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Monetary policy switching and indeterminacy
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Magali Marx
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This paper determines conditions for the existence of a unique rational expec-
tations equilibrium—determinacy—in a monetary policy switching economy.
We depart from the existing literature by providing such conditions consider-
ing all bounded equilibria. We then apply these conditions to a new Keynesian
model with switching Taylor rules. First, deviation from the Taylor principle in
one regime does not necessarily cause indeterminacy. Second, very different re-
sponses to inflation may trigger indeterminacy even if both regimes satisfy the
Taylor principle. Determinacy thus results from the adequacy between monetary
regimes rather than the determinacy of each of them taken in isolation.
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1. Introduction

Good monetary policy should prevent indeterminacy, i.e. the existence of multiple sta-
ble equilibria. Without a policy tool to coordinate expectations on a particular equi-
librium an economy experiencing indeterminacy may respond to nonfundamental
sunspot disturbances, and hence, may be affected by extrinsic volatility. Since limiting
inflation volatility is a widely-accepted objective for monetary policy, extrinsic volatility
that is incapable of being controlled is undesirable from a policy perspective. If mone-
tary authorities set the nominal interest rate as a state-contingent rule with constant pa-
rameters as suggested by Taylor (1993), preventing indeterminacy requires the nominal
interest rate to adjust by more than one-for-one in response to inflation. This condition
is known as the Taylor principle.
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Monetary policy, however, does not necessarily follow a constant-parameter rule.1

Many empirical works (for instance, Clarida, Galí, and Gertler (2000), Lubik and
Schorfheide (2004), Bianchi (2013)) document the existence of monetary policy switch-
ing in the post-World War II US economy. As a result, economic agents should inter-
nalize the possibility of future policy switches when forming their expectations. Since
determinacy depends on economic agents’ expectations, regime switching affects con-
ditions of stability and, therefore, requires an update of the Taylor principle.

In a regime switching environment, history-dependent equilibria may emerge mak-
ing determinacy dependent on restrictions of the class of equilibria. As noted by Farmer,
Waggoner, and Zha (2010), equilibria of a regime switching model can depend on all
past regimes. Previous literature (Davig and Leeper (2007), Farmer, Waggoner, and Zha
(2009b), Cho (2016)) however restricts admissible equilibria by imposing some restric-
tions in the way equilibria depend on past regimes.

In this paper, we characterize stable equilibria when the economy faces regime
switching without restrictive assumptions related to the class of equilibria, and, espe-
cially, without excluding equilibria dependent on past regimes. In particular, we study
determinacy in the context of a new Keynesian economy experiencing switching be-
tween multiple monetary policy regimes, described as periods for which the interest
rate obeys a constant-parameter Taylor rule. Our findings are fourfold.

First, we provide a necessary and sufficient determinacy condition for forward-
looking rational expectations models with parameters following a Markov process. This
condition requires that the sequence of matrices products dependent on future regimes
trajectories converges to a value below one. Yet, in general, this limit cannot be com-
puted analytically as it requires keeping track of an infinite number of trajectories.

Furthermore, we provide tools to apply our theoretical result in commonly used
models. First, we extend our results to models with predetermined variables. Second,
we provide for an algorithm that checks determinacy in less than 1 second in most of
parameters configurations. We establish that the efficiency of the algorithm depends on
the norm that is used and we greatly boost up the determinacy checking by choosing an
adequate norm.2

Second, we settle a controversy in the literature related to conditions of determinacy
(Davig and Leeper (2007), Farmer, Waggoner, and Zha (2010), Davig and Leeper (2010)).
Using a new Keynesian model with monetary policy switching, we show that imposing
that equilibria depend on a limited number of past regimes leads to an underestimation
of the indeterminacy region. All of the existing literature implicitly or explicitly restricts
the class of equilibria; see, for instance, Davig and Leeper (2007), Farmer, Waggoner, and

1There are at least three reasons to believe that the parameters of the monetary policy rule may vary over
time. First, if monetary policy is optimal, any structural change in the economy should result in a change
in monetary policy. Second, the monetary policy rule stems from multiple beliefs regarding the structure of
the economy, the role of monetary policy and monetary policy transmission mechanisms. All these beliefs
may change over time according to empirical as well as theoretical advances in macroeconomics. Third,
the rule captures economic preferences, which have little reason to be stable over time. Governors of major
central banks are chosen by the government according to the latter’s own preferences, and hence depend
on political cycles.

2All our algorithms are available in an additional separated file.
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Zha (2009b), Cho (2016), or Foerster, Rubio-Ramírez, Waggoner, and Zha (2016), provid-
ing a necessary but not sufficient condition for indeterminacy.3 To our knowledge, this
paper is the first to provide determinacy conditions for the whole class of equilibria.

Third, we apply our results to a two-monetary policy regime economy and we prove
that the Taylor principle is neither a necessary nor a sufficient condition for determi-
nacy.

Indeed, the Taylor principle is not necessary. One of the regimes can violate the Tay-
lor principle without triggering indeterminacy if monetary policy responds sufficiently
(but not too much) to inflation in the other regime. We hence resurrect one of the main
findings of Davig and Leeper (2007). Compared to this paper, such policy configurations
however appear less often and strong departures from the Taylor principle are not al-
lowed.

The Taylor principle is not sufficient either. Indeterminacy can emerge even if both
regimes adhere to the Taylor principle. Why does the Taylor principle fail? In a purely
forward-looking model, there is always a bounded equilibrium which is the unique equi-
librium associated with zero expectations. Indeterminacy thus appears if, and only if,
another equilibrium with non-zero expectations exists. As we focus on bounded equi-
libria, these nonzero expectations have to be consistent with a stable expectations path.
For instance, in an economy without regime switching, the Taylor principle guarantees
that any nonzero expectations will eventually diverge, and hence are not admissible. Ex-
pectations, however, diverge only asymptotically. In a finite-time horizon, expectations
may converge in one direction while diverging in others. These directions may change
from one regime to another. Regime switching may thus induce converging expecta-
tions.

More concretely, indeterminacy arises when the policy response to inflation changes
dramatically from one regime to another. In the monetary regime that reacts the most
strongly against inflation, the central banker provokes a large recession to stabilize infla-
tion in case of positive inflation expectations. In finite-time horizon, it means that infla-
tion expectations diverge while output gap expectations converge. In the other regime,
the reaction of the central bank to inflation may not ensure that inflation expectations
diverge for large output gap expectations. We thus identify cases in which the direction
of the convergence of expectations switches from one regime to another. This succes-
sion of “incompatible” local behaviors eventually allows for a nonzero stable expecta-
tions path and leads to indeterminacy.

Fourth, we show under which conditions the US Great Inflation in the 1970s could
have been caused by indeterminacy. Clarida, Galí, and Gertler (2000) famously suggest
that the great volatility in the 1970s was the consequence of a violation of the Taylor
principle. However, they rely on subsample estimations that do not take into account
expectations of regime switching. We calibrate a new Keynesian model following Lubik
and Schorfheide (2004) and check determinacy for different transition probabilities. We

3When a unique stable equilibrium among all possible equilibria exists, the unique stable equilibrium
depends only on current shocks and the current regime. Therefore, the unique stable equilibrium always
belongs to the classes of equilibria considered in these papers. However, for certain configurations of policy
parameters, such restrictions lead to conclude with determinacy while multiple stable equilibria exist.
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find that indeterminacy requires a highly persistent violation of the Taylor principle, that
is, the probability of remaining in this regime should be greater than 0�94. Such persis-
tence is consistent with the historical duration of the Great Inflation as well as estimated
parameters in the literature.

From a technical side, our stability concept is boundedness and departs from some
recent contributions (Farmer, Waggoner, and Zha (2009b), Cho (2016), Foerster et al.
(2016)) which favor the mean square stability concept. We adopt this concept for two
main reasons: first, it is the most common concept in the rational expectations liter-
ature, second, it is consistent with an underlying nonlinear model and a perturbation
approach (Barthélemy and Marx (2017)). Of course, the choice of the stability concept
matters for determinacy. However, we believe that our main argument—equilibria can
depend on past regimes and following, that determinacy conditions depend on the ex-
act class of equilibria—does not depend on the precise definition of stability. Extend-
ing our results to other stability concepts would be a natural avenue for future re-
search.

The remainder of the paper is organized as follows. In Section 2, we provide for a
simple new Keynesian model with monetary policy switching that we use throughout
the paper to illustrate our results and we depict the restrictions on the solution space,
done in the literature, and their consequences. We then turn to a general class of mod-
els in Section 3. We provide for a necessary and sufficient determinacy condition that
we complement with an efficient algorithm to check determinacy in practice. In Sec-
tion 4, we demonstrate that the definition of the solution space is crucial when deal-
ing with regime switching and we provide examples of sunspot equilibria. We illustrate
our results with two applications. First, we show the limits of the Taylor principle when
monetary policy’s reaction to inflation switches between different values in Section 5.
Second, we demonstrate that the US Great inflation could only have resulted from a vi-
olation from the Taylor principle if economic agents were convinced that this violation
was sufficiently long lasting in Section 6. Finally, we draw conclusions in Section 7.

