimator of 6(P) taking values in (D, d). If § € D
and D C D, we let d(0, D) = infpep d(6,6"). Let co(P) denote the convex hull of a set of measures P. Finally,
it P,Q € P we let [|P — Q||7y denote the total variation distance and aff(P,Q) = 1 — ||P — Q||rv denote the
affinity between P and Q.

Lemma G.7. Suppose there are subsets D1, Dy C D that are 26 separated for some 6 > 0 (i.e. d(s1,82) > 20
for all sy € Dy and so € Ds) and subsets P1,Po C P for which 6(P) € Dy for all P € Py and 0(P) € Dy for all
P e Py. Then:

2 sup P(d(6, 0(P)) > 6) > sup aff (P, Py).
PeP Py €co(P1),P2€co(P2)

Proof of Lemma G.7. We proceed as in the proof of Lemma 1 in Yu (1997). Let P, € P; and P; € Py. Then:
2sup P(d(0,0(P)) > 8) > Py(d(0,0(Py)) > 6) + Pa(d(B, 0(P2)) > o)
PeP

> Py(d(0,Dy) > 6) + Pa(d(B, Dy) > 6).

Since the inequality 2 suppep P(d(8, 8(P)) > 8) > Py (d(8, Dy) > 6)+Py(d(6, Da) > 6) holds for any fixed P, € Py
and Py € Py, it must also hold for any Py € co(P;) and Py € co(Pz). Also note that

1{d(0, Dy) > 6} + 1{d(0, Dy) > &} > 1{d(0, D;)+ d(0, Ds) > 26}
> W{d(Dy,Ds) >25} = 1

because d(D1, D2) > 26. Now by definition of a(-, ), for any P; € co(P;) and Py € co(P3) we have:

2sup P(d(6,0(P)) > 8) > Py(d(0, D1) > 6) + Py(d(B, Ds) > o)

PEP
> inf{P; f 4+ Pag : f, g non negative and measurable with f + g > 1}
= aff(}P’l, ]PQ) .
The result follows by taking the supremum of the right-hand side over P; and Ps. O

Theorem G.4. Let Condition LB hold with Bs(p, L) in place of Boo(p, L) for the NPIR model (45) with a
random sample {(W;,Y:) Y. Then for any 0 < |a| < p:

liminfinf sup P (|gn — f(R)] > crp) > >0
"0 gn heBs(p,L)
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where

n=1/? in the mildly ill-posed case when p > ¢ + 2|a| + d/4
Ty = | nTA@=lel)/@et)+d) Gy the mildly ill-posed case when ¢ < p < <+ 2|a| + d/4
(logn)—2(P—lab/s in the severely ill-posed case,

infg, denotes the infimum over all estimators of f(ho) based on the sample of size n, SUPpe B, (p,) Prn denotes
the sup over h € By(p,L) and distributions (W;,u;) which satisfy Condition LB with v fixed, and the finite

positive constants c,c’ do not depend on n.

Proof of Theorem G.4. We first prove the result for the scalar (d = 1) case, then describe the modifications

required in the multivariate case.

Let {&;k,¥jx}jx be a CDV wavelet basis of regularity v > p for L?([0,1]), as described in Appendix E. As in
the proof of Theorem G.3, we choose a set M C {r,...,29 —r — 1} of interior wavelets with cardinality m :=
#(M) < 27 such that support(v); ) N support(¢; /) = 0 for all m,m’ € M with m # m’. Let 0 = {0,,}mem
where each 0,, € {—1,1} and for each 6 € {—1,1}™ define:

ij

mCO
ho= > Vi

meM

and let ho = 0. By the equivalence || - [,z =< || - [|gr , we have:

1/2
92 —27p
hollgy, < lhollg, = (22“”2 ) = .

meM
Therefore, we may choose ¢q sufficiently small that hg € By(p, L) for all € {—1,1}™.

