
Econometrica Supplementary Material

SUPPLEMENT TO “MEDIA COMPETITION AND SOCIAL DISAGREEMENT”
(Econometrica, Vol. 90, No. 1, January 2022, 223–265)

JACOPO PEREGO
Economics Division, Graduate School of Business, Columbia University

SEVGI YUKSEL
Department of Economics, UC Santa Barbara

APPENDIX B: ADDITIONAL MATERIAL

B.1. Proof of Proposition 5

THE PROOF OF PROPOSITION 5 is divided into five lemmas, structured as follows:
Lemma B.1 proves claim (a) in the proposition; Lemmas B.2 proves claim (b); Lemmas
B.3 and B.4 are interim results that we use in the proof of Lemma B.5; finally, Lemma B.5
proves claim (c).

LEMMA B.1—Existence: Let f be regular, let N ≥ 1, and let I ≥ 1. An equilibrium of the
game exists.

PROOF: We first establish that an equilibrium of the game exists. As in Section 3, we
solve the game by backward induction. In the last stage of the game, each agent ti observe
the realized profile of (pure) editorial strategies and prices (xn� tn�pn)Nn=1. The agents’
equilibrium strategies are determined by Lemmas 1 and 2. These results are indepen-
dent of the distribution f and, thus, they equally apply to the case under consideration.
In the second stage of the game, each firm observes the realized profile of (pure) edito-
rial strategies and the vector of realized types (t1� � � � � tI), and chooses a price pn(ti) for
each type. Since firms observe types and can set discriminatory prices, the equilibrium
profile of prices is independent of the distribution f . As for the uniform case, given the
realized profile of (pure) editorial strategies, the prevailing equilibrium price for firm n is
max{0� v((xn� tn)|t) − V ((xn′� tn′)n′ �=n|t)}. Therefore, the expected profit for firm n is

�n

(
(xn� tn)Nn=1

) = I

∫ π

−π

max
{
0� v

(
(xn� tn)|t

) − V
(
(xn′� tn′)n′ �=n|t

)}
dF (t)� (B.1)

Next, we argue that for all n, �n((xn� tn)Nn=1) is continuous in (xn� tn)Nn=1. To see this, let
us consider an arbitrary sequence of editorial-strategy profiles ((xk

n� t
k
n )Nn=1)k ⊂ ([1/2�1] ×

T )N converging to (xn� tn)Nn=1 as k → ∞. We want to show that limk→∞ �n((xk
n� t

k
n )Nn=1) =

�n((xn� tn)Nn=1). Clearly, the set ([1/2�1] × T )N is compact. Moreover, 0 ≤ max{0� v((xk
n�
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tkn )|t) − V ((xk
n′� tkn′)n′ �=n|t)}≤ λ

√
2 for all k and t. We have

lim
k→∞

�n

((
xk
n� t

k
n

)N
n=1

) = I

∫ π

−π

lim
k→∞

max
{
0� v

((
xk
n� t

k
n

)
|t

) − V
((
xk
n′� tkn′

)
n′ �=n

|t
)}

dF (t)

= I

∫ π

−π

max
{

0� lim
k→∞

v
((
xk
n� t

k
n

)
|t

) − V
((
xk
n′� tkn′

)
n′ �=n

|t
)}

dF (t)

= I

∫ π

−π

max
{
0� v

(
(xn� tn)|t

) − V
(
(xn′� tn′)n′ �=n|t

)}
dF (t)

= �n

(
(xn� tn)Nn=1

)
�

The first equality follows from the dominated convergence theorem. The second equality
holds as the max operator is continuous. The third equality follows because v((xk

n� t
k
n )|t) =

λ(
√
xk
n + √

1 − xk
n cos(t − tkn )) is continuous in (xk

n� t
k
n ) for all n. Therefore, v((xn� tn)|t) −

V ((xn′� tn′)n′ �=n|t) is continuous. Therefore, for all n, the strategy space is compact and the
payoff function �n((xn� tn)Nn=1) is continuous. By Glicksberg’s theorem, the first stage of
the game admits a Nash equilibrium in mixed editorial strategies. Therefore, by backward
induction, the game admits an equilibrium. Q.E.D.

LEMMA B.2—Daily-Me: I: Let F be regular and let I ≥ 1. Fix an arbitrary sequence of
equilibria, one for each N . Denote by V (N|ti) the expected value of information for type ti in
the equilibrium with N firms. Then limN→∞ V (N|ti) = V̄ for all ti.

PROOF: Fix δ > 0 and let ξ1 = δ
2λ . Let V̄ = max(xn�tn) v(xn� tn|ti) = λ

√
2. This is the high-

est possible value that v(xn� tn|ti) can achieve and it is independent of ti. We show that
there exists N̄ such that for all N > N̄ and any equilibrium profile of possibly mixed edi-
torial strategies χ ∈ (
([1/2�1] ×T ))N , we have V (N|ti) = Eχ(maxn{v(xn� tn|ti)}) > V̄ −δ
for all ti ∈ T . Suppose not. That is, suppose that for all N , there is an equilibrium profile of
possibly mixed editorial strategies χ and a type t̄i such that Eχ(maxn{v(xn� tn|ti)}) ≤ V̄ −δ.
This implies that for all tj ∈ [t̄i − ξ1� t̄i + ξ1], Eχ(maxn{v(xn� tn|tj)}) ≤ V̄ − δ

2 . To see this,
suppose, by way of contradiction, that Eχ(maxn{v(xn� tn|tj)}) > V̄ − δ

2 . Denote by n(tj) the
random variable that, for each realization of χ, indicates the firm from which tj acquires
information. Note that for all tn ∈ T , cos(t̄i − tn) ≥ cos(tj − tn) −ξ1, since d

dt
cos(t− tn) ≤ 1.

We have that

Eχ

(
max

n

{
v
(
(xn� tn)|ti

)}) ≥ Eχ

(
v
(
(xn(tj)� tn(tj))|ti

))
= λEχ

(√
xn(tj ) +

√
1 − xn(tj ) cos(t̄i − tn(tj))

)
≥ λEχ(

√
xn(tj ) +

√
1 − xn(tj )

(
cos(tj − tn(tj)) − ξ1

)
≥ λEχ

(√
xn(tj ) +

√
1 − xn(tj ) cos(tj − tn(tj))

) − λξ1

≥ Eχ

(
max

n

{
v(xn� tn|tj)

}) − λξ1
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> V̄ − δ

2
− λξ1

= V̄ − δ�

The first inequality holds as, in the right-hand side, agent t̄i chooses the firm n(tj) that is
optimal for tj . The second inequality holds since cos(t̄i − tn) ≥ cos(tj − tn) −ξ1 for all tn. In
summary, this contradicts our assumption that Eχ(maxn{v(xn� tn|ti)}) ≤ V̄ − δ. Therefore,
it must be that Eχ(maxn{v(xn� tn|tj)}) ≤ V̄ − δ

2 .
Note that, by continuity of v((xn� tn)|tj) in tj , there exists ξ2 > 0 such that for all tj ∈

[t̄i − ξ2� t̄i + ξ2] such that v((1/2� t̄i)|tj) ≥ V̄ − δ
4 . Moreover, such ξ2 is independent of N .