2. Monetary policy switching

In this section, we present a new Keynesian model with monetary policy switching that
we will use throughout the paper and we recall standard determinacy conditions in the
absence of regime switching. Then we review existing findings in the literature and show
that the definition of the solution space is critical for determinacy conditions.

2.1 The model

We consider a log-linearized new Keynesian model following Clarida, Galí, and Gertler
(2000) and Woodford (2003) in which private decisions satisfy:

yt = Etyt+1 − σ
(
rt −Etπt+1 − rnt

)
� (1)

πt = βEtπt+1 + κyt + ut� (2)
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where variables yt , πt , and rt are respectively the output gap, inflation (in log), and the
nominal interest rate (in deviation around a certain steady state). The operator Et de-
notes expectations at time t. Equation (1) is an IS curve that links the output gap to all
future ex ante real interest rates and future and current shocks, rnt . Parameter σ mea-
sures risk aversion. Equation (2) is a new Keynesian Phillips curve linking inflation to all
future marginal costs summarized by the output gap. Parameter κ measures the degree
of nominal rigidities while β stands for the discount factor. Shock ut denotes a cost-push
shock translating the Phillips curve.

We define a monetary policy regime, denoted by st ∈ {1�2}, as a period during which
monetary policy obeys a Taylor rule. We suppose that regime st follows a Markov proc-
cess characterized by a transition probability matrix P ; the probability of switching from
regime i to regime j is denoted pij . The current policy regime is known to private agents
while future regimes are not. In regime st , the monetary authority sets the nominal in-
terest rate following:

rt = ρst rt−1 + (1 − ρst )
(
αstπt + γst yt + εrt

)
� (3)

where the parameters αst and γst measure the sensitivity of the interest rate to inflation
and to the output-gap in each regime. The parameter ρst stands for the inertia in mon-
etary policy decisions. For exposition purposes, we first consider the case ρst = 0 and
then show in Section 3.3 how to extend the results in a more general set up. The shock
εrt captures the unsystematic part of monetary policy. Finally, we assume that shocks are
bounded4 and, without loss of generality, are i.i.d. and zero mean.

Then the question is to determine conditions ensuring the existence of a unique
bounded equilibrium.5 We say that this economy is determinate if it admits a unique
bounded equilibrium. Otherwise, it is indeterminate.

By plugging the monetary policy rule, equation (3), into the IS curve, equation (1),
we end up with a system of two forward-looking equations simultaneously determining
inflation and the output gap:

�st zt = Etzt+1 +Ωεt� (4)

where the column vector zt denotes endogenous variables, [πt yt]′ and the column vec-
tor εt denotes the shocks, [ut εrt rnt ]′. The matrices �st and Ω which gather the parameters
of the model are given by

�st =
[

1/β −κ/β

σ(αst − 1/β) 1 + σγst + κσ/β

]
� Ω=

[
1/β 0 0

−σ/β −σ σ

]
�

Since shocks are uncorrelated, it seems natural to look for a solution with zero ex-
pectations. This is the case for the fundamental equilibrium, denoted by subscript F

4Boundedness of shocks is required since we are considering bounded equilibria.
5As proved below, there is always at least one bounded equilibrium satisfying the model when there is

no backward-looking component, ρst . Otherwise, the model may have no bounded equilibrium.
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and defined as zFt = �−1
st

Ωεt , which means

yFt = −σ
[
αstut − rnt + εrt

]
1 + σγst + σαstκ

and πF
t = κyFt + ut� (5)

The question is then whether or not this equilibrium is unique.

2.2 In the absence of regime switching

We start with studying the case without regime switching (�1 = �2 = �).
The bounded equilibrium (πF

t � y
F
t ) is the only one consistent with zero expectations.

It is therefore natural to investigate whether expectations can be different from zero.
Following Sims (2002), we thus analyze expectations of inflation and the output gap,
which we denote by the column vector zet = Etzt+1. We also introduce the associated
forecast error, ξt+1 = zt+1 − zet . Finally, it is convenient to rewrite equation (4) as fol-
lows:

zet+1 = �zet − �ξt+1 −Ωεt+1� (6)

The equilibrium, zFt , is the unique bounded equilibrium if it is impossible to find
non-zero stable expectations satisfying equation (6). Suppose that at period 0, expec-
tations are different from zero. Then, depending on the eigenvalues of �, expectations
will explode or implode. If all eigenvalues of � are greater than one, then expecta-
tions diverge. As we rule out unbounded equilibrium, having nonzero expectations
in the first place is inconsistent with a stable equilibrium. This proves that zFt is the
only stable solution of the model. Thus, determinacy ultimately depends on the lowest
eigenvalue of this matrix. This condition is equivalent to: α + 1−β

κ γ > 1 (see Woodford
(2003)).

If monetary authorities do not respond to the output gap, monetary policy can pre-
vent indeterminacy by increasing the nominal interest rate by more than one-for-one
in response to inflation. Through such a policy, monetary authorities guarantee that
nonzero expectations diverge asymptotically. This result is known as the Taylor prin-
ciple.

The question we want to address in this paper is how these conditions evolve in the
context of a regime switching monetary policy.

2.3 The role of solution space in the literature

Davig and Leeper (2007) provide determinacy conditions for regime switching models
assuming that equilibria only depend on the current regime and shocks (see Branch,
Davig, and McGough (2007), for a discussion). By denoting by M0, the set of all bounded
equilibria satisfying this property, and by M = (P⊗1n)×diag(�1��2), Davig and Leeper’s
result can be restated as follows: there exists a unique bounded equilibrium in M0 if, and
only if, the spectral radius of M, that is, the largest eigenvalue in absolute value, is strictly
less than one. If it is not the case, then any bounded equilibrium in M0 can be put into
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the following form:

zt = zFt + Vstwt and wt = Jwwt−1 + ξt� (7)

with, ξt being any bounded zero mean process (Etξt+1 = 0) independent of current and
past regimes. The proof as well as the definition of matrices Jw and Vst can be found in
Appendix A.

Based on this result, Davig and Leeper (2007) prove that one monetary policy regime
can fail to satisfy the Taylor principle without endangering the overall determinacy as
long as the other regime is sufficiently frequent, long-lasting, and that the reaction to
inflation in the other regime is sufficiently great. They call this latter result the long run
Taylor principle.

However, their theoretical results do not hold when considering more general solu-
tion spaces and thereby cast doubts about the validity of the long run Taylor principle.
Farmer, Waggoner, and Zha (2010) have noticed, for example, that when α1 = 3, γ1 = 0,
α2 = 0�92, γ2 = 0, p11 = 0�8, and p22 = 0�95,6 bounded equilibria exist outside M0 on top
of the fundamental solution. They give the following example:

zt = zFt and wt = 0 if st = 1�

zt = zFt + V wt and wt = �wt−1 +Mξt if st = 2�

where matrices �, V , and M are given in Farmer, Waggoner, and Zha (2010) and ξt is
once again an i.i.d. zero-mean shock.

The reason why the Davig and Leeper (2007) result does not rule out this additional
bounded equilibrium is that the latter depends on past regimes and, therefore, does not
belong to M0. The additional part wt of the above equilibrium depends on past wt−1
which implicitly depends on all past regimes, while in equation (7), this additional part
does not depend on past regimes.

In fact, Farmer, Waggoner, and Zha (2011) prove that any equilibrium can be written
as follows:

zt = zFt + Vstwt� (8)

wt = φst−1stwt−1 + V ′
st
ξt� (9)

where Vst and φst−1st are regime dependent matrices and ξt is an arbitrary zero mean
process.

The sunspot component ξt may depend on past regimes in a sophisticated way, such
that checking the stability of the process wt is hard. To circumvent this issue, the liter-
ature (Farmer, Waggoner, and Zha (2011), Cho (2016), for instance) supposes that the
sunspot part ξt does not depend on past shocks or regimes. There is, however, no clear-
cut reason to make such an assumption. Indeed, the process ξt may depend on past
regimes and we show in Section 4 that its structure affects the stability of the process wt .
In the next section, we establish the determinacy conditions which are valid whatever
the structure of the process ξt and, therefore, do not depend on a particular restriction
to the solution space.

6Other parameters are calibrated as follows: β = 0�99, σ = 1, and κ= 0�17.
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3. Determinacy conditions

In this section, we first present the class of models we deal with (Section 3.1). Second,
we derive determinacy conditions for purely forward-looking regime switching models
without assuming restrictions on the solution space (Section 3.2). We then extend our
findings to regime switching models with backward-looking components (Section 3.3).
Finally, we provide a concrete and simple application and describe algorithms that
check our determinacy conditions efficiently (Section 3.4).