Let (D denote the |a|th derivative of 1. By disjoint support of the Vjm(x) = 20/29(2P2 —m), p(x) > p >0,

and a change of variables, we have:

Fhe) = Fhy) = mt 3 / (cobm2 6120 (2))2pu(w) o

meM

m~! Z /Coem27jp’l/)§»7‘$ll)($))2dl'

meM

= Bt Y /2(2\a|+1)J¢(|a|)(2Jx, m)? da

meM
_ Cgrm(pf\an/¢<|a|>(u)2du > 29-2(e=lal)

vV

Therefore, there exists a constant ¢, > 0 such that
|f(ho) — f(ho)| > 2¢, 272 (P=lel) (64)

holds for all for each 6 € {—1,1}™ whenever j is sufficiently large.

Let Py (respectively Py) denote the joint distribution of {(W;,Y;)}; with Y; = Tho(W;) 4+ u; (respectively
Y; = The(W;) + u;) for the Gaussian NPIR model (45) where, under Condition LB, we may assume that X;
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and W; have uniform marginals and that the joint density fxw (z,w) of (X;, W;) has wavelet expansion

270 -1 co 29-1
Fxw(@w) = > Ag@ro k(@) @ro k(@) + > Ajhjn(@)vsp(w).
k=0 Jj=ro k=0

Observe that
T%MM=/%M@&M%MM=M%MM

for each 0 < k <27 — 1 and each j > rq (rg is fixed) and that |A\;| < v(27) by Condition LB(iii). Let P* denote
the mixture distribution obtained by assigning weight 2™ to Py for each of the 2™ realizations of . Lemma

G.8 yields
n?2-49Py(27)4

P — Pz, <
IP* = Polffy £ ——

(65)

In the mildly ill-posed case (v(27) = 27¢) we have

[P = Pylfry S P2 t4)

~

because m = 27. Choose 27 = cn?/ (AP+9)+1) with ¢ sufficiently small so || P* — Py|jzy < 1 — € for some 1 > € > 0

and all n large enough, whence:
aﬁ(P*,Po) = 1-— ||P>k _POHTV Z € (66)

for all n sufficiently large. It now follows by Lemma G.7 and equations (64) and (66) that for all n sufficiently
large, any estimator g, of f(h) obeys the bound

sup P, (|§n — f(h)| > c*Q_Qj(”_lal)) > €/2 (67)
heB2(p,L)

where 272/(P=lal) < p=4p=laD/(4p+)+D)  This is slower than n~'/2 whenever p < ¢ + 2|a| + 1/4.

In the severely ill-posed case (v(27) = exp(—42%7)) we choose 2/ = (clogn)'/ for some ¢ € (0,1). This yields
|IP* — Py|lrv = o(1) by (65) and hence there exists € > 0 such that aff(P*, Py) > e for all n sufficiently large.
Then by Lemma G.7 and equation (64), for all n sufficiently large, any estimator fo of f (h) obeys the same
bound (67) with 2-2®=leD) < (logn)=2(—la/s,

In the multivariate case (d > 1) we let ijg(x) denote an orthonormal tensor-product wavelet for L2([0, 1]¢
at resolution level j, as described in Appendix E. We may choose a subset M of {0,...,2/ — 1}¢ with m :=
#(M) =< 2% for which each m € M indexes a tensor-product of interior wavelets of the form 27/24(27x; — m;),
which we denote by {/;jym(x), such that zlzvj,m and {/ij’m/ have disjoint support for each m,m’ € M with m # m’.
For each 6 € {—1,1}™ we define

ngOQ*jP ~
ho= ) " =—tjm(@)
meM \/m

with ¢q sufficiently small such that hg € Bo(p, L) for each 6. Let ho(x) = 0 for all z € [0, 1]¢. By disjoint support
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of the {/;j,m and a change of variables, we have:

|f(he) — f(ho)l 62 ¥ Pm=t Y / ( [ 2t Diped (@la; —mi)2> w(z) da

meM

Vv

22 2jp 1 Z /( 2(2ai+1)jw(m)(2jzi_mi)2> de > CgQ*QJ'(Pflal)'

meM

Letting Py, Py, and P* be defined analogously to in the univariate case, we let X; and W, have uniform marginals

on [0, 1]¢ and their joint density fxw (x,w) has wavelet expansion

fxw(z,w) = Z S 3 ANtika @)k (w) (68)

j=ro GEG}, ro k
with |A\;| < v(27). Lemma G.8 again yields

n22=4Py(27)4

P*— Pz, <
| oll7y S -

The result follows by choosing 27 =< ¢n?/(4(P+9)+d) with sufficiently small ¢ in the mildly ill-posed case and
27 = (clogn)'/s for some ¢ € (0,1) in the severely ill-posed case. O