Let ξ = min{ξ1� ξ2}, which in turn is independent of N . We have established that for all
tj ∈ [t̄i − ξ� t̄i + ξ],

Eχ

(
max
n′ �=n

{
v(xn′� tn′|tj)

}) ≤ Eχ

(
max

n

{
v(xn� tn|tj)

}) ≤ V̄− δ

2
< V̄− δ

4
≤ v

(
(1/2� t̄i)|tj

)
� (B.2)

Consider an arbitrary firm n that deviates from its equilibrium editorial strategy (χn) in
favor of the pure strategy (xn = 1/2� tn = t̄i). Its expected profits are

�n

(
(xn� tn)� (χn′)n′ �=n

) = I

∫ π

−π

Eχ

(
max

{
v
(
(xn� tn)|tj

) − V
(
(xn′� tn′)n′ �=n|tj

)
�0

})
dF (tj)

≥ I

∫ t̄i+ξ

t̄i−ξ

Eχ

(
max

{
v
(
(xn� tn)|tj

) − V
(
(xn′� tn′)n′ �=n|tj

)
�0

})
dF (tj)

≥ I

∫ t̄i+ξ

t̄i−ξ

Eχ

(
v
(
(xn� tn)|tj

) − V
(
(xn′� tn′)n′ �=n|tj

))
dF (tj)

= I

∫ t̄i+ξ

t̄i−ξ

v
(
(xn� tn)|tj

) −Eχ

(
V

(
(xn′� tn′)n′ �=n|tj

))
dF (tj)

= I

∫ t̄i+ξ

t̄i−ξ

v
(
(xn� tn)|tj

) −Eχ

(
max
n′ �=n

{
v(xn′� tn′|tj)

})
dF (tj)

≥ I

∫ t̄i+ξ

t̄i−ξ

(
V̄ − δ

4
− V̄ + δ

2

)
f (tj) dtj

≥ ICδξ

2
�

The first inequality holds since the integrand function is everywhere positive. The second
inequality holds by monotonicity of the operator Eχ. The second-to-last inequality obtains
as a consequence of Equation (B.2). The last inequality, instead, obtains because f (tj) ≥
C > 0 for all tj . We established that firm n can secure an expected profit of at least ICδξ

2
by deviating to (xn = 1/2� tn = t̄i). This lower bound is strictly positive and independent
of N . To conclude the proof, note that the industry profits are bounded above by IV̄ .
Therefore, when N firms are competing, there is at least one firm, which we denote by n,
whose expected equilibrium profits is �n(χ) ≤ IV̄/N . When N is large, ICδξ

2 > IV̄/N and
firm n is a strictly profitable deviation from its equilibrium editorial strategy χn in the first
stage of the game. Therefore, χ is not an equilibrium—a contradiction. Q.E.D.
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LEMMA B.3—Daily-Me: II: Let F be regular and let I ≥ 1. For any ti, denote by
(xN

n(ti)
� tNn(ti)

) the random variable specifying the information structure that agent ti acquires
in an equilibrium with N firms. Then (xN

n(ti)
� tNn(ti)

) → (1/2� ti) in probability as N → ∞.

PROOF: Fix ti, ε > 0, and a sequence of equilibria. For any N , denote by (xN
n(ti)

� tNn(ti)
)

the random variable specifying the information structure that agent ti acquires in equi-
librium. We want to show that for all δ > 0, there exists N̄ such that for all N > N̄ ,
Pr(‖(xN

n(ti)
� tNn(ti)

)− (1/2� ti)‖> ε) < δ. Suppose not. Then there is δ > 0 such that for all N̄ ,
there is N > N̄ such that Pr(‖(xN

n(ti)
� tNn(ti)

)− (1/2� ti)‖> ε) ≥ δ. Let (xn� tn) be a realization
of (xN

n(ti)
� tNn(ti)

) such that ‖(xn� tn) − (1/2� ti)‖ > ε. That is,
√

(xn − 1/2)2 + (tn − ti)2 > ε.
This implies that

max
{|xn − 1/2|� |tn − ti|

}
>

ε√
2
�

Consider the difference V̄−v((xn� tn)|ti) = λ(
√

2− (
√
xn+

√
1 − xn cos(tn− ti))). Suppose

|tn − ti|> ε√
2
. Then

V̄ − v
(
(xn� tn)|ti

) ≥ λ√
2

(
1 − cos(tn − ti)

)
>

λ√
2

(
1 − cos

(
ε√
2

))
=: K1(ε) > 0�

Conversely, suppose that |xn − 1/2|> ε√
2
. Then

V̄ − v
(
(xn� tn)|ti

) ≥ λ(
√

2 − √
xn −

√
1 − xn)

> λ

(√
2 − 1

2
(
√

1 + ε
√

2 +
√

1 − ε
√

2)
)

=: K2(ε) > 0�

Let K(ε) = min{K1(ε)�K2(ε)}. We established that for all realizations of the random vari-
able (xN

n(ti)
� tNn(ti)

) that satisfy ‖(xN
n(ti)

� tNn(ti)
) − (1/2� ti)‖ > ε, we have V̄ − v((xn� tn)|ti) >

K(ε) > 0. This implies that

Pr
(
V̄ − v

((
xN
n(ti)

� tNn(ti)

)
|ti

)
>K(ε)

) ≥ δ�

Since δ and ε are independent of N , we conclude that V (N|ti) = Eχ(v((xN
n(ti)

� tNn(ti)
)|ti))

does not converge to V̄ , a contradiction to Lemma B.2. Q.E.D.

LEMMA B.4: Let F be regular and let I ≥ 1. For any sequence of equilibria indexed by N ,

U (N) → I − 1
I

Eω�ti�tj

(



(
1√
2
uj(ω� tj)

)
ui(ω� ti)

)
+ V̄ �

PROOF: Fix N ≥ 1. Let χ be an equilibrium profile of (possibly mixed) editorial strate-
gies. Denote by (xn(ti)� tn(ti)) the equilibrium random variable which specifies the informa-
tion structure that is chosen by agent ti among those that are offered by the N firms. As
shown in the proof of Lemma 2 and Proposition 4, the agent’s expected welfare can be
written as

U (N) = EχE(t1�����tI ) (Eω

(
A−i(ω� t−i)u(ω� ti)

) + v
(
(xn(ti)� tn(ti)|ti) −pn(ti) (ti)

)
� (B.3)
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We begin by showing that

lim
N→∞

EχEti (v
(
(xn(ti)� tn(ti)|ti) −pn(ti) (ti)

) = V̄ � (B.4)

To see this, fix ti. We want to show that limN→∞ Eχ(pn(ti) (ti)) = 0. For each N , recall that
pn(ti) (ti) = v(xn(ti)� tn(tj)) − maxm �=n(ti) v((xm� tm)|ti). Thanks to Lemma B.2, it is enough to
show that

lim
N→∞

Eχ

(
max
m �=n(ti)

v
(
(xm� tm)|ti

)) = V̄ �

In Lemma B.3, we established that for all ti, (xn(ti)� tn(ti)) → (1/2� ti) in probability. This
implies that for any tj �= ti, as N goes to infinity, Pr(n(ti) = n(tj)) → 0. This implies that
the value generated for type ti by the firm acquired by tj should be a lower bound for
maxm �=n(ti) v((xm� tm)|ti) in the limit. Formally,

lim
N→∞

Pr
(
v
(
(xn(tj)� tn(tj))|ti

) ≤ max
n�=n(ti)

v
(
(xn� tn)|ti

)) = 1�

By the continuous mapping theorem, the fact that (xn(tj )� tn(tj)) converges to (1/2� tj) in
probability implies that v((xn(tj )� tn(tj))|ti) → v((1/2� tj)|ti) in probability. Now fix any ε > 0
and δ > 0. There exists tj close enough to ti such that V̄ − v((1/2� tj)|ti) < ε. Therefore,

Pr
(
V̄ − max

n�=n(ti)
v
(
(xn� tn)|ti

)
< ε

)
> 1 − δ�

That is, maxn�=n(ti) v((xn� tn)|ti) converges in probability to V̄ . Since |v| is bounded, this
implies that Eχ(maxn�=n(ti) v((xn� tn)|ti)) converges to V̄ . Together with Lemma B.2, this
shows that for any ti, limN→∞ Eχ(v((xn(ti)� tn(ti))|ti) − pn(ti) (ti)) = V̄ . Since ti was arbitrary
and its distribution is independent of χ, Equation (B.4) holds.