3.1 The class of models

Most micro-founded macroeconomic models may be summarized by a system of non-
linear equations involving structural parameters governing economic agents’ prefer-
ences, technology, market structures, and economic policies. Allowing these parame-
ters to switch over time results in nonlinear regime-switching models. When shocks are
small enough, the stability of this class of models can be checked by studying the de-
terminacy of linear regime-switching models as demonstrated by Barthélemy and Marx
(2017). In this paper, we focus on linear models of the following form:

AstEtzt+1 +Bst zt +Cst zt−1 +Dst εt = 0� (10)

where index t denotes time and belongs to {−∞� � � � �∞}, vector zt is a (n× 1) real vector
of endogenous variables, vector εt is a (p×1) real vector of exogenous shocks, and index
st indicates the current regime, in {1� � � � �N}. For any index i ∈ {1� � � � �N}, matrices Ai, Bi,
and Ci are (n × n) real matrices. We assume that matrices Ai and Bi are invertible. The
vector of shocks εt is assumed to be i.i.d. and bounded. Finally, we assume that regimes
follow a Markov-chain with constant transition probabilities:

∀(i� j) ∈ {1� � � � �N}2� Pr(st = j|st−1 = i) = pij� (11)

where the scalar pij is between 0 and 1 and naturally sums to 1 over regimes j. We thus
assume that transition probabilities are constant over time and over state.

We consider that an equilibrium is stable if it is bounded. Precisely, we assume
that F is a bounded set such that εt ∈ F , and we denote by εt = {εt� � � � � ε−∞} and
st = {st� � � � � s−∞} the history of shocks and regimes. We define a stable equilibrium as
follows.

Definition 1. A stable equilibrium is a function z on {1� � � � �N}∞ × F∞, satisfying the
model (10) and such that

‖z‖∞ = sup
zt �εt

∥∥z(st� εt)∥∥ <∞� (12)

We denote by B the set of all the bounded functions on {1� � � � �N}∞ ×F∞. The set B,
with the norm ‖ · ‖∞ defined in equation (12) is a Banach space.

Following the literature (Blanchard and Kahn (1980), Lubik and Schorfheide (2004)),
we say that the model/the economy is determinate if there exists a unique stable equilib-
rium. For purely forward-looking models (Cst = 0), when the model is not determinate
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there are multiple stable equilibria. Otherwise, when the model is not determinate there
are two distinct cases: either there are multiple stable equilibria or no stable equilibrium.

This definition leads to two remarks.
First, the stability concept in Definition 1 is similar to the one used in nonlinear ra-

tional expectations models (e.g., Woodford (1986), Jin and Judd (2002)). Farmer, Wag-
goner, and Zha (2009b) and many others derive determinacy conditions for mean square
stable equilibria belonging to a subclass of equilibria that we describe in Section 4. We
choose to stick to boundedness for the reasons described in the Introduction.

Second, we follow closely Woodford (1986) by assuming that time begins at −∞, and
hence that there is no initial condition. We thus search for stationary stochastic pro-
cesses that map all the past and current shocks and regimes to current endogenous vari-
ables. Such a definition is convenient because it allows us to apply usual techniques to
study the spectrum of isometries in Banach spaces (as in Conway (1990)); absent regime
switching, whether the starting date is finite or not is not crucial.7 In Section 4, we dis-
cuss how to reinterpret indeterminacy in a regime switching environment without an
initial date, as a problem of multiple initial conditions in an environment with an initial
date.

From an economic perspective, assuming that the model is valid from t = −∞ on-
wards, ensure that we do not underestimate the indeterminacy region by arbitrary re-
stricting the dependency of equilibria of past regimes. The related drawback is that we
may consider exotic equilibria that some readers may find unrealistic. The definition of
what is exotic and realistic being subjective and dependent of the considered problem,
we prefer adopting an agnostic view in this paper.

3.2 Determinacy conditions for purely forward-looking models

This subsection establishes the necessary and sufficient conditions for the existence and
uniqueness of a stable equilibrium when the model is purely forward-looking, that is,
when the matrices Cst = 0 for all st ∈ {1� � � � �N}. The model can then be rewritten as
follows:

�st zt = Etzt+1 +Ωst εt� (13)

where matrices �st = −A−1
st

Bst and Ωst = A−1
st

Dst . Notice that matrices �i are invertible
since matrices Ai and Bi are supposed to be invertible.

Let us first observe that equation (13) can be rewritten in terms of expectations as
follows:

zet = �st z
e
t−1 − �st ξt −Ωst εt� (14)

where the vector zet is the expectation at time t of endogenous variables at time t + 1,
that is, Etzt+1 and the column vector ξt is the associated forecast errors, zt −Et−1zt . De-
terminacy conditions of the original model are equivalently given by the existence of a
unique couple (ze�ξ) of bounded process and zero mean process satisfying equation

7Proposition 4 shows that determinacy conditions do not depend on this specific assumption.
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(14). By premultiplying this equation by �−1
st

and taking the expectations, we get the fol-
lowing relation:

Et�
−1
st+1

zet+1 = zet � (15)

which leads to, for any integer k> 1,

zet = Et
(
�−1
st+1

· · ·�−1
st+k

)
zet+k� (16)

As in Section 2.2, we see that the model is determinate if and only if the only stable
solution of (16) is zero. This relies on a sufficient decrease of Et (‖�−1

st
�−1
st+1

· · ·�−1
st+k

‖). We
denote by the scalar uk, a sequence that measures the rate of decrease of the expected
products of �i:

uk =
( ∑
(i1�����ik)∈{1�����N}k

pi1i2 · · ·pik−1k

∥∥�−1
i1

�−1
i2

· · ·�−1
ik

∥∥)1/k
� (17)

The determinacy condition is then given by the following.

Proposition 1. There exists a unique stable equilibrium if and only if the limit of uk,
when k tends to infinity, is smaller than 1. We denote by ν such a limit. When unique, this
equilibrium is then given by zt = �−1

st
Ωst εt .

We prove Proposition 1 in the Appendix B. We first prove that the sequence uk con-
verges and admits a limit independent of the chosen norm. If the limit is smaller than 1,
then the sequence Et�

−1
st+1

· · ·�−1
st+k

Xt+k tends to 0 whatever the bounded stochastic pro-
cess X , and hence the model admits a unique stable equilibrium. We prove the recipro-
cal by showing that if the limit is greater than one we can construct multiple bounded
equilibria, by applying the Gelfand theorem. Finally, when unique, the unique equilib-
rium depends only on the current regime and shocks (see Appendix A, equation (29)).

Proposition 1 extends standard determinacy conditions to Markov-switching ratio-
nal expectations models. When there is no regime switching (�st = � for any regime),
the existence of a unique stable equilibrium depends on the asymptotic behavior of
uk ∼ ‖�−k‖1/k. This sequence behaves as a decreasing exponential if and only if all the
eigenvalues of �−1 are less than one. This coincides with the well-known Blanchard and
Kahn conditions.

This proposition also extends the Farmer, Waggoner, and Zha (2009a) results to mul-
tivariate models. When the model is univariate, the matrices �st are commutative as they
are scalars. The limit of uk therefore depends on a simple combination between proba-
bilities and these scalars.

However, in general, the computation of the limit is challenging as the number of
terms to compute grows exponentially. This complexity comes from the noncommuta-
tivity of the products of the matrices appearing in the definition of the sequence, uk.
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Consequently, the speed of convergence is unknown.8 Behind this complexity, it may
be intuited that under some circumstances, economic agents’ decisions may depend on
the exact order of future regimes and the related expectations conditional on the con-
sidered path. Consequently, shocks and regimes in the distant past may impact current
decisions in the case of indeterminacy. The complexity of finding determinacy condi-
tions has been already mentioned by Costa, Fragoso, and Marques (2005) and Farmer,
Waggoner, and Zha (2009b).

Proposition 1 illustrates that the determinacy condition in general is highly complex,
conceptually and numerically. Proposition 2 proves that it is not necessary to compute
higher order terms of the sequence uk as long as uk is lower than one. Indeed, if one
term of the sequence is lower than one, it is sufficient to prove determinacy.

Proposition 2. If there exists k such that uk < 1, then there exists a unique equilibrium.

The proof of Proposition 2 is in the Appendix D. If it can be proven that there exists k
such that uk is smaller than 1, then its limit is smaller than 1. This condition converges
to the determinacy frontier established in Proposition 1 as k tends to infinity.

The reasoning is as follows. Assume that uk is lower than one. The question is
whether nonzero expectations, zet , are consistent with a bounded equilibrium satisfy-
ing equation (16). Suppose that these expectations are nonzero. Because uk < 1, we see
that expectations increase every k periods, that is, ‖zet ‖/(upk) < ‖zt+kp‖. Expectations
thus diverge. This proves that zet = 0 is the only possible equilibrium consistent with
bounded expectations. This reasoning is similar to the standard Blanchard and Kahn
(1980) forward iteration but instead of studying the relationship between the current
and immediate future periods, we link the current economic outcome with economic
agents’ expectations k-period ahead.

3.3 Determinacy conditions for general class of models

In this subsection, we extend previous results to solve general models under the form
(10), and we derive determinacy conditions for this extended class of models by com-
bining our previous results and an approach developed by Cho (2016). This latter pa-
per links the determinacy conditions of a purely forward-looking model to those of the
model with predetermined variables. This method is also close to the undetermined co-
efficient approach detailed in Uhlig (1999). Our method relies on three main steps.