Lemma G.8. Let the Condition LB hold with Bs(p,L) in place of Boo(p, L) for the NPIR model (45), let P*
and Py be as described in the proof of Theorem G.4, and let 277Pv(27) = o(1). Then:

n22-4ipy(29)4

P — Pz, <
1P = Pollgy £ ———

Proof of Lemma G.8. We prove the result for the multivariate case. For each 6 € {—1,1}™, the density of
Py with respect to Py is

371;2 = Hexp {2;18 ([T(ho — ho)(Wi)J? = 2u; [T (hg — ho)(Wl)D}

. 2 )
00277 ~ 6, co2-irx, ~
> %\QM“)/\J%M(WQ] o [Z co\%”]%(wi)]

meM meM

Hexp % 2

Since the zzj,m have disjoint support, we have

dPy 1 1 52 2m3
diljo - ilj[lexp{z Z aom 1/ng Z om (W’L)

meM mEM

_ ﬁexp{ Z < A%Jm GmZZ;Ai,Lm)}
i=1

meM

where u; ~ N(0,02) under Py and '
602_Jp/\j -

Ai,jﬂ’ﬂ: (70\/5 Yim

dPy,
ap TT+4:,00)

i=1

Therefore:
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where

U;
Ai,j(e)eXp{ Z < A+ mUoAi,j,m>}1

meM
Uq
{ Z exp < AQJ ” mAi7j7m> } -1
meM 70

and the second line is again by disjoint support of the zzj,m (which implies A; ; n, is nonzero for at most one m

for each ).

Let Ey be expectation under the measure Py and observe that Ey[A; ;(§)] = 0 for each § € {—1,1}™. For each
6,0" we define the vector kg ¢ € R™ whose ith element is:

wo,0 (i) = EolAi ;(0)A; ;(0")]
Z Z EO [exp { Az’j m %A?,j,m/ + %(emAi,j,m + ein/Ai,j,m’)} — 1:|
0

meM m’'eM

_ Z Z [9 YN 71}
meM m'eM

_ Z Eo[ O 9mA”m_1} _
meM

where the final line is again by disjoint support of the {Ej,m. Using |1ZJ;€| <242 R, [{/;]k(Xz)2] =1,and m =< 2%,
it is straightforward to derive the bounds:

2=IP )\ ;
Aigm| 5 22 (69)
oo
R22P )2
Eo[A2 = 2= 7 70
Eo[A7 ) o (70)
By Taylor’s theorem:
1
R (i) = DOm0, EolAL; ]+ Y SEolA] ] +7s(0,0)
meM meM
= > O, Eo[AZ;,,]+72(0,0)

meM

where 75 and r3 are remainder terms. Using the Lagrange remainder formula and (69) and (70), we may deduce
that

N

2 4
og ogm

CcB2-2P)2 | 2 4ir)s
r2(0,0) < *ZEO [e ”mAf]m] exp{ 0 ]} 0 1,

and

gg ogm

Cc29-2ip)2) 69—6ip)\6
nO.0) < g m[nal,,] g { = } 3

where C' is a finite positive constant and we again used the fact that A;; ., is nonzero for at most one m for
each 1.
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Lemma 22 of Pollard (2000) provides the bound:

IP* = Pollgy <272 3 > Y(kos)

0e{—-1,1}m¢’e{—1,1}m
where for any vector ¢ = (¢1,...,¢,)" € R™ the function Y(c¢) is defined as
c)=-1+ H(l +¢i) Z ¢+ Z Z ¢i, Ci, + higher-order terms
i=1 i1=1142=%1+1

where the higher-order terms are sums over triples, quadruples, etc, with all distinct indices, up to cics ... cy.