We are left to show that the first term in Equation (B.3) converges to

I − 1
I

Eω�ti�tj

(



(
1√
2
uj(ω� tj)

)
ui(ω� ti)

)
�

To this purpose, recall that

A−i(ω� t−i) = 1
I

∑
j �=i

aj(ω� tj)

= 1
I

∑
j �=i



(√

xn(tj)ω0 +
√

1 − xn(tj )

(
cos(tn(tj))ω1 + sin(tn(tj))ω2

))
�

Moreover, note that χ, ω, and (t1� � � � � tI) are mutually independent random variables.
Therefore, by swapping the order of integration and defining Ui(ω) = Etiu(ω� ti) to sim-
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plify notation, we obtain

lim
N→∞

EχE(t1�����tI )

(
Eω

(
A−i(ω� t−i)u(ω� ti)

)) = 1
I

lim
N→∞

Eω

(∑
j �=i

EtjEχaj(ω� tj)Etiu(ω� ti)
)

= (I − 1)
I

lim
N→∞

Eω

(
EtjEχaj(ω� tj)Etiu(ω� ti)

)
= (I − 1)

I
lim
N→∞

Eω

(
EtjEχaj(ω� tj)Ui(ω)

)
�

Fix (ω� tj). By Lemma B.3, the random variable (xn(ti)� tn(ti)) converges in probability to
the constant ( 1

2 � tj). Since 
(·) is continuous,



(√

xn(tj)ω0 +
√

1 − xn(tj )

(
cos(tn(tj))ω1 + sin(tn(tj))ω2

)) → 


(
1√
2
uj(ω� tj)

)

in probability, by the continuous mapping theorem. Moreover, since 
(·) ∈ [0�1], conver-
gence in probability implies convergence in expectation. That is,

lim
N→∞

Eχa(ω� ti) = 


(
1√
2
uj(ω� tj)

)
�

Moreover, since aj(ω� tj) ≤ 1, for all χ, Ui(ω)Eχaj(ω� tj) ≤ Ui(ω), and EωUi(ω) ∈ R.
Therefore, by the dominated convergence theorem,

lim
N→∞

EχE(t1�����tI )

(
Eω

(
A−i(ω� t−i)u(ω� ti)

)) = (I − 1)
I

lim
N→∞

Eω

(
EtjEχaj(ω� tj)Ui(ω)

)
= (I − 1)

I
Eω

(
Etj lim

N→∞
Eχaj(ω� tj)Ui(ω)

)

= (I − 1)
I

Eω�ti�tj

(



(
1√
2
uj(ω� tj)

)
ui(ω� ti)

)
�

which concludes the proof. Q.E.D.

LEMMA B.5: Let F be regular. There exists Ī such that for all I > Ī, the agent’s expected
welfare is higher under monopoly than perfect competition. That is, U (1) > limN→∞ U (N).

PROOF: We first compute U (1) and then compute limN→∞ U (N).
Monopoly, N = 1. Fix f and let N = 1. The monopolistic firm chooses (x�� t�) to maxi-

mize I
∫ π

−π
v((x�� t�)|ti)f (ti) dti = λI

∫ π

−π

√
x� +√

1 − x� cos(t� − ti)f (ti) dti. The first-order
condition with respect to t implies − ∫

sin(t� − ti)f (ti) dti = 0. By symmetry of f around
tm, the first-order condition is met at t� ∈ {tm� tm + π(modπ)} ⊂ [−π�π]. The second-
order condition with respect to t implies − ∫

cos(t� − ti)f (ti) dti ≤ 0. Since cos(t + π) =
− cos(t), we have that either

∫
cos(tm − ti)f (ti) dti ≥ 0 or

∫
cos(tm + π − ti)f (ti) dti ≥ 0

(or both). Without loss of generality, let tm be the type at which
∫

cos(tm − ti)f (ti) dti ≥ 0.
Therefore, the monopolist locates at t� = tm. Define βF = ∫

cos(tm − ti)f (ti) dti ∈ [0�1].
Given this, we can rewrite the monopoly profits for an arbitrary x as I(

√
x+ √

1 − xβF).
The first-order condition with respect to x gives

√
1 − x� = βF

√
x�, which implies x� =
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1
1+β2

F

. Hence, we established that the equilibrium editorial strategy chosen by a monopo-

list is ( 1
1+β2

F

� tm).
We now compute U (1). We begin by establishing that

Eti

(
u(ω� ti)

) = ω0 +βF

(
cos

(
tm

)
ω1 + sin

(
tm

)
ω2

)
� (B.5)

To see this, notice that

Eti

(
u(ω� ti)

) = ω0 +
∫ π

−π

(
cos(ti)ω1 + sin(ti)ω2

)
f (ti) dti

= ω0 +
(

cos
(
tm

)∫
cos

(
ti − tm

)
f (ti) dti − sin

(
tm

)∫
sin

(
ti − tm

)
f (ti) dti

)
ω1

+
(

sin
(
tm

)∫
cos

(
ti − tm

)
f (ti) dti − cos

(
tm

)∫
sin

(
ti − tm

)
f (ti) dti

)
ω2

= ω0 +βF

(
cos

(
tm

)
ω1 + sin

(
tm

)
ω2

)
�

In the first equality, we used ti = tm + (ti − tm) and the following two trigonometric
identities: sin(α + β) = sin(α) cos(β) + cos(α) sin(β) and cos(α + β) = cos(α) cos(β) −
sin(α) sin(β). In the second equality, we used that f is symmetric around tm (implying∫

sin(tm − t)f (t) dt = 0) and the definition of βF .
Equation (B.3) characterizes the expected welfare for a typical agent. When N = 1,

p�(ti) = v((x�� t�)|ti) for all ti. That is, the monopolist extracts all surplus from each type.
Therefore, the last two terms of Equation (B.3) cancel out. Thus, using the mutual inde-
pendence between ω and (t1� � � � � tI), we have

U (1) = E(t1�����tI )

(
Eω

(
A�

−i(ω� t−i)u(ω� ti)
))

= Eω

(
Et−i

(
A�

−i(ω� t−i)
)
Eti

(
u(ω� ti)

))
= Eω

(
Et−i

(
A�

−i(ω� t−i)
)(
ω0 +βF

(
cos

(
tm

)
ω1 + sin

(
tm

)
ω2

)))
= Eω

(
I − 1
I

Etj

(
a�(ω� tj)

)(
ω0 +βF

(
cos

(
tm

)
ω1 + sin

(
tm

)
ω2

)))

= Eω

(
I − 1
I



(√

x�ω0 +
√

1 − x�
(
cos

(
tm

)
ω1 + sin

(
tm

)
ω2

))

× (
ω0 +βF

(
cos

(
tm

)
ω1 + sin

(
tm

)
ω2

)))
�

(B.6)

Next, denote y = cos(tm)ω1 + sin(tm)ω2 ∼N (0�1), a= √
x�, and b= √

1 − x�. We have

U (1) = I − 1
I

Eω0

(
Ey

(

(aω0 + by)(ω0 +βFy)

))
= I − 1

I
Eω0Ey

(

(aω0 + by)(ω0 +βFy)

)
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= I − 1
I

Eω0

(
ω0Ey

(

(aω0 + by)

) +βFEy

(
y
(aω0 + by)

))
= I − 1

I
Eω0

(
ω0


(
aω0√
1 + b2

)
+ βFb√

1 + b2
φ

(
aω0√
1 + b2

))
�

The last line makes use of the properties of the normal distribution. Specifically, since
y ∼ N (0�1), we have that, for all α�γ ∈ R, Ey (
(α + γy)) = 
( α√

1+γ2
) and Ey (y
(α +

γy)) = γ√
1+γ2

φ( α√
1+γ2

) (for both, see Patel and Read (1996)).

Finally, we integrate with respect to w0. Define b̃= a√
1+b2

. We have

U (1) = I − 1
I

Eω0

(
ω0
(b̃ω0) + βFb√

1 + b2
φ(b̃ω0)

)

= I − 1
I

(
b̃√

1 + b̃2

φ(0) + βFb√
1 + b2

1√
1 + b̃2

φ(0)
)

= I − 1
I2

√
π

(√
x� +βF

√
1 − x�

)
= (I − 1)λ

√
1 +β2

F �

In the second line, we used once again the integral properties of the normal distribution
listed before. In the third line, we substituted the definitions of b̃, b, and a, and used the
fact that φ(0) = 1/

√
2π. In the last line, we used x� = 1

1+β2
F

and λ= 1
2I

√
π

. In passing, note
that βF = 0 if f is uniform. In such a case, the value of U (1) matches the one computed
in the Proof of Proposition 4.