The first step is to find invertible matrices {R1� � � � �RN } solving the system of matri-
cial equations:

Rst = Bst −EtAstR
−1
st+1

Cst+1� (18)

8The limit of sequence uk shares similar properties with mathematical objects such as the joint spectral
radius (e.g., Theys (2005)) and the p-radius. For instance, for a two-regime model, if the transition proba-
bilities are symmetric (p11 = p22 = 1/2), the limit of uk when k tends to infinity exactly corresponds to the
1-radius of {�−1

1 ��−1
2 }. We refer to Jungers and Protasov (2011) for a detailed presentation of this quantity.

The complexity of these concepts is therefore well known in control theory.
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such that the joint spectral radius of {R−1
1 C1� � � � �R

−1
N CN} is smaller than one.9 We denote

by ρ({R}) such a joint spectral radius. Cho (2016) and Foerster et al. (2016) have recently
provided algorithms solving this system of matricial equations (see also Maih (2015)).

The second step consists in defining a new variable wt as a linear combination of an
arbitrary bounded solution of the model (10) zt :

wt = zt −R−1
st

Cst zt−1� (19)

Notice that, once Rst is fixed, there are as many bounded solutions to model (10) as
variables wt . In addition, nothing guarantees that the newly created variable wt behaves
nicely (it can be non-Markovian if zt is non-Markovian for instance). Since the variable zt
is a solution to model (10), the new variable wt must satisfy the following purely forward-
looking model:

AstEtwt+1 +Rstwt +Dst εt = 0� (20)

The third step is to check whether equation (20) admits a unique solution. If yes, then
there exists also a unique solution to the initial model (10). The determinacy conditions
of the forward-looking model (20) will thus provide the determinacy conditions of the
initial model (10). According to Proposition 1, these determinacy conditions will depend
on the limit of a sequence vk denoted by ν({R}) and defined, as in Section 3.2, by

ν
({R}) = lim

k→∞

( ∑
(i1�����ik)∈{1�����N}k

pi1i2 · · ·pik−1k

∥∥R−1
i1

Ai1R
−1
i2

Ai2 · · ·R−1
ik

Aik

∥∥)1/k
�

We index by the superscript h ∈ {1� � � � �H} the different sets of matrices {Rh} =
{Rh

1 � � � � �R
h
N } that are solutions to the matricial equations (18). Based on the analysis

of the associated joint spectral radius ρ({Rh}) and limit ν({Rh}), Proposition 3 allows to
check determinacy in most circumstances.

Proposition 3. 1. If there exist h such that ρ({Rh}) < 1 and ν({Rh}) < 1, then the model
admits a unique stable equilibrium given by

zt = (
Rh
st

)−1
Cst zt−1 − (

Rh
st

)−1
Dst εt; (21)

2. If there exist h such that ρ({Rh}) < 1 and ν({Rh}) > 1, then the model admits mul-
tiple stable equilibria;

3. If there exist h such that ρ({Rh}) > 1 and ν({Rh}) < 1, then the model admits no
stable equilibrium;

4. If for all h, ρ({Rh}) > 1 and ν({Rh}) > 1, then we cannot conclude.

Proof. The proof of Proposition 3 is given in the Appendix E. The structure of the model
is such that the case 3 is disconnected from cases 1 and 2. The first case ensures that

9The joint spectral radius is the maximum growth rate of the product of matrices. For a set of matrices
{M1� � � � �MN }, the joint spectral radius is defined as ρ(M1� � � � �MN) = lim supk{‖Ms1 ���Msk‖1/k}.
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there exists a set of matrices {Rh
1 � � � � �R

h
N } satisfying equation (18) whose joint spectral

radius ρ({Rh}) is less than one, and thus that there exists at least one stable equilibrium
defined by equation (21). Then Proposition 1 proves that this equilibrium is unique if
and only if the limit ν({Rh}) is less than one. The second case is an extension of Proposi-
tion 1. The third case ensures that there only exists unbounded equilibria. In the fourth
case, we cannot conclude.

This proposition is forceful since it links the determinacy of models with predeter-
mined variables with the determinacy of purely forward-looking models like those de-
scribed by equation (13). The stability condition on the spectral radius ρ({Rh}) ensures
that, for a given bounded process wt , the process zt = (Rh

st
)−1Cst zt−1 + wt is a bounded

process while Proposition 3 ensures that there exists a unique bounded process wt .
Let explain how to use Proposition 3 in practice. First, find a particular solution {Rh}

to the system of quadratic equations (18). Second, compute the limit ν({Rh}) and the
spectral radius ρ({Rh}) and check whether one of the first three items of Proposition 3 is
satisfied. If yes, then determinacy is settled. Otherwise, find another solution to equation
(18), compute the limit, the spectral radius and so on. If after many trials, all the solu-
tions fit item 4 of Proposition 3, our method is inconclusive. However, we have never
found such a dead end up to now; in the absence of regime switching, this cannot occur
(see item 4, Proposition 4). In Section 3.4, we apply this Proposition to a simple example
that can be solved analytically, we also provide for a detailed algorithm (see Algorithm 2)
to apply this Proposition in practice, and we give methods to boost up the speed of the
computation of the limit ν({Rh}).

Without regime switching Let us show that Proposition 3 coincides with the standard
Blanchard and Kahn conditions absent of regime switching. Blanchard and Kahn (1980)
proves that the characterization of equilibria in the absence of regime switching relies on
the number of explosive eigenvalues (nF ∈ {0� � � � �2n}) of the matrix F defines as follows:

F =
[
−A−1B −A−1C

1 0

]
�

where we temporarily omit the indexes st and denote by A, B, C and D the matrices of
model (10), the model is then rewritten as

AEtzt+1 +Bzt +Czt−1 +Dεt = 0� (22)

Let denote by {Rh} with h ∈ {1� � � � �H} the H matrices that satisfy the matricial equation
(18):

R= B −AR−1C� (23)

We denote by ρ(X) the spectral radius of matrix X as a special case of the joint spectral
radius of a set of matrices. Proposition 3 can be rewritten as follows.
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Proposition 4 (Blanchard and Kahn (1980)). 1. If there exists h ∈ {1� � � � �H} such that
ρ((Rh)−1C) < 1 and ρ((Rh)−1A) < 1, then nF = n and the model admits a unique stable
equilibrium;

2. If there exists h ∈ {1� � � � �H} such that ρ((Rh)−1C) < 1 and ρ(A(Rh)−1) > 1, then
nF > n and the model admits multiple stable equilibria;

3. If there exists h ∈ {1� � � � �H} such that that ρ((Rh)−1C) > 1 and ρ(A(Rh)−1) < 1,
then nF < n and the model admits no stable equilibria;

4. The case where, for any h ∈ {1� � � � �H}, ρ((Rh)−1C) > 1 and ρ(A(Rh)−1) > 1 is
empty.

Proof. The proof combines known results on quadratic equations. The structure of
model (22) is such that cases 1 and 2 are disconnected (which is not obvious a priori). All
the details are in the Appendix F.

Proposition 4 gives an alternative characterization of equilibria based on matrices
R defined in equation (18). This characterization is less elegant than the one based on
eigenvalues of the matrix F but formally proves that our method is equivalent to Blan-
chard and Kahn (1980) conditions in the absence of Markov switching.

3.4 Determinacy conditions in practice

In this subsection, we explain how to manipulate determinacy conditions derived above
practically. We first show how to apply Proposition 3 in a flexible prices model with
a switching Taylor rule responding to past inflation. Because the model is univariate,
we can easily compute all the objects needed to apply Proposition 3 (especially the se-
quences of matrices Rh). We then provide for an algorithm that reduces the time needed
to check determinacy conditions of purely forward-looking models when an analytical
resolution is impossible. We show the time gains in the new Keynesian model in which
checking determinacy conditions using brute force may be very time consuming in cer-
tain parameters regions. We finally describe an algorithm to check determinacy condi-
tions for the general class of models including backward-looking components.

A simple application of proposition 3 We modify the new Keynesian model along two
lines: (i) prices are flexible (the parameter κ tends to +∞), and hence the output gap
yt = 0 for all t (ii) the nominal interest rate responds to past inflation:

it = αstπt +μstπt−1 + rnt � (24)

where the positive scalar μst measures the response of the nominal interest rate to past
changes in inflation. Equations (24) and (1) lead to the simple univariate equation:

Etπt+1 = αstπt +μstπt−1�

This model fits well Proposition 3 with matrices A1 = A2 = 1, B1 = −α1, B2 = −α2,
C1 = −μ1, and C2 = −μ2. Without loss of generality, we assume that the economy never
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Table 1. Illustration of Proposition 3 for different policy parameters (α1�α2).