Therefore:
" 2m - 1
7= Ry <23 3 (3 il + X LSt 4100
0,00 Li=1 \meM meM
+ Z Z { (Z Ombp EolA7 ;] +r2(0,0’)> ( Z OOy Eo[AZ, 1] +7’2(9,9/)> }
11=11i3=11+1 meM m’'eM
+ higher order terms] . (71)

Since Y g g Omby,, = 0 for all m,m’ € M and Y-, 1 = 2>™, the first-order sum in (71) is:

- 2mzz(29 Bl )+ S Bl 4100

=1 0,6’ m
:*ZEO ”m +n2 2mZT399
0,0"
46—4jpy4 26-2jpy\2 20—2jp 2
neg2~ P\ CE27HIPNL | 527 4IPS
§04j<1+exp{o 5 J} 0= J). (72)
ogm o ogm

Also observe that
ifm=m'

5 S 00 - {;gm itm

The second-order sum in (71) is therefore:
i,j,m

n2c4274jp)\4 20022*2jp)\2 . 274ij4
% (1 +0 (eXp {023 2—2]]0)\? + -7 ) (73)
opm 90 m

The higher-order terms in (71) will be of asymptotically smaller order because 277P)\; < 277Pp(27) = o(1) .
Substituting (72) and (73) into (71) yields:

M) (WA, 02+ O(m i BIAZ, ] % paxra(6.0) + Olgyxra(6,61)) )

X

n?2- 4P \j n?2-4ry(27)
1P Ry £ g = PEMEN

~

m

as required. O
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G.8 Proofs for Appendix E

Proof of Lemma E.1. Part (a) is equation (3.4) on p. 141 of DeVore and Lorentz (1993). For part (b), let
v € R’ let fx(x) denote the density of X; and let f =inf; fx(z) and fx =sup, fx(x). Then for any v € R”:

VER (X0 (X0 > £ / (4 (2)'v)? da

in_ i tivry —1
> iXC? min T+1§J§m( Jj+r T) ||1]||?2
CQJil
> f.d [v]|Z

for some finite positive constant ¢1, where the first inequality is by Assumption 1(i), the second is by Theorem
4.2 (p. 145) of DeVore and Lorentz (1993) with p = 2, and the third is by uniform boundedness of the mesh
ratio. By the variational characterization of eigenvalues of selfadjoint matrices, we have:

V' B[ (X9 (Xi)']
vERY w#£0 ||'UH?2

-1
282J

vy

v
Amln(G'([)) - Z ch

This establishes the upper bound on Apin(Gy) ™! The proof of the lower bound for Apax(Gy) ™! follows anal-
ogously by Theorem 4.2 (p. 145) of DeVore and Lorentz (1993) with p = 2. Part (c) then follows directly from
part (b). O

Proof of Lemma E.2. The ¢! norm of the tensor product of vectors equals the product of the ¢! norms of
the factors, whence part (a) follows from Lemma E.1. As 17 (z) is formed as the tensor-product of univariate B-
splines, each element of ¢7 (z) is of the form Hld:1 ¥ y;, (1) where 1 7;, (1) denotes the 4;th element of the vector of
univariate B-splines. Let v € R/. We may index the elements of v by the multi-indices iy, . .. ,ig € {1,...,m+7r}%

By boundedness of fx away from zero and Fubini’s theorem, we have:
1 1 d )
VER (X! (X)) e > ix/ / ( > vieis [[ ¥ (xz)) day - - dayg
0 0 i =1

= [y /01"'/012_22 Z (Elﬁm(xz)) <l_ﬁ2ijl(xl)>

»»»»» i J2,--01

1
/ ZZvil...idvﬁ...jdl[ml (xl)l/Jle (ml)dml dCL‘g . ~dxd .
0

i1 J1

Applying Theorem 4.2 (p. 145) of DeVore and Lorentz (1993) to the term in braces, and repeating for xa, ..., 24,

we have:

. d
min_, i<m(tivyr — Tp
e N e N
Cdjfl
> B

where the second inequality is by uniform boundedness of the mesh ratio. The rest of the proof follows by

identical arguments to Lemma E.1. O
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Proof of Lemma E.3. Each of the interior ¢;  and 1, 5 have support [277(—N +1+k), 279 (N +k)], therefore
@, k() # 0 (respectively ¥, (x) # 0) for less than or equal to 2N interior ¢; 5 (resp. ¥; ) and for any x € [0, 1].
Further, there are only N left and right ¢; , and v, ;. Therefore, ; () # 0 (respectively 1} (x) # 0) for less
than or equal to 3NV of the ¢, ; (resp. ;) at resolution level j for each = € [0,1]. By construction of the basis,
each of ¢, @é’,lw w;’,k for k=0,...,N—1and ¢; _,, ¢, , for k=1,..., N are continuous and therefore attain
a finite maximum on [0, 1]. Therefore, each of the ¢, j and v; ; are uniformly bounded by some multiple of 27 /2
and so:
< Lo/2 Lo/2 L/2 < oL/2
Ep,7 SBN x ( 2 + 2 +...+ 2 ) S 2
for the ¢, for the ¥,k for the 9 1

The result then follows because J = 211, For part (b), because fx is uniformly bounded away from 0 and oo

and the wavelet basis is orthonormal for L?[0, 1], we have

1
VB[R (X)o7 (X:) o < v/ </ z/J"(f'?)l/f‘](iﬂ)’dx) v = vl
0
and so all eigenvalues of G are uniformly (in J) bounded away from 0 and oco. Part (c) follows directly. O

Proof of Lemma E.4. Lemma E.3 implies that each of the factor vectors in the tensor product at level j
has ¢* norm of order O(2%/2) uniformly for = (x1,...,24)" € [0,1]% and in j. There are at most 2¢ such
tensor products at each resolution level. Therefore, &, 7 = O(295/2) = O(V/J) since J = O(29F). Parts (b) and
(c) follow by the same arguments of the proof of Lemma E.3 since the tensor-product basis is orthonormal for
L%([0,1]9). O

G.9 Proofs for Appendix F

Proof of Lemma F.2. ||[A™' — I ||p> = [|[A" YA — L)|l2 < |A"Y o2 || A — I-|| 2. O

Proof of Lemma F.4. The first assertion is immediate by Theorem 3.3 of Stewart (1977) and definition of

A, and B; . For the second part, Weyl’s inequality implies that smin(B) > %smin(A) whenever ||[A — Bl|pz <

%Smin(A). D
Proof of Lemma F.5. ||A]||% = Amax(A; (A7)) = Amax((A’A) 1) = 1/Anin (A’ A) = spmin(A4) 72 O
Proof of Lemma F.6. The result follows from Li, Li, and Cui (2013) (see also Stewart (1977)). O

Proof of Lemma F.7. We prove the results for §0; convergence of é?b and ég is proved in Lemma 2.1 of
Chen and Christensen (2015). Note that

§° =57 =3 07ty PR W) (X)) - ERF (W (X) 6 = Y=
=1 =1
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where ||Z;]|2 < 2n*1(b,KC¢,J. Also,

n

> BlEE?)

i=1

< YIBIG, PR (W) (X:)' G (Xa)bE (Wa)' Gy 2 lee

02

IN

n1E S| EIG PhE (W (W) Gy e
nL¢2 e

—1,2
Cp,7

by the fact that ||I]|;> = 1. An identical argument yields the bound || Y27 | E[E¢'ES]|l,2 < n~'(} ;. Applying a
Bernstein inequality for random matrices (Tropp, 2012, Theorem 1.6) yields

P (||§O — 5% p2 > t) <2expllogK — —t*/2 )
- (Coxe V€ p)/m+ 2Go, K Gy, st/ (3n)

The convergence rate ||§ © — S°||p2 from this inequality under appropriate choice of ¢. O

Proof of Lemma F.9. Let b (z) = G, /*b®(z) and denote b5 (z)' = (bg1(x),...,bxx(x)). As the sum-

mands have expectation zero, we have

B [IG, {8/ (Ho — Hy)/n — BB (W) (ho(X0) = hy (X))}

IN

K
Z (brcr(W3))*(ho(X;) — hJ(Xi))Q]
1

K G
—llho % A 25|

IN

lho = hllF2(x) -

The result follows by Chebyshev’s inequality. O

Proof of Lemma F.10. We begin by rewriting the target in terms of the orthonormalized matrices