Perfect Competition, N = ∞. Lemma B.4 showed that for any sequence of equilibria
indexed by N ,

lim
N→∞

U (N) = I − 1
I

Eω�ti�tj

(



(
1√
2
uj(ω� tj)

)
ui(ω� ti)

)
+ V̄ �

We begin by focusing on the first term of the right-hand side. Note that

Eω�ti�tj

(



(
1√
2
uj(ω� tj)

)
ui(ω� ti)

)

= Eω�tj

(



(
1√
2
uj(ω� tj)

)
Etiui(ω� ti)

)

= Eω�tj

(



(
1√
2

(
ω0 + cos(tj)ω1 + sin(tj)ω2

))(
ω0 +βF

(
cos

(
tm

)
ω1 + sin

(
tm

)
ω2

)))
�

where we used Equation (B.5) and the fact that (ω� ti� tj) are independent.
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Fix any tj and consider first the expectation with respect to ω. To simplify notation, let
us write tj = t and a = b= 1/

√
2. Then

Eω

(



(
aω0 + b

(
cos(t)ω1 + sin(t)ω2

))(
ω0 +βF

(
cos

(
tm

)
ω1 + sin

(
tm

)
ω2

)))
= Eω

(
ω0


(
aω0 + b

(
cos(t)ω1 + sin(t)ω2

)))
+βF cos

(
tm

)
Eω

(
ω1


(
aω0 + b

(
cos(t)ω1 + sin(t)ω2

)))
+βF sin

(
tm

)
Eω

(
ω2


(
aω0 + b

(
cos(t)ω1 + sin(t)ω2

)))
�

We compute this expectation term by term. We begin with the first term. Let yt =
cos(tj)ω1 + sin(tj)ω2 and note that yt ∼N (0�1). Define b̃= a√

1+b2
. Then, using the inde-

pendence of (ω0�ω1�ω2), we have

Eω

(
ω0


(
aω0 + b

(
cos(t)ω1 + sin(t)ω2

))) = Eω0

(
ω0Eyt
(aω0 + byt)

)
= Eω0

(
ω0


(
a√

1 + b2
ω0

))

= b̃√
1 + b̃2

φ(0)

= 1
2
φ(0)�

We now focus on the second term. We first integrate ω1, then ω2, and finally ω0. As we
have done before, we use the integral identity Ez(z
(α + γz)) = γ√

1+γ2
φ( α√

1+γ2
) for all

α�γ ∈R and z ∼N (0�1). Moreover, we use a new integral identity that gives us E(φ(α+
γz)) = 1√

1+γ2
φ( α√

1+γ2
) (see Patel and Read (1996)). We obtain

Eω

(
ω1


(
aω0 + b

(
cos(t)ω1 + sin(t)ω2

)))
= Eω0�ω2

(
Eω1

(
ω1


((
aω0 + b sin(t)ω2

) + b cos(t)ω1

)))
= b cos(t)√

1 + b2 cos2(t)
Eω0�ω2φ

(
aω0 + b sin(t)ω2√

1 + b2 cos2(t)

)

= b cos(t)√
1 + b2

Eω0φ

(
aω0√
1 + b2

)

= b cos(t)√
1 + b2

1√
1 + b̃2

φ(0)

= 1
2

cos(t)φ(0)�
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We now focus on the last term. We first integrate ω2, then ω1, and finally ω0. Otherwise,
the steps and properties we follow are identical to those from the second term:

Eω

(
ω2


(
aω0 + b

(
cos(t)ω1 + sin(t)ω2

)))
= Eω0�ω1

(
Eω2

(
ω2


((
aω0 + b cos(t)ω1

) + b sin(t)ω2

)))
= b sin(t)√

1 + b2 sin2(t)
Eω0�ω1φ

(
aω0 + b cos(t)ω1√

1 + b2 sin2(t)

)

= b sin(t)√
1 + b2

Eω0φ

(
aω0√
1 + b2

)

= b sin(t)√
1 + b2

1√
1 + b̃2

φ(0)

= 1
2

sin(t)φ(0)�

Putting all together, we have that

lim
N→∞

U (N) = I − 1
I

Eω�ti�tj

(



(
1√
2
uj(ω� tj)

)
ui(ω� ti)

)
+ V̄

= I − 1
I

Etj

(
1
2
φ(0) + 1

2
βFφ(0)

(
cos(tj) cos

(
tm

) + sin(tj) sin
(
tm

))) + V̄

= I − 1
I

1
2
φ(0)Etj

(
1 +βF cos

(
tj − tm

)) + V̄

= I − 1
I

1
2

1√
2π

(
1 +β2

F

) + λ
√

2

= λ(I − 1)
1√
2

(
1 +β2

F

) + λ
√

2�

For the fourth equality, we use the definition βF . Moreover, we used the fact that V̄ =
λ
√

2 and φ(0) = 1√
2π

. In passing, note that βF = 0 if f is uniform. In such a case, the
value of limN→∞ U (N) matches the one computed in Equation (A.9).

Comparison Between Monopoly and Perfect Competition. We established that

U (1) − lim
N→∞

U (N) = λ(I − 1)
√

1 +β2
F

(
1 −

√
1 +β2

F

2

)
− λ

√
2�

Note that for all nondegenerate distributions F , βF ∈ [0�1). Therefore, 1 >

√
1+β2

F

2 . That
is, for any distribution F , there exists a Ī such that for all I > Ī, U (1) > limN→∞ U (N).
That is, the expected welfare of a typical agent is higher when N = 1 than when N →
∞. Q.E.D.

REMARK B.1: Fix a regular F . For all N , the equilibrium editorial strategy of the mo-
nopolist maximizes G(N).
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PROOF: Fix N . Let (xn(i)� tn(i)) denote the editorial strategy associated with the signal
acquired by type ti and let a�(ω� ti) denote the optimal approval decision for type ti given
the signal induced by (xn(i)� tn(i)):

G(N) = E(t1�����tI )

(
Eω

(
A�

−i(ω� t−i)u(ω� ti)
))

= Eω

(
I − 1
I

Etj

(
a�(ω� tj)

)(
ω0 +βF

(
cos

(
tm

)
ω1 + sin

(
tm

)
ω2

)))

= Eω

(
I − 1
I

Etj

(



(√
x+

√
1 − x

(
cos(t)ω1 + sin(t)ω2

)))

× (
ω0 +βF

(
cos

(
tm

)
ω1 + sin

(
tm

)
ω2

)))

= I − 1
I

1√
2
φ(0)

(√
x+

√
1 − xβF cos

(
t − tm

))
�

The second line is established from Equation (B.6) in the proof of Lemma B.5. Suppose
that each agent’s approval decision depends on the sign of the signal she receives (to be
confirmed below). If everyone follows the signal, then the optimal solution involves pro-
viding the same information structure to all agents. That is, the solution is independent
of N . Therefore, the approval probability can written as a function of ω and a single edi-
torial strategy (x� t). The last line follows from implementing the same steps as the second
part (i.e., perfect competition, N → ∞) of the proof of Lemma B.5. Given this derivation,
it is immediate to see that G(N) is maximized when t = tm and x = (1 +β2

F)−1. As shown
in the first part (i.e., monopoly, N = 1) of the proof of Lemma B.5, this coincides with
the equilibrium editorial strategy of the monopolist. To conclude, note that x > 1/2, since
βF < 1, which implies that the signal induced is positively correlated with u(ω� ti) for any
ti, confirming that all types would indeed vote according to the sign of the signal. Q.E.D.

B.2. A Model of Multimedia

In the baseline version of the model, we assumed that agents can acquire at most one
signal. This section discusses an extension of our main result to the case when agents can
simultaneously acquire information from multiple firms. One obvious effect of increas-
ing the number of competing firms—for example, from N = 1 to N = 2—is that agents
can acquire more signals. This can, in principle, affect the results of the paper. Indeed,
if agents can process an unlimited number of signals at no cost and the price of these
signals converges to zero with N , then agents could learn the state as the market becomes
perfectly competitive.