(α1�α2) (r1� r2) ρ({R}) ν({R}) Case of Proposition 3

(0�2�2�5) (1�6 − 0�4i�−1�2 + 0�5i)
�

�

�

�
0�9

�

�

�

�
0�7 1

(1�6 + 0�4i�−1�2 − 0�5i) 0�9 0�7
(−2�1�−0�3) 4�6 2�2

(1�1) (−0�1�−1�1) 1�9 5�2

(1�6 − 1�1i�0�4 + 0�9i)
�

�

�

�
1�2

�

�

�

�
0�8 3

(1�6 + 1�1i�0�4 − 0�9i) 1�2 0�8

(2�1) (1�5�2�6)
�

�

�

�
0�5

�

�

�

�
0�5 1

(−0�1�−1�1) 3�3 8�8
(4�4�0�4) 3�4 1�5

(2�5�0�2) (−0�0�−6�0) 195�5 488�7

(0�5�4�6)
�

�

�

�
0�4

�

�

�

�
1�2 2

(0�5�4�6) 6�3 2�7

Note: See the text for detailed explanation of each column. Each group of lines correspond to a pair of policy parameter
(α1�α2). We surround the values of ρ({R}) and ν({R}) allowing to conclude in which case of Proposition 3 we are. Case 1 cor-
responds to a region of parameters that is consistent with a unique equilibrium (determinacy), Case 2 with multiple equilibria

(indeterminacy), and Case 3 with no equilibria. In this univariate example, ρ({R}) = max{ |μ1|
|r1| �

|μ2|
|r2| } and ν({R}) = 1−p11|r1| + p11|r2| .

remains in state 2 (p22 = 0). The matrices {Rh} in Proposition 3 are scalars r1 and r2,
solutions to the two quadratic equations:

[
p11r1 + (1 −p11)r2

]
r1 − α1r1 −μ1 = 0�

r1r2 = α2r2 +μ2�

Depending on the roots of these equations, Proposition 3 characterizes the equilib-
ria. Table 1 illustrate how to concretely apply Proposition 3 for four values of the pair
(α1�α2). We calibrate other parameters to μ1 = 0�2, μ2 = 1�2, p11 = 0�5. The first col-
umn reports the value of the pair (α1�α2); the second column reports all the roots of the
polynomial described above (r1� r2); the third column and the fourth column report the
computation of the joint spectral radius ρ({R}) and the limit ν({R}) for each root; finally,
the last column concludes based on Proposition 3. Notice that because the model is uni-
variate, we can easily compute the joint spectral radius as well as the limit. Figure 7 in the
Appendix reports the different regions of determinacy, indeterminacy, and no-equilibria
with respect to the pair (α1�α2). This graph shows that we never find the fourth case of
Proposition 3 in this simple example.

Boosting the convergence process Except very special cases such as the univariate envi-
ronment presented above, computing the limit involved in Proposition 1 may be time-
consuming. The speed of convergence of the sequence uk is sensitive to the choice of the
matricial norm ‖ · ‖. Though there is no known method to find the best matricial norm,
we propose a choice of norm that proves to be efficient in most applications. From any
matricial norm, ‖ · ‖, we can derive many norms by changing the basis of the vectorial
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space. We denote by ‖ · ‖Q such a norm:

‖A‖Q = ∥∥Q−1AQ
∥∥� (25)

where Q is an arbitrary invertible matrix. Let define Q∗
k the optimal matrix minimiz-

ing uk for an arbitrary k > 0 with respect to matrix Q. We then define the associated
sequence u�k as follows:

u�k =
( ∑
(i1�����ik)∈{1�����N}k

pi1i2 · · ·pik−1k

∥∥�−1
i1

�−1
i2

· · ·�−1
ik

∥∥
Q∗

k

)1/k
�

We now prove that this new sequence converges toward the same limit as the initial
sequence uk and can thus be used in practice to check determinacy of Markov switching
rational expectations models.

Proposition 5. The sequence (u∗
k) and the sequence (uk) admit the same limits.

Proof. Let us consider the sequence u∗
k defined when considering the matricial norm

‖ · ‖Q∗
k

for all k. It is evident in view of Proposition 2, that this sequence is above the
limit. Furthermore, this sequence is always smaller than uk (the sequence associated
to Q = 1n), which converges to ν according to Proposition 1. As a consequence, uk also
converges to ν.

Proposition 5 gives the best norm among the subset of norms generated by a basis
change in the vectorial space.

While this optimization is potentially costly for large k, it is really powerful in en-
hancing the accuracy of the approximation of the limit ν. Thus we recommend finding
first the best matricial norm for small k (let say k = 5) in order to find a matrix that is
convenient for the considered problem and then iterate on k without changing the ma-
tricial norm anymore. This method is both accurate and fast in most applications.

Let us now show the practicality of Proposition 5 in the monetary policy switch-
ing model presented in Section 2 when the Taylor rule does not incorporate backward-
looking component (ρst = 0). In Figure 1, we plot the determinacy region for parameters
calibrated as in Davig and Leeper (2007). The determinacy region is significantly smaller
than in their paper explaining why Farmer, Waggoner, and Zha (2010) can find policy pa-
rameters satisfying their determinacy conditions but consistent with multiple bounded
equilibria. We discuss economic consequences of this determinacy frontier in Sections 5
and 6.

The choice of the norm appears critical for the accuracy of the approximation of the
limit. Figure 2 reports the values of uk for different choices of norms with respect to the
computing time (in log scaled). The black line with diamonds plots the sequence when
we choose the optimal transition matrix Q∗

k for all k. Compared to other norms, this is
the most precise. However, the minimization is computationally costly.10 In practice, we

10This minimization can be computed analytically in some circumstances (depending on the chosen
norm). But the gain to compute it numerically appears small as the analytical result is difficult to manipu-
late.
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Figure 1. Determinacy condition and policy parameters. Note: The white area depicts the de-
terminacy region with respect to policy parameters α1 and α2. Other parameters are calibrated
as follows: γ1 = 0, p11 = 0�8, γ2 = 0, p22 = 0�95, κ = 0�17, β = 0�99, and σ = 1. The approximation
of the limit ν is computed by computing u20 with the optimized norm ‖ · ‖Q∗

15
.

Figure 2. Speed of convergence, accuracy, and norm choice. Note: The y-axis represents uk for
different chosen matricial norms for k < 16. The x-axis reports time in seconds (log-10 axis). The
black line reports matricial norm induced by the vector 2-norm. The grey plain line with crosses
(dotted line, plain line) reports convergence for norms induced by the vector ∞-norm, induced
by the vector 1-norm and the standard Frobenius norm, respectively. Along the black line with
crosses, we plot the sequence uk when we choose the basis change matrix Q∗

5 , that is, optimized
for u5, and along the black line with diamonds, when we choose the optimal matrix Q∗

k for all k
as in Proposition 5. Policy parameters are calibrated as follows: in regime 1, α1 = 1�4, γ1 = 0, and
p11 = 0�8 while α2 = 0�97, γ1 = 0, and p11 = 0�95. Programs are launched on an Intel(R) Core(TM)
i7-4770 CPU 3�4 GHz machine using Matlab R2014a.
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recommend computing first the optimized norm, ‖ · ‖Q∗
5

and then iterating to compute
the sequence of uk. This choice leads to an approximated value of the limit similar to
the optimal matrix choice but without implying such a large computational cost. In the
calibration used for the figure, determinacy can be settled in less than a second. We thus
propose the following algorithm.

Algorithm 1. Determinacy conditions for purely forward-looking models:

1. Choose a norm (among norms induced by a vectorial norm).

2. Compute the optimal basis change matrix Q∗
5 (this can be done by using expo-

nential matrices as a basis of the unitary matrix).

3. Compute uk for the matricial norm ‖ · ‖Q∗
k

for k> 5.

4. Stop if uk is lower than one or if the increment from k to k+ 1 is negligible com-
pared to the distance to 1 otherwise iterate step 3 for a larger k.

5. If uk<1, the model is determinate, indeterminate otherwise.

This algorithm is available in the Online Supplemental Material (Barthélemy and
Marx (2019)) and describes the computations required to get the black line with crosses
in Figure 2. In most cases, we found that the norm induced by the vector 1-norm is
the one providing the best speed/accuracy trade-off; however, we cannot reject that for
some economic problems, other norms should be preferred.

General algorithm Let us now present our proposed algorithm to solve and check
determinacy of regime switching models when introducing backward-looking compo-
nents. We closely follow the three steps identified in Section 3.3. The first step is to find
a set of matrices solving (18); the second step consists in checking the stability of this
set; the last step is to check the determinacy conditions of the forward-looking model
associated with this set of matrices.

The algorithm is as follows:

Algorithm 2. Determinacy conditions for general models

1. Find matrices {Rst } satisfying equation (18). To do so, one can use the forward
iteration procedure developed by Cho (2016).

2. Compute the joint spectral radius of this set of matrices, ρ({R}). We use the pro-
gram developed by Vankeerberghen, Hendrickx, and Jungers (2014) which provides up-
per and lower bounds of the joint spectral radius efficiently.

3. Compute the limit ν({R}) using Algorithm 1.

4. Conclude:

(a) If ρ({R}) < 1 and ν({R}) < 1, the model is determinate and the stable equilibrium
is given by equation (21).

(b) If ρ({R}) < 1 and ν({R}) > 1, the model admits many stable equilibria.