(@;1/23\);@;1/26';/2—(Gb_lmS)f _ G—1/2{(So/Go 150) lsv\o/égfl_(solso)flso/}
Gy GRS (@) T = (50 ) (74)

We first bound the term in braces. By the triangle inequality,

1((Gg)=1/259)7(Gg) =2 = (S°); |

Ao\ — Jo\— o\— Ao\ — o\ — o\ — (75)
< UG8 = (S) e 1GE) 2 e + 1(GE) 2 = ]2 1(S°) ez -
Lemma F.7 provides that
IGE = Il = Op(Gox/(log K)/n) (76)
15° =%l = Opl(Couke V Cuo)/Tog K) /) (77)

Let A,, denote the event upon which ||€1'§ —Ik|le2 < 3 and note that P(AS) = o(1) because ||é\g*IK||g2 = op(1).
Then by Lemmas F.2 and F.3 we have

1(G9) ™2 — I || V2||[(G9)YV? — Ikl

IN

IN

2 ~
L1
1+\/§” b KHZQ



on A,. It follows by expression (76) and the fact that P(AS) = o(1) that
1G5~ = Tl = Op(Goxc/(log K) /) (78)

which in turn implies that [|(G2)~Y2| = 1 + 0,(1).
To bound ||((@g)*1/2§°)l_ —(89) |2, it follows by equations (77) and (78) and the fact that ||S°||,2 < 1 that:

(G9)728° = 8°Y|,e < (G V2 — Ikle2 )10l ee + [15° — 82|z
= Op((Co,x V Cy,s)V/ (og K)/n). (79)

Let A, 1 C A, denote the event on which [|(G9)~/25° — §°|,» < 1 357k and note that P(AS, ;) = o(1) by virtue
of the condition s ((p,xc V Cp,7)\/(log K)/n = o(1). Lemma F.4 provides that

1((Gg)~128%) — (S°); llee < 2(1 + V5)s 2 [I(Gg)1/25° — 5°| 2 (80)

on A, 1, and so

(Gg)728%) 7 = (SO)] llee = Op(s72(Couic V Cpo1)/ (log K) /) (81)

by (79) and (80). It follows from equations (81) and (74) that:
1G5 297 G 2G> = (G2 8) e = Oy (57 G V o)V (08 ) (ne))

which, together with the condition J < K = O(J), proves part (a). Part (b) follows similarly.

For part (c¢), we pre and post multiply terms in the product by G;l/Z and GJ1/2 to obtain:

IG, 2 S{(G, Y 28)r Gy PGy — (G 29 e
= ||5°[50’(ég) S°)78(Gg)™ — S°[S'S°) 1S g2
< [IS°[SY(Gg) =SS (G TVAU(GE) TR — k) e
+H(S° - (Gg)~V/28°)[S(Gg) = 5%~ 8°(Gg) V2|2
+||( ) 1/250[SOI(G0) §] Sol(Go) 1/2_80[50/50]71‘80/”[2. (82)

Note that H((ég)’l/zg")l_\\gz < 287 on Ay 1 by Lemma F.5, so
I((GE)"25%) llee = Op(s7xc) - (83)
It follows by substituting (78), (79), and (83) into (82) that

IG, 2 S{(G, 28)7 G, PGy — (G, V2 8) Y e

< OP(SJK(Cb,K V Gy,a)y/ (log K)/n)
+[[(Gg) /2808 (Gy) = §°) 87 (Gg) 1 /? — 8°[S”'S) 1S = (84)

The remaining term on the right-hand side of (84) is the £2 norm of the difference between the orthogonal

projection matrices associated with S and (G2)~/25°. Applying Lemma F.6, we obtain:

1(Gg)~1/28°[S(Gg) = §°) =8 (Gg) 1/ — S°[S”'S°) 1S |2 < 255 |[(G)~/25% — 5|2
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on A, 1. Result (c) then follows by (79) and (84). O
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