While extending the main result to the multimedia case, we maintain the assumption
that agents are constrained in how many signals they can acquire or process. In particular,
we assume that each agent is endowed with a unit of time that she can divide among N
firms. That is, agent i chooses α subject to

∑
n αn ≤ 1 with αn ∈ [0�1] for all n. The term

αn represents the fraction of time that the agent spends on the signal supplied by firm n. It
is convenient to model firms’ editorial strategies using the vector notation introduced in
Section 2. In particular, firm n chooses bn ∈ R

3 such that ‖bn‖ ≤ 1. Fix a profile of editorial
strategies (b1� � � � � bN) and suppose that agent i’s information-acquisition strategy is α.
We assume that agent i observes the realization from a mixture signal characterized by
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bα, where bα�k = ∑N

n=1 αnbn�k for k={0�1�2}:

si(ω�b|α) =
(

N∑
n=1

αnbn

)
·ω+ εi = bα ·ω+ εi� (B.7)

Note that when α is degenerate, this reduces to our baseline model. Moreover, the value
of information given α, denoted by v(bα|ti), is still characterized by Lemma 2.26 Since εi

does not scale with N , this formulation preserves a key feature of the baseline model,
namely that the agent is constrained in how much she can learn about the state. At the
same time, the ability to mix among multiple signals allows an agent to “construct” signals
that are better tailored to her own needs.27 Nonetheless, the best mixture that type ti can
acquire is bti := 1√

2
(1� cos(ti)� sin(ti)), leading to the same first-best value V̄ .

The main challenge in such a model is to determine how profits of the firms are linked
to the value of information created for each agent and the competition in the market. To
make the model tractable, we make a reduced-form assumption on how a firm’s profit
from an agent depends on the surplus generated by the firm for the agent, that is, the
difference between the agent’s first-best value and the second-best value she could have
obtained in the absence of this firm. We assume that firm n’s revenue from agent ti is

p�
n(ti|b) = 1

N

(
max

α
v(bα|ti) − max

α′ :α′
n=0

v(bα′|ti)
)
� (B.8)

When α is degenerate, that is, agent i acquires information from a single firm, then firm
n’s revenue is the same as in our baseline model, net of weight 1

N
.28 Overall, a profile of

editorial strategies b induces profits for firm n that are �n(bn�b−n) = ∫
T
p�

n(ti|b) dF (ti).
Agents choose α to maximize v(bα|ti) − ∑

n:αn>0 p
�
n(ti|b). Note that the solution of

the agent’s maximization problem depends on maxα v(bα|ti) via p�
n(ti|b). Remark B.2,

which we present after the proof of the main result of this section, shows that if α̂i ∈
arg maxα v(bα|ti), then it also solves the agent’s maximization problem. Therefore, just
like in the baseline model, we can interpret p�

n(ti|b) as a price that the agent has to pay to
firm n to acquire its signal.

The next result shows that Proposition 5 extends to the multimedia model.

PROPOSITION 6—Multimedia: Fix any regular distribution F .
(a) Existence. An equilibrium exists for any N ≥ 1 and I ≥ 1.
(b) Daily-me. Fix any ti. As N → ∞, the equilibrium expected value of information for

type ti, V (N|ti), converges in probability to the first-best value V̄ .
(c) Inefficiency. There exists Ī such that for all I > Ī, the agent’s welfare in the multi-

media model is higher under the monopoly than perfect competition, that is, U (1) >
limN→∞ U (N).

26Lemma 2 uses the notation of θi—instead of ti as we do in this section—to denote an agent’s type. Re-
mark 1 establishes how one variable can be transformed into the other. For each ti , there is an equivalent
θi = (1� cos(ti)� sin(ti)).

27For example, suppose that ti = π/4, b1 = (0�1�0), and b2 = (0�0�1). Fix αi(1) = αi(2) = 1
2 . Then

v(bαi|ti) > v(b1|ti) = v(b2|ti). That is, the agent does strictly better by mixing than by acquiring a single sig-
nal.

28Any weighting vector (wi(1|b)� � � � �wi(N|b)) that possibly depends on i and b in a continuous manner
would generate the same results.
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PROOF: This proof is divided into five steps that closely follow and leverage on the
proofs of Lemmas B.1–B.5.

Step 1: Equilibrium Existence. Fix N and I. The time line in the multimedia model is
as in Figure 1, with the difference that prices are being set exogenously as a function of
the chosen profile of editorial strategies b. Using backward induction, we argue that an
equilibrium of the game exists. Fix an arbitrary profile of information-acquisition strate-
gies (α1� � � � �αI). Then Lemma 1 still characterizes the agents’ equilibrium approval de-
cisions. Now consider an arbitrary profile of editorial strategies b and the profile prices
(p�

n(ti|b))n that ensues. Agent ti’s equilibrium information-acquisition strategy consists of
choosing α to maximize v(bα|ti) − ∑

n:αn>0 p
�
n(ti|b). Note that v(bα|ti) − ∑

n:αn>0 p
�
n(ti|b)

is continuous in α ∈ R
N and that {α | αn ∈ [0�1]�

∑
αn ≤ 1} is compact. Therefore, the

agent’s problem admits a solution. In the first stage of the game, firms simultaneously
choose bn. Their payoff function is �n(bn�b−n) = ∫

T
p�

n(ti|b) dF (ti) = 1
N

∫
T

maxα v(bα|ti) −
maxα′:α′

n=0 v(bα′|ti) dF (ti). By the theorem of the maximum, maxα v(bα|ti) is continuous
is b. By a similar argument, one can show that maxα′:α′

n=0 v(bα′|ti) is also continuous is b.
Therefore, �n(bn�b−n) is continuous in b for all n. As in Lemma B.1, we invoke Glicks-
berg’s theorem to argue that, in the first stage of the game, a Nash equilibrium exists
in (possibly mixed) editorial strategies. By backward induction, we have shown that the
game admits an equilibrium.

Step 2: Convergence of Eχ(maxα v(bα|ti)). Fix δ > 0 and let ξ1 = δ
2λ , where λ = 1

2I
√
π

. We
show that there exists N̄ such that for all N > N̄ and any equilibrium profile of possibly
mixed editorial strategies χ, we have Eχ(maxα v(bα|ti)) > V̄ − δ for all ti ∈ T . Suppose
not. That is, suppose that for all N , there is an equilibrium profile of possibly mixed
editorial strategies χ and a type t̄i such that Eχ(maxα v(bα|ti)) ≤ V̄ − δ. This implies that
for all tj ∈ [t̄i − ξ1� t̄i + ξ1], Eχ(maxα{v(bα|tj)}) ≤ V̄ − δ

2 . To see this, suppose, by way of
contradiction, that Eχ(maxα{v(bα|tj)}) > V̄ − δ

2 . Denote by α(ti) the random variable that,
for each realization of χ, indicates the information acquisition strategy of type ti. That is,
α(ti) ∈ arg maxα v(bα|ti). Note that there exists a tα(tj) ∈ T and yα(tj) ∈ [0�1] and λα(tj) such
that bα(tj) = (bα(tj)�0�

√
yα(tj) cos(tα(tj))�

√
yα(tj) sin(tα(tj))), yα(tj) = b2

α(tj)�1 + b2
α(tj)�2 and λα(tj) =

1
I
√

2π(1+‖bα(tj )‖2)
. Note that for all tα(tj) ∈ T , cos(t̄i− tα(tj)) ≥ cos(tj − tα(tj ))−ξ1, since d

dt
cos(t−

tα(tj)) ≤ 1. We have that

Eχ

(
max

α

{
v(bα|ti)

}) ≥ Eχ

(
v(bα(tj )|ti)

)
= λα(tj)Eχ

(
bα(tj)�0 + √

yα(tj) cos(t̄i − tα(tj))
)

≥ λα(tj)Eχ(bα(tj)�0 + √
yα(tj)

(
cos(tj − tα(tj)) − ξ1

)
≥ λα(tj)Eχ

(
bα(tj)�0 + √

yα(tj) cos(tj − tα(tj))
) − λα(tj)ξ1

≥ Eχ

(
max

α

{
v(bα|tj)

}) − λα(tj)ξ1

> V̄ − δ

2
− λα(tj)ξ1

≥ V̄ − δ�
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The first inequality holds as, in the right-hand side, agent t̄i chooses the information acqui-
sition strategy α(tj) that is optimal for tj . The second inequality holds since cos(t̄i−tα(tj)) ≥
cos(tj − tα(tj)) − ξ1 for all tα(tj) and √

yα(tj) < 1. The last inequality uses that λα(tj)/λ ≥ 1. In
summary, this contradicts our assumption that Eχ(maxα{v(bα|ti)}) ≤ V̄ − δ. Therefore, it
must be that Eχ(maxα{v(bα|tj)}) ≤ V̄ − δ