(c) If ρ({R}) > 1 and ν({R}) < 1, the model admits no stable equilibria.
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(d) If ρ({R}) > 1 and ν({R}) > 1 return to step 1 and try to find another solution to the
matricial equation (18) by using another solving techniques (Foerster et al. (2016), Maih
(2015), for instance).

The Matlab codes of Algorithm 2 are available in the Online Supplemental Material.
It is worth noticing that, in the economic models we have studied up to now, we have
never encountered case (d). We use this algorithm in Section 6.

4. Classes of equilibria and indeterminacy

In the absence of regime switching, restriction of the stochastic properties of the equi-
libria, such as their correlation with past fundamental shocks, does not affect stability.
By contrast, in a regime-switching economy, the stability of equilibria depends on their
co-movement with past regimes. By ruling out some classes of equilibria, the existing
literature thus underestimates the size of the indeterminacy region.

In this section, we construct some sunspot equilibria that have never been described
before and that appear when Proposition 2 is not verified. This illustrates the sensitivity
of determinacy conditions to restrictions related to the class of equilibria and argues in
favor of an intrinsic determinacy condition as in Proposition 5 that does not arbitrarily
restrict the solution space. For the sake of simplicity, we only consider purely forward-
looking models (13), the extension to predetermined variables in Section 3.3 can be used
to construct sunspots for more general models.

4.1 Sunspot equilibria

Here, we generalize the approach by Farmer, Waggoner, and Zha (2011). We focus on the
class of equilibria, Mq, that depend on lagged variables and regimes of this form:11

zt = zFt + Vt(st−q · · · st)wt�

wt = φt(st−q� � � � � st)wt−q + ξt�

where Vt(·) is a time-varying matrices depending on q last regimes and that belongs to
a single vector every q regimes. The scalar φt(·) is time-varying and the product of φ(·)
along a trajectory of q successive regimes is smaller than one. The sunspot shock ξt is a
zero mean i.i.d. shock. Finally, we assume that wt is zero for t ≤ 0. This type of solution
corresponds to recursive solutions which cyclically belong to the same one-dimensional
space and are exponentially decreasing on it.

We provide determinacy conditions for this particular subspace, Mq, in Proposi-
tion 6. We call a nonfundamental solution in Mq a sunspot equilibrium of order q.

11Class of equilibria considered by Davig and Leeper (2007), Farmer, Waggoner, and Zha (2011), or Cho
(2016) can be put into these forms.
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Proposition 6. If for a certain integer q, there exist Nq+1 real numbers in the open unit
disk, α(i0� � � � � iq), such that the highest eigenvalue of the matrix

[ ∑
(i1�����iq−1)∈{1�N}q−1

pii1pi1i2 · · ·piq−1j�
−1
i · · ·�−1

iq−1
α(i� i1� � � � � iq−1� j)

]
(i�j)

(26)

is larger than 1, then there exist multiple bounded solutions in Mq.

This proposition leads then to an algorithm easy to implement. First, we fix an in-
teger q (not too large). Then equation (26) defines a function of 2q+1 real numbers in
the open unit disk, for which we compute the maximum. When q increases, the cost of
computation is exponentially increasing.

We prove this proposition by constructing a continuum of stable equilibria in Ap-
pendix G. For a given length, q, the equilibria we consider depend on the q past regimes,
shocks and endogenous variables. These equilibria belong to a fixed span every q peri-
ods, and are exponentially decreasing. We notice that, when q increases, the size of the
state variables needed to describe the equilibrium increases.

As part of our reasoning for this proposition, let us first consider the special case of
a specific q-regime trajectory, (k0� � � � �kq−1�k0), which is sufficient to generate a larger-
than-one eigenvalue of the matrix defined by equation (26).12 In this case, there exists a
vector u such that pk0k1pk1k2 · · ·pkq−1k0�

−1
k0

· · ·�−1
kq−1

u = λu, with λ > 1. Suppose that the

economy is initially in regime k0 and that expectations zet belongs to the unstable eigen-
vector, u. In addition, suppose that all the future expectations are zero except along the
regimes’ trajectory (k0� � � � �kq−1�k0� � � � �kq−1�k0). Then, according to equation (16), the
expectations decrease exponentially every q periods. Hence, economic agents can form
nonzero expectations consistent with converging expectations. Therefore, the economy
is indeterminate. More generally, Proposition 6 proves that indeterminacy may arise in
a more general context where such a trajectory does not exist. It may happen when a
combination of trajectories leads to a larger-than-one eigenvalue. In this case, nonzero
expectations are consistent with converging expectations in many different regimes tra-
jectories.

A generalization of this proposition was recently advanced by Ogura and Jungers
(2014). Basically, these authors refine our results by replacing the weights, α(i� i1� � � � �
iq−1� j), in formula (26), with particular unitary matrices.13

The classes of equilibria that we consider in Proposition 6 encompass those con-
sidered in the literature (Davig and Leeper (2007), Farmer, Waggoner, and Zha (2009b),
Cho (2016), Foerster et al. (2016)). The equilibria put forward after Farmer, Waggoner,
and Zha (2009b) correspond to the specific case of q = 1. When q = 0, we find back the
regime dependent solution space of Davig and Leeper (2007). By focusing on smaller
classes of equilibria, the literature underestimates the size of the indeterminacy region.

12This corresponds to α(i0� � � � � iq) = δk0i0 · · ·δk0iq in equation (26), where δij = 1 when i = j.
13In their construction, the vector of endogenous variables belongs to a multidimensional space every q

periods.
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In turn, determinacy condition put forward in Section 3 takes into account all kinds of
sunspot equilibria.14

Proposition 6 also allows us to link our approach to the one with an initial condi-
tion and a starting date, helping interpreting indeterminacy in the context of regime
switching. When Proposition 6 proves that the model is indeterminate, Lemma 4 gives
examples of distinct stable equilibria solution of the model for any date greater than an
initial date t0 that we can reinterpret as an initial condition (t0 = 0). According to this
lemma, the model admits at least two different equilibria:

• A fundamental solution z1
t = zFt

• A nonfundamental solution z2
t = zFt + wt , where wt is given in Lemma 4, Ap-

pendix G: it depends on wt−1 and a sunspot component ξt independent of the history of
regimes st .

By assuming that wt = 0 for all t ≤ 0 and w0 = V (s0)ξ0 with ξ0 being any real-valued
scalar, we see that the two solutions only differ from date-0 and onwards because of
the sunspot component ξ0. The proposition is thus able to show that whenever there is
indeterminacy, there exists multiple initial conditions (w0 = 0 and w0 �= 0) at least in one
regime. Interestingly, indeterminacy does not necessarily mean that there are multiple
initial conditions for any initial regime, in contrast with the no regime switching case, in
which when the model is indeterminate there are always multiple initial conditions.15

4.2 Illustration in the monetary regime switching

We apply Proposition 6 to analyze the relationship between determinacy conditions and
the restriction of the class of equilibria. Figure 3 displays different determinacy frontiers
depending on the solution space: the whole solution space (the plain line), the regime
dependent equilibria, M0 (the line with crosses), and the sunspot equilibria of order q
built in Proposition 6 (the dashed lines).

The sufficient indeterminacy frontier nears the determinacy condition computed as
in Section 3.2 when the order of the sunspot equilibria q increases. The diminution of
the determinacy region when going from q = 0 to q = 1, that is to say when adopting
the solution space of Farmer, Waggoner, and Zha (2011), is substantial. However, push-
ing to a higher order is not negligible either, implicitly proving the existence of multiple
solutions of order larger than 1 even if there exists a unique bounded equilibrium in M1.

The existing literature increasingly adopts the restriction first proposed by Farmer,
Waggoner, and Zha (2009b) consisting of M1 and sometimes referred to as minimum
state variables solutions. Restricting the class of equilibria results in underestimating

14It is worth noting that some history dependent equilibria do not belong to Mq with a finite q.
15To get a simple intuition of this difference, consider a two-regime model with absorbing states. Sup-

pose that the first regime corresponds to a determinate model (when taken in isolation) while the second
corresponds to an indeterminate model (when taken in isolation). According to our definitions, we will say
that the regime switching model is indeterminate. But if the economy is initially in the first regime, there
exists a unique initial condition (and a unique path of the economy), while multiple initial conditions if the
economy is initially in the second regime.
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Figure 3. Existence of sunspots of order q. Note: The thick line displays the determinacy fron-
tier (constructed as in Figure 1), dashed lines correspond to sufficient indeterminacy conditions
given by Proposition 6 for sunspot equilibria of order q. The line with crosses represents the
Davig and Leeper (2007) determinacy condition. Probabilities are set to p11 = 0�8 and p22 = 0�95.

the size of the indeterminacy region. In Section 5, we provide economic results that are
valid for the broadest solution space.