2 .
Note that by continuity of v(bt̄i|tj) in tj , there exists ξ2 > 0 such that for all tj ∈ [t̄i −

ξ2� t̄i + ξ2] such that v(bt̄i|tj) ≥ V̄ − δ
4 . Moreover, such ξ2 is independent of N . Let ξ =

min{ξ1� ξ2}, which in turn is independent of N . We have established that for all tj ∈ [t̄i −
ξ� t̄i + ξ],

Eχ

(
max
α′:α′

n=0
v(bα′|tj)

)
≤ Eχ

(
max

α
v(bα|tj)

)
≤ V̄ − δ

2
< V̄ − δ

4
≤ v(bt̄i|tj)� (B.9)

Now fix an arbitrary firm n that deviates from its equilibrium editorial strategy χn in favor
of the pure editorial strategy bt̄i . Its expected profits are

�n

(
bt̄i � (χn′)n′ �=n

) = I

N

∫ π

−π

Eχ

(
max

{
v(bt̄i|tj) − max

α′:α′
n=0

v(bα′|tj)�0
})

dF (tj)

≥ I

N

∫ t̄i+ξ

t̄i−ξ

Eχ

(
max

{
v(bt̄i|tj) − max

α′ :α′
n=0

v(bα′|tj)�0
})

dF (tj)

≥ I

N

∫ t̄i+ξ

t̄i−ξ

Eχ

(
v(bt̄i|tj) − max

α′ :α′
n=0

v(bα′|tj)
)
dF (tj)

= I

N

∫ t̄i+ξ

t̄i−ξ

v(bt̄i|tj) −Eχ

(
max
α′:α′

n=0
v(bα′|tj)

)
dF (tj)

≥ I

N

∫ t̄i+ξ

t̄i−ξ

(
V̄ − δ

4
− V̄ + δ

2

)
f (tj) dtj

≥ ICδξ

2N
�

The first inequality holds since the integrand function is everywhere positive. The second
inequality holds by monotonicity of the operator Eχ. The second-to-last inequality obtains
as a consequence of Equation (B.9). The last inequality, instead, obtains because f (tj) ≥
C > 0 for all tj . We established that firm n can secure an expected profit of at least ICδξ

2N by
deviating to bt̄i . This lower bound is strictly positive and decreasing in N at rate 1/N . To
conclude the proof, note that by Lemma B.6 the maximum amount paid for information
by any agent can at most be V̄/N . This implies that the industry profits are bounded
above by IV̄/N . Therefore, when N firms are competing, there is at least one firm, which
we denote by n, whose expected equilibrium profit is �n(χ) ≤ IV̄/N2. When N is large,
ICδξ

2N > IV̄
N2 and firm n is a strictly profitable deviation from its equilibrium editorial strategy

χn in the first stage of the game—a contradiction.
Step 3: Convergence of bN

α(ti)
. Building on the previous argument, we now show that

bN
α(ti)

→ bti in probability as N → ∞. More formally, fix ti, ε > 0, and a sequence of equi-
libria. For any N , denote by bN

α(ti)
the random variable specifying the information structure

that agent ti acquires in equilibrium. As above, let bti := 1√
2
(1� cos(ti)� sin(ti)) be type ti’s
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first-best, that is, v(bti|ti) = V̄ . We want to show that for all δ > 0, there exists N̄ such
that for all N > N̄ , Pr(‖bN

α(ti)
− bti‖ > ε) < δ. Suppose not. Then there is δ > 0 such that

for all N̄ , there is N > N̄ such that Pr(‖bN
α(ti)

− bti‖ > ε) ≥ δ. Consider any particular
realization bi of the random variable bN

α(ti)
for which ‖bi − bti‖ > ε. Then there exists

K(ε) > 0 such that V̄ − v((xn� tn)|t) ≥ K(ε) (see Lemma B.3 for more details on K(ε)).
Thus, Pr(‖bN

α(ti)
− bti‖ > ε) ≥ δ implies that Pr(V̄ − v(bα(ti)|ti) ≥ K(ε)) ≥ δ. Since δ and ε

were fixed independently of N , we conclude that E(v(bα(ti)|ti)) does not converge to V̄—a
contradiction to Step 2 above.

Step 4: Convergence of U (N). Fix N ≥ 1. Let Bn ={bn ∈R : ‖bn‖ = 1}. Let χ ∈ ∏
n 
(Bn)

be a (possibly mixed) equilibrium profile of editorial strategy. Denote by bN
α(ti)

the equi-
librium random variable which specifies the signal that is acquired by type ti, possibly by
mixing those that are offered by the N firms. As usual, denote by A−i(ω� t−i) the equi-
librium approval rate excluding agent i. Following the proof of Lemma B.4, an agent’s
welfare can be written as

U (N) = EχE(t1�����tI )

(
Eω

(
A−i(ω� t−i)u(ω� ti)

) + v
(
bN
α(ti)

|ti
) −

∑
n|αn(ti)>0

p�
n

(
ti|bN

))
�

To compute the limit of U (N), we split the above expression into three parts. Fix an
arbitrary ti. First, note that by Lemma B.6, the total amount paid for information by
an agent is at most V̄/N . Therefore, limN

∑
n|αn(ti)>0 p

�
n(ti|bN) = 0. Second, as shown

in Step 3, bN
α(ti)

→ bti in probability as N → ∞, where bti is the first-best information
structure for agent ti. By the continuous mapping theorem, v(bN

α(ti)
|ti) → V̄ = λ

√
2 in

probability. Since |v| is bounded, convergence in probability implies convergence in ex-
pectation. Together with the first step, we have that for any ti, limN→∞ Eχ(v(bα(ti)|ti) −∑

n|αn(ti)>0 p
�
n(ti|bN)) = V̄ . Since ti was arbitrary and is independent of χ, we have that

limN→∞ EχEti (v(bα(ti)|ti) − ∑
n|αn(ti)>0 p

�
n(ti|bN)) = V̄ . The third and final step consists of

computing the limit of Eχ�t�ω(A−i(ω� t−i)u(ω� ti)). To this purpose, note that χ, ω, and
(t1� � � � � tI) are mutually independent random variables. Therefore, by swapping the order
of integration and defining Ui(ω) = Etiu(ω� ti) to simplify notation, we obtain

lim
N→∞

EχE(t1�����tI )

(
Eω

(
A−i(ω� t−i)u(ω� ti)

)) = 1
I

lim
N→∞

Eω

(∑
j �=i

EtjEχaj(ω� tj)Etiu(ω� ti)
)

= (I − 1)
I

lim
N→∞

Eω

(
EtjEχaj(ω� tj)Etiu(ω� ti)

)
= (I − 1)

I
lim
N→∞

Eω

(
EtjEχaj(ω� tj)Ui(ω)

)
�

Recall that aj(ω� tj) = 
(bN
α(tj )ω). Once again, as shown in Step 3, bN

α(ti)
→ btj in proba-

bility as N → ∞. By the continuous mapping theorem, 
(bN
α(tj)ω) → 
( 1√

2
uj(ω� tj)) in

probability. Moreover, since 
 is bounded, convergence in probability implies conver-
gence in expectation: limN→∞ Eχa(ω� ti) = 
( 1√

2
uj(ω� tj)). Following one-to-one the last
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few steps in the proof of Lemma B.4, we conclude that

lim
N→∞

EχE(t1�����tI )

(
Eω

(
A−i(ω� t−i)u(ω� ti)

)) = (I − 1)
I

Eω�ti�tj

(



(
1√
2
uj(ω� tj)

)
ui(ω� ti)

)
�

Therefore, U (N) → I−1
I
Eω�ti�tj (
( 1√

2
uj(ω� tj))ui(ω� ti)) + V̄ .

Step 5: Monopoly Versus Perfect Competition. When N = 1, the multimedia model
is identical to the baseline model: all agents acquire information from a single firm.
Therefore, U (1) = (I − 1)λ

√
1 +βF as computed in Lemma B.5. The same proof shows

I−1
I
Eω�ti�tj (
( 1√

2
uj(ω� tj))ui(ω� ti)) + V̄ = λ(I−1) 1√

2
(1+βF) +λ

√
2. Therefore, by Step 3,

we have that limN U (N) = λ(I − 1) 1√
2
(1 +βF) + λ

√
2. In summary, we argued that when

both N = 1 and N → ∞, the baseline model and the multimedia model generate iden-
tical expected utilities. Given this, the statement of Proposition 6 follows directly from
Proposition 5(c). Q.E.D.

REMARK B.2: Fix ti and a profile of editorial strategies b. Let α̂ ∈ arg maxα v(bα|ti).
Then

α̂ ∈ arg max
α

(
v(bα|ti) −

∑
n|αn>0

p�
n

(
ti|bN

))
�

PROOF: Suppose the statement is not true. That is, there is α̃ �= α̂ such that

v(bα̃|ti) −
∑

n|α̃n>0

p�
n

(
ti|bN

)
> v(bα̂|ti) −

∑
n:α̂n>0

p�
n(ti|b)�

Let N̂ ={n : α̂n > 0}\{n : α̃n > 0}. Note that N̂ �= ∅. Indeed, given that α̂ ∈ arg maxα v(bα|
ti), N̂ = ∅ would contradict the definition of α̃. Thus, we can rewrite the inequality above
as

v(bα̂|ti) − max
α|αn=0 ∀n∈N̂

v(bα|ti) <
∑
n∈N̂

p�
n(ti|b)�

However, a contradiction is reached by noting that

∑
n∈N̂

p�
n(ti|b) =

∑
n′∈N̂

1
N

(
v(bα̂|ti) − max

α|αn′ =0
v(bα|ti)

)

≤
∑
n′∈N̂

1
N

(
v(bα̂|ti) − max

α|αn=0 ∀n∈N̂
v(bα|ti)

)

=
(
v(bα̂i|ti) − max

αi|αi(n)=0 ∀n∈N̂
v(bα|ti)

)(∑
n′∈N̂

1
N

)

≤ v(bα̂|ti) − max
α|αn=0 ∀n∈N̂

v(bα|ti)�

The first inequality holds since, for all n′ ∈ N̂ , maxα{v(bα|ti)|αn = 0�∀n ∈ N̂}≤ maxα{v(bα|
ti)|αn′ = 0}. The last inequality holds since

∑
n′∈N̂

1
N

≤ 1. Q.E.D.
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LEMMA B.6: For any ti and b,
∑

n p
�(ti|b) ≤ V̄

N
.

PROOF: We switch to notation θi to denote an agent’s type. By Lemma 2, v(bα(θi)|θi) =
λα(θi)|θi · bα(θi)|, where λα(θi) = 1

I
√

2π(1+‖bα(θi)
‖2)

. We establish below that for all n with

αn(θi) > 0, the sign of θi ·bn is the same as the sign of θi ·bα(θi) . This allows us to move the
absolute value sign inside: v(bα(θi)|θi) = λα(θi)

∑
n αn(θi)|θi · bn|.

Assume θi · bα(θi) > 0. Now we show that for any n with αn(θi) > 0, θi · bn ≥ 0. The
proof for the other case, θi · bα(θi) < 0, follows a symmetric argument and, thus, it is
not replicated here. Assume for contradiction that there exists an n′ with αn′ (θi) > 0,
but θi · bn′ < 0. Consider α̃ such that α̃n = αn(θi) for all n �= n′ with α̃n′ = 0. Note that
|θi · bα̃|= |∑n�=n′ αn(θi)(θi · bn)| = θi · bα(θi) + αn′ (θi)|θi · bn′|>|θi · bα(θi)|. Also note that
‖bα̃‖ < ‖bα(θi)‖, implying λα̃ > λα(θi) . Therefore, we have v(bα̃|θi) > v(bα(θi)|θi), contra-
dicting α(θi) ∈ arg maxα v(bα|θi).

Using similar techniques, we can also show that maxα:αn=0 v(bα|ti) > λα(θi) ×∑
n′ �=n αn′ (θi)|θi · bn′|. This implies that p�

n(θi|b) = maxα v(bα|θi) − maxα:αn=0 v(bα|θi) ≤
λαiαn(θi)|θi · bn|. We conclude the proof by summing over n:

∑
n

p�
n(θi|b) = 1

N

∑
n

(
max

α
v(bα|θi) − max

α:αn=0
v(bα|θi)

)

≤ 1
N

∑
n

λα(θi)αn(θi)|θi · bn| = 1
N

max
α

v(bα|θi) ≤ V̄
N
�

Q.E.D.

B.3. Remaining Proofs

LEMMA B.7—Inequality. I: Let x� = 1/(1 + (sin(π/N)/π/N)2) and xn ∈ [1/2�1]. For
all N ≥ 3, v((xn�0)|2π/N) < v((x��0)|π/N).

PROOF: We begin by noting that

√
xn +

√
1 − xn cos(2π/N) ≤ max

xn∈[1/2�1]
v
(
(xn�0)|2π/N

) =
{

1 if N ≤ 4�√
1 + cos2(2π/N) if N ≥ 5�

Moreover, by substituting the definition of x� in v((x��0)|π/N), we obtain

√
x� +

√
1 − x� cos(π/N) = 2π/N + sin(2π/N)

2
√

(π/N)2 + sin2(π/N)
�

Let N ∈{3�4}. In such a case, it is enough to show that

1 <
2π/N + sin(2π/N)

2
√

(π/N)2 + sin2(π/N)
�

Rearranging and simplifying, 2π/N cos(π/N) − sin3(π/N) > 0. It is straightforward to
verify that this holds when N ∈{3�4}. Thus, let N ≥ 5. In such a case, it is enough to show
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that √
1 + cos2(2π/N) <

2π/N + sin(2π/N)

2
√

(π/N)2 + sin2(π/N)
�

Denoting y = π/N ∈ (0�π/5] and simplifying the above inequality, we obtain

G(y) = 1
4

sin2(2y) + y sin(2y) − sin2(y) − cos2(2y)
(
y2 + sin2(y)

)
> 0�

Note that G(0) = 0. To conclude the proof, we will show that G′(y) > 0 for all y ∈ (0�π/5].
Note that

G′(y) = sin(2y) cos(2y) + sin(2y) + 2y cos(2y) − 2 sin(y) cos(y)

+ 4 cos(2y) sin(2y)
(
y2 + sin2(y)

) − cos2(2y)
(
2y + 2 sin(y) cos(y)

)
�

Since 2 sin(y) cos(y) = sin(2y), the second and fourth terms cancel. Moreover,

G′(y) = sin(2y) cos(2y) + 2y cos(2y)

+ 4 cos(2y) sin(2y)
(
y2 + sin2(y)

) − cos2(2y)
(
2y + sin(2y)

)
> sin(2y) cos(2y) + 2y cos(2y)

+ 4 cos(2y) sin(2y)
(
y2 + sin2(y)

) − cos(2y)
(
2y + sin(2y)

)
= 4 cos(2y) sin(2y)

(
y2 + sin2(y)

)
> 0�

The first inequality follows from the fact that, since cos(2y) ∈ (0�1), cos(2y) > cos2(2y).
The last inequality follows trivially, as all terms of the expression are strictly positive.

Q.E.D.

LEMMA B.8: For all t2 ∈ [−π�π] and x1 ≤ x2, the set {t ∈ [−π�π]|v((x1� t1 = 0)|t) ≥
v((x2� t2)|t)} is an interval in [−π�π].

PROOF: Let �(t) = v((x1�0)|t) − v((x2� t2)|t). If x1 = x2 and t1 = t2, {�(t) ≥ 0} =
[−π�π] and the claim follows. If x1 < x2 and t1 = t2, instead, we have that

{
�(t) ≥ 0

} =
{
t : cos(t) ≥

√
x2 − √

x1√
1 − x1 −

√
1 − x2

> 0
}
�

It is immediate to see this is an interval in [−π�π]. Therefore, let t2 �= t1 = 0 and 1/2 ≤
x1 ≤ x2. Suppose t2 > 0. It is immediate to see that �(0) > 0 and �(π) = �(−π) < 0.
Consider the interval [0�π]. By continuity of �(t), there exists at least one t̄ ∈ (0�π) such
that �(t̄) = 0. We want to show that there is only one such t̄. Note that if t ∈ (0�π/2], the
derivative of � is

�′(t) = −
√

1 − x1 sin(t) +
√

1 − x2 sin(t − t2) < 0�



MEDIA COMPETITION AND SOCIAL DISAGREEMENT 19

Indeed,
√

1 − x1 ≥ √
1 − x2 and sin(t) > sin(t − t2) if t ∈ (0�π/2] (note that while sin(t) is

necessarily positive, sin(t − t2) is either negative or positive but smaller than sin(t)). For
a similar argument, note that if t ∈ [π/2�π), the second derivative of � is

�′′(t) = −
√

1 − x1 cos(t) +
√

1 − x2 cos(t − t2) > 0�

Therefore, �′(t) is strictly increasing in [π/2�π) and, hence, it is single-crossing. Since
�(π) < 0, this implies that t̄ is the unique type in [0�π] such that �(t̄) = 0.