5. The Taylor principle with regime switching

In this section, we discuss the usefulness of the Taylor principle as a guideline for mon-
etary policy in a context of regime switching. We put forward two main results. First,
we revisit one of the main findings of the paper by Davig and Leeper (2007). They show
that determinacy is not necessarily generated by a deviation from the Taylor principle
if this deviation is small and short lasting. We prove that the result remains valid even if
we consider all bounded equilibria. Thus, the criticism by Farmer, Waggoner, and Zha
(2010) does not invalidate this result even if the occurrence of such policy configurations
is substantially smaller than what was predicted by the long run Taylor principle initially
put forward.

Second, we show that indeterminacy can arise even if the two monetary policy
regimes satisfy the Taylor principle. This finding has also been noted by Foerster (2016)
and Cho (2016) in separate and independent works. However, we find that such config-
urations arise in more cases than what is put forward in these papers, because we do not
restrict the solution space. Finally, we give intuitions on why such policy configurations
lead to indeterminacy and draw some policy conclusions.

In this section, we assume that all the nonpolicy parameters are unchanged across
regimes. For policy parameters, we assume that the interest rate only reacts to inflation.
This assumption allows for an economic interpretation of our determinacy results with-
out loss of generality.
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5.1 The Taylor principle is neither necessary. . .

Result 1. A regime-switching economy may be determinate even if one of the regimes
does not satisfy the Taylor principle.

Monetary policy may deviate from the Taylor principle moderately (α1 = 0�98) but
relatively persistently (p11 = 0�95) without implying indeterminacy if monetary policy
reacts sufficiently to inflation in the other regime (for instance, if α2 = 1�5) as shown in
Figure 1. While the first regime is not active enough to ensure determinacy on its own,
expectations of a switch towards a more active regime are enough to anchor expec-
tations, and hence to rule out indeterminacy. Thus, expectations of a more aggressive
monetary policy may be effective in guaranteeing macroeconomic stability.

This result definitively proves the Davig and Leeper (2007) claim that “a unique
bounded equilibrium does not require the Taylor principle to hold in every period”. In
this paper, the authors obtain this result by restricting the solution space. The counterex-
ample given in Farmer, Waggoner, and Zha (2010) could suggest that this result does
not hold when considering a broader solution space. We prove that Davig and Leeper
(2007)’s result holds even if we consider the whole class of equilibria, and hence, is not
an artifact due to the specific solution space they consider.

However, compared to the paper by Davig and Leeper (2007), the occurrence of such
policy configurations is less frequent than initially conjectured as displayed in Figure 1.
Only small and brief deviations from the Taylor principle do not endanger determinacy
issues.

5.2 . . . Nor sufficient

Result 2. An economy may suffer from indeterminacy even if the two monetary policy
regimes satisfy the Taylor principle.

We identify such a configuration when the two monetary policies share the same
rule—the nominal interest rate reacts proportionally to inflation in both regimes—but
with different intensities. The two regimes satisfy the Taylor principle. In the first regime,
the less active one, the central bank reacts moderately to inflation (α1 = 1�01). In the
second, the more active regime, the central bank reacts (extremely) strongly to inflation
(α2 = 6). Proposition 6 proves that the economy is indeterminate when monetary policy
switches between prolonged periods of the less active regime (p11 = 0�95) and short-
lasting periods of the more active regime (p22 = 0�5).

Figure 8 in the Appendix plots the ten largest contributions to sequence uk, which
measures the convergence of expectations. The larger the contribution, the more con-
verging the expectations along the regimes trajectory. Unsurprisingly, a prolonged less
active monetary policy regime significantly contributes to an increase in this measure
of stability. Indeed, in this regime, monetary policy causes expectations to diverge but
only slowly as the response to inflation is weak in this regime. This regimes trajectory is
not enough however to explain indeterminacy by itself as the less active regime satisfies
the Taylor principle, and hence, induces determinacy when taken in isolation. The other
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Figure 4. Impact of a positive output gap expectation in a new Keynesian model with
Markov-switching monetary policy. Note: The two figures report the dynamics of the output gap
(left) and inflation (right) expectations to an expectation of an increase in the output gap in 17
periods. We relate the four largest contributors to u16 (see Figure 8). The bold line represents
the trajectories of inflation and the output gap conditional on staying in the less active regime
(regime 1). Along the plain line with crosses (the dashed line with diamonds and the dashed line
with squares), we plot the trajectories when the economy is in the more active regime during one
(two and three, resp.) period (regime 2) and in the less active regime afterward (regime 1). Policy
parameters and probabilities are set to α1 = 1�01, γ1 = 0, and p11 = 0�95 and α2 = 6, γ2 = 0, and
p22 = 0�5.

greatest contributions correspond to the alternation between a short period of the more
active regime and a protracted period of the less active regime. We explain in Figure 4
why these regimes trajectories explain indeterminacy.

Indeterminacy arises when expectations can be nonzero without generating diverg-
ing expectations. Figure 4 reports the responses of the output gap and inflation to a
17-quarter-ahead expectation conditional on the future regimes path. We plot the re-
sponses to an expected increase in the output gap (Etyt+17 = 1 while Etπt+17 = 0) in 17
quarters. If the model is determinate such expectations should necessarily lead to small
expectations in the first period (when weighted by the regime trajectory’s probability) as
nonzero expectations always diverge in a determinate economy.

Along the line without markers, we plot the expectations dynamics if the economy
remains in the less active regime. In this regime, a positive expectation of the output gap
in the remote future leads to inflationary pressure with the new Keynesian Phillips curve
explaining the downward dynamics of inflation expectations. On the other hand, these
inflation expectations lead to a moderate increase in the real rate that contributes to a
slightly moderate output gap through the IS-curve. This means that output gap expec-
tations increase up to the final period. If the period of less active monetary policy lasts
longer, then inflation expectations are finally completely stabilized through positive real
rates as the Taylor principle is satisfied in this regime. Hence, inflation expectations are
positive in the first period only because the duration of the sample is too short.
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Along the plain line with crosses, the dashed line with diamonds and the dashed line
with squares, we plot the expectations dynamics when the more active regime lasts one,
two, and three periods, respectively, and is followed by a long-lasting period of the less
active regime. The long-lasting period of the less active regime coincides with the case
described above (the lines without markers). Hence, in the more active monetary pol-
icy, the monetary authorities face positive inflation expectations and small output gap
expectations and react by raising the nominal interest to dampen contemporaneous in-
flation. The flip-side of this policy is a large fall in the output gap. In the end, we see
that period-1 expectations of the output gap are greater than period-17 output gap ex-
pectations while inflation expectations are close to zero in both cases. This means that
conditional on these regimes trajectories, nonzero expectations in the first period are
consistent with converging expectations. If such regime successions occur with suffi-
ciently large probabilities, multiple equilibria eventually arise.

This configuration is more likely to occur when the more active monetary policy
regime is infrequent and short-lasting. Conversely, indeterminacy occurs when the less
active monetary policy regime is very persistent. Figure 9 in the Appendix displays deter-
minacy regions with respect to the probabilities in each regime. Thus, contrary to what
one might expect, expectations of infrequent, highly active monetary policy regimes
may introduce converging nonzero expectations rather than increasingly diverging ex-
pectations, eventually leading to indeterminacy.

For two active monetary policy regimes to trigger indeterminacy, price stickiness is
crucial. In a flexible-price economy (κ → ∞), inflation is determined only by inflation
expectations since the feedback force between output and inflation observed in Figure 4
no longer holds. If a monetary policy satisfies the Taylor principle in the two regimes,
current and future monetary policies (whatever the regime) cause any nonzero inflation
expectations to explode.16 Hence, nonzero inflation expectations can be discarded and
inflation is uniquely defined. This is the reason why Result 2 does not hold in a Fisherian
model of inflation determination. More generally, the lesson is that the larger the model,
the more we should expect parameters configurations allowing for indeterminacy while
each regime induces determinacy when taken in isolation. Although we formally prove
Result 2 using an implausible calibration, this latter may therefore well be more worrying
in more realistic models.

5.3 Neither too weak nor too strong

One of the consequences of the two previous results is to potentially place some re-
strictions on the admissible monetary policy in a regime switching economy. Consider
a central banker who would like to prevent the economy from indeterminacy as this
can be an uncontrollable source of volatility. If the central banker knows that he will be
replaced by another central banker occasionally, determinacy conditions will generate
upper and lower bounds on his degree of reaction to inflation. We assume that mone-
tary policy reacts moderately to inflation in the most frequent and long-lasting regime

16In this environment, determinacy conditions depend on a simple combination of transition probabil-
ities and inflation reaction in both regimes (see Farmer, Waggoner, and Zha (2009a)).
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Figure 5. Which degree of activism? Nor too weak neither too strong. Note: The white area
represents the determinacy region with respect to the response to inflation in regime 2; the
light-shaded area represents a region in which there exists multiple bounded equilibria. Policy
parameters are calibrated as follows: α1 = 0�99, p11 = 0�95, and p22 = 0�5. The dark line shows the
index of stability, u20 for an optimized norm ‖ · ‖Q∗

5
. When this line is below one the economy is

determinate. Otherwise, it is indeterminate.

(p11 = 0�95 and α1 = 0�99) while the other regime is short-lasting (p22 = 0�5). Restrictions
on admissible policies are summed up below.

Too weak or too strong a response to inflation in the infrequent regime leads to in-
determinacy, while an intermediate response to inflation stabilizes the economy. Fig-
ure 5 shows determinacy regions with respect to the inflation response in the infrequent
regime. The grey area represents the indeterminacy region and the white area the de-
terminacy region. Determinacy arises for responses to inflation, α2, between at least 1�1
and 3�6 (white area).

This result stems from the combination of two effects. First, a large enough reaction
to inflation helps to rule out indeterminacy arising due to the passive monetary policy
in the long-lasting regime. By raising the nominal interest rate when facing inflationary
pressure, the central banker helps reduce the interplay between inflation and inflation
expectations (Result 1). Second, an excessively strong response to inflation in one mon-
etary policy regime increases the sensitivity of the output gap to expectations and may
eventually lead to indeterminacy (Result 2).

Thus, when choosing their policies, central bankers should internalize the possibility
of a switch to a passive monetary policy, and thus be forced to moderate their reaction
compared to what it would otherwise have been.

6. Indeterminacy and the US Great Inflation

In this section, we show that indeterminacy can explain the US Great Inflation period
in the 1970s as long as economic agents did not anticipate a regime switch with a suffi-
ciently high probability.
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We base our analysis on estimates by Lubik and Schorfheide (2004). According to
these authors, the failure of the Taylor principle in the 1970s explains the Great Inflation
in the 1970s (see also Clarida, Galí, and Gertler (2000)), while the post-Volcker active
monetary policy explains the great moderation afterward. We show that this result is
very sensitive to private agents’ expectations about future policies. Indeterminacy ap-
pears only if private agents expect to remain in the passive regime with a probability
higher than 0�93–0�94. The transition probability from the active regime to the passive
regime does not play an important role for determinacy conditions. This probability re-
mains crucial to ensure the isolation of the post-Volcker regime to potential sunspot
shocks in the other regime.

Calibration

We calibrate all parameters following Lubik and Schorfheide (2004).17 Their estimates
are obtained in the specific case where regimes are permanent, p11 = p22 = 1. Compared
to the previous section, their estimates exhibit changes in structural parameters and
persistence in the Taylor rule but the model can be written as in equation (10). We do
not take into account correlation between shocks and the autocorrelation of shocks as
they do not affect indeterminacy. According to these estimates, the response to inflation
in the first regime is 0�89 while it is 2�19 in the second. The Taylor principle is thus only
satisfied in the second regime, that is, the Post–Volcker sample.

Counterfactual exercise

We investigate to what extent the indeterminacy-based explanation of the 1970s US
Great Inflation depends on agents’ beliefs about transition probability toward a more
active monetary policy regime. We posit that private agents have never expected regime
switching in the past (as in Lubik and Schorfheide (2004)). Therefore, we assume that
the estimated parameters would have remained unchanged assuming different transi-
tion probabilities. We then conduct a counterfactual exercise and compute determinacy
conditions under different scenarios on transition probabilities. This counterfactual ex-
ercise resembles Bianchi (2013)’s paper. In this paper, the author studies dynamic prop-
erties of the US postwar economy by assuming determinacy and running counterfactual
simulations on beliefs about future policy regimes.

Results

The determinacy frontier is highly sensitive to the persistence of the pre-Volcker regime.
Figure 6 plots the determinacy region (in white) and the indeterminacy region (in dark
grey) depending on the probabilities to remain in the pre-Volcker regime (p11) and in the
post Volcker regime (p22). Since the Taylor principle is not satisfied in the first regime,
the economy is obviously indeterminate for p11 = p22 = 1. Indeterminacy disappears as
soon as the persistence of the pre-Volcker regime is sufficiently small, p11 < 0�94. The
probability to remain in the post-Volcker regime (p22) is not crucial for determinacy.

17We calibrate all the parameters following Table 3 (Prior 2) of Lubik and Schorfheide (2004). Using Prior
1 instead of Prior 2 does not change qualitatively the results.
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Figure 6. What if economic agents had expected regime switching? Note: The white area rep-
resents the determinacy region with respect to the probability to stay in the pre-Volcker regime,
p11 and in the post-Volcker regime, p22. The rest of the parameters are calibrated following Lu-
bik and Schorfheide (2004). The darkest region shows the indeterminacy region computed using
Proposition 3. We compute the index of stability, u20 for an optimized norm ‖ · ‖Q∗

5
following

Algorithms 1 and 2.

These features imply that the explanation of the US Great Inflation based on indeter-
minacy relies on the assumption that the probability to remain in this regime was suffi-
ciently high.

Furthermore, the estimated probabilities in the literature18 include transition proba-
bilities consistent with indeterminacy. This suggests that, given current empirical stud-
ies, we cannot refute the indeterminacy-based explanation by arguing that economic
agents expected regime switching. Besides, if economic agents believe that the post-
Volcker regime is not absorbing, it means that this latter regime is not isolated from the
passive monetary policy regime and can suffer from extrinsic volatility.

Finally, a further investigation into the private agents’ exact beliefs during the 1970s
would be crucial to settle whether indeterminacy can explain the Great Inflation or not.
To do so, one needs to estimate the model and transition probabilities simultaneously
allowing for determinacy and indeterminacy in the spirit of Baele, Bekaert, Cho, Inghel-
brecht, and Moreno (2015). This may be a rich avenue for future research but a challeng-
ing one since the structure of sunspot shocks can be extremely complex.

7. Conclusion

From a theoretical standpoint, this paper establishes a necessary and sufficient condi-
tion of determinacy for rational expectations models with Markov-switching. This con-
dition depends on the asymptotic behavior of all matrix products. The complexity raised
by regime-switching models reflects the path-dependency of economic agents’ expec-

18For instance, Bianchi (2013) estimated the 90% confidence interval for this probability between 0�83
and 0�96 with a posterior mode at 0�93. While they estimate a slightly different model, recent estimates by
Baele et al. (2015) also suggest a relatively high persistence of the passive monetary regime.
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tations. Hence, determinacy conditions in the presence of regime switching depend on
the restrictions of the solution space. To overcome this difficulty, we derive an efficient
algorithm to check determinacy in practice.

We then generalize the Taylor principle to a canonical monetary model in which
monetary policy switches between different Taylor rules. We establish a nontrivial rela-
tionship between monetary policy regimes and determinacy. On the one hand, an ac-
tive monetary policy may help anchor inflation expectations if the other regime fails
to satisfy the Taylor principle. On the other hand, an overactive monetary policy may
lead to indeterminacy. This aggressive monetary policy destabilizes the output gap by
overreacting to inflation expectations due to the other regime. This may happen even
if the two regimes satisfy the Taylor principle. This last result emphasizes the fact that,
even if the different regimes ensure determinacy when taken in isolation, regime switch-
ing itself may destabilize the economy, should these regimes be very different. We thus
identify situations in which policy switching itself, rather than one or the other policy, is
responsible for indeterminacy.

Finally, we revisit the explanation of Great Inflation based on indeterminacy. We find
that this argument is sensitive to agents’ beliefs about future regimes and especially the
probability related to a regime switch. The determinacy frontier with respect to transi-
tion probabilities is very close to estimated probabilities in the existing literature. A care-
ful examination of these beliefs is thus required to confirm or deny this explanation.

Appendix: Additional figures

Figure 7. Illustration of Proposition 3: determinacy and indeterminacy regions when Taylor
rules respond to past inflation. Note: We represent the different cases defined in Proposition 3
with respect to the responses of the nominal interest rate to current inflation in regime 1 α1 and
in regime 2 α2. We calibrate other parameters as follows: μ1 = 0�2, p11 = 0�5, μ2 = 1�2, p22 = 0.
Case 1 corresponds to the region of parameters that is consistent with a unique equilibrium (de-
terminacy), Case 2 with multiple equilibria (indeterminacy), and Case 3 with no equilibria.
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Figure 8. Ten largest contributions to a measure of expectations explosiveness. Note: We re-
port the ten largest contributions—in terms of the future regime trajectory and among 236 pos-
sible trajectories—to a measure of model stability, u16 (see Proposition 1). The x-axis represents
a particular regimes trajectory. The y-axis stands for the associated contribution to u16. A higher
contribution suggests that expectations diverge less along this regimes trajectory. When all the
contributions add up to less than one, this proves that the economy is determinate. Otherwise,
it suggests (without formally proving) indeterminacy. Finally, if one contribution is larger than
one, the economy is indeterminate and we can build converging nonzero expectations along this
regimes trajectory. Policy parameters and probabilities are set to α1 = 1�01, γ1 = 0, and p11 = 0�95
and α2 = 6, γ2 = 0, and p22 = 0�5.

Figure 9. Determinacy regions and persistence of regimes: new Keynesian model with
Markov-switching monetary policy. Note: The white area represents the determinacy region with
respect to probability of remaining in each regime; the light-shaded area a region in which there
exist multiple bounded equilibria. Policy parameters are calibrated such that the two regimes
satisfy the Taylor principle. Response to inflation in the first (second) regime is α1 = 1�01 (α2 = 6,
resp.).
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