We now apply a parallel argument for the interval [−π�0]. By continuity, there exists at
least one t ∈ (−π�0) such that �(t) = 0. We need to establish its uniqueness. Note that if
t ∈ (−π�−π/2], �′(t) > 0. Similarly, if t ∈ [−π/2�0), �′′(t) < 0. Following the argument
made above, we can conclude that there exists a unique t ∈ [−π�0] such that �(t) = 0.

Therefore, since �(0) > 0, we have that {�(t) ≥ 0} = [t� t̄]. We omit the discussion of
the case t2 < 0 as it follows trivially from the argument above. Q.E.D.

LEMMA B.9: The function G(δ) = 2δ+sin(2δ)

2
√

δ2+sin2(δ)
is strictly decreasing in δ ∈ (0�π/2).

PROOF: Note that

G′(δ) = 2 + 2 cos(2δ)

2
√
δ2 + sin2(δ)

−
(
2δ+ sin(2δ)

)(
2δ+ 2 sin(δ) cos(δ)

)
4
(
δ2 + sin2(δ)

)3/2 �

We want to show that G′(δ) < 0 for δ ∈ (0�π/2). Multiplying both sides by (δ2 +
sin2(δ))3/2 and using sin(2δ) = 2 sin(δ) cos(δ), we get that the sign of G′(δ) is equal to
the sign of

(
1 + cos(2δ)

)(
δ2 + sin2(δ)

) − (
δ+ sin(δ) cos(δ)

)2

= δ2 + sin2(δ) + cos(2δ)δ2 + cos(2δ) sin2(δ) − δ2 − 2δ sin(δ) cos(δ) − sin2(δ) cos2(δ)

= sin2(δ) + cos(2δ)δ2 + cos(2δ) sin2(δ) − δ sin(2δ) − sin2(δ) cos2(δ)

= sin2(δ) + cos(2δ)δ2 − sin4(δ) − δ sin(2δ)

< sin2(δ) + cos(2δ)δ2 − δ sin(2δ)

=H(δ)�

where we used the identity cos(2δ) sin2(δ) = sin2(δ) cos2(δ) − sin4(δ) for the second-to-
last equality and the fact that sin4(δ) > 0 for δ ∈ (0�π/2) for the last inequality. Note that
H(0) = 0 and, for all δ ∈ (0�π/2),

H ′(δ) = 2 sin(δ) cos(δ) − 2 sin(2δ)δ2 + cos(2δ)2δ− 2δ cos(2δ) − sin(2δ)

= sin(2δ) − 2 sin(2δ)δ2 − sin(2δ)

= −2 sin(2δ)δ2

< 0�

Therefore, H(δ) < 0 and, hence, G′(δ) < 0 for all δ ∈ (0�π/2). Q.E.D.
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REMARK B.3: Fix an arbitrary sequence of equilibria ((xN
n � t

N
n )Nn=1)N∈N and a type ti.

There exists a subsequence (Nk) such that the equilibrium value of information for agent
ti is strictly increasing in k.

PROOF: Fix ((xN
n � t

N
n )Nn=1)N∈N and a type ti. Let vti�N be the equilibrium value of infor-

mation for type ti when N firms are competing. The proof of Proposition 2 part (b) shows
that the sequence (vti�N)N is converging to λ

√
2. Therefore, it admits a monotone subse-

quence. Since vti�N ≤ λ
√

2 for all N , such subsequence must be increasing. Q.E.D.

LEMMA B.10: Fix N and let (x�(N)� t�n)Nn=1 be an equilibrium profile of editorial strategies.
For all ω0,

āi(ω0) := Eω1�ω2�ti

(
ai

(
(ω0�ω1�ω2)� ti

)) =


( √
x�(N)√

2 − x�(N)
ω0

)
�

PROOF: Fix N and an equilibrium profile of editorial strategies (x�(N)� t�n)Nn=1. Suppose
that in this equilibrium, agent ti acquires information from firm n. Conditional on a signal
realization s̄ = s(ω� (x�(N)� t�n)), the agent’s equilibrium approval strategy is character-
ized in Lemma 1 and depends on Eω(u(ω� ti)|s̄). Using Equation (A.1) and Remark 1, we
have that

Eω

(
u(ω� ti)|s̄

) = v
((
x�(N)� t�n

)
|ti

)
λ

(√
x�(N)ω0 +

√
1 − x�(N)

(
ω1 cos

(
t�n

)+ω2 sin
(
t�n

))+εi

)
�

Since, in equilibrium, v((x�(N)�t�n)|ti)
λ

> 0, the agent approves if and only if the signal she ob-
serves is positive. Since εi ∼N (0�1), the probability that agent ti approves policy ω before
εi realizes is given by ā�

i (ω� ti) = 
(
√
x�(N)ω0 + √

1 − x�(N)(cos(t�n)ω1 + sin(t�n)ω2)),
where 
 denotes the cdf of the standard normal distribution. Thanks to the symmetry in
the equilibrium location (Theorem 2) and the uniformity of the distribution of ti, we have
that

Eti

(
ai(ω� ti)

) = 1
N

∑
n



(√

x�(N)ω0 +
√

1 − x�(N)
(
cos

(
t�n

)
ω1 + sin

(
t�n

)
ω2

))
�

We need to compute the expectation of the expression above with respect to ω1 and ω2.
Since ω1 and ω2 are independent, we do so in two separate steps. For both steps, we
use the identity

∫
R

(α + γy) d
(y) = 
(α/

√
1 + γ2) (see Patel and Read (1996)). We

begin by integrating with respect to ω2. Let y = ω2, and for each n, let αn = √
x�ω0 +√

1 − x� cos(t�n)ω1 and γn = √
1 − x� sin(t�n). Using the integral identity, we obtain

Eω2�ti

(
ai(ω� ti)

) = 1
N

∑
n




(
αn√

1 + γ2
n

)
= 1

N

∑
n




(√
x�ω0 +

√
1 − x� cos

(
t�n

)
ω1√

1 + (
1 − x�

)
sin2(t�n)

)
�

Next, we integrate the above with respect to ω1. Let y =ω1 and

α′
n =

√
x�ω0√

1 + (
1 − x�

)
sin2(t�n) � γ′

n =
√

1 − x� cos
(
t�n

)
√

1 + (
1 − x�

)
sin2(t�n) �
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Using again the integral identity, we obtain

Eω1�ω2�ti

(
ai(ω� ti)

) = 1
N

∑
n




(
α′
n√

1 + γ′2
n

)
=


( √
x�(N)√

2 − x�(N)
ω0

)
�

where we used the fact that cos2(t�n) + sin2(t�n) = 1 for all n. Q.E.D.

PROOF OF REMARK 3: Fix I ≥ 1 and N ≥ 1. Let (x�� t�n)Nn=1 be the equilibrium profile
of editorial strategies. Let A�(ω) be the equilibrium rate of approval. By assumption,
it is equal to the probability that the society implements ω. We want to show that the
total probability of implementing a policy in �+, namely

∫
�+ A

�(ω)φ(ω) dω, decreases
in N . To do so, we divide the proof into three steps. First, we partition the set of policies
�+. Second, we compute the integral, restricting attention on an arbitrary cell of such a
partition. Third, we show that such an integral is decreasing in N .

Step 1. For any ω0 ∈R and K ≥ 0, define the set of policies

�◦(ω0�K) = {
ω̃ ∈ � : ω̃0 =ω0 and

√
ω̃2

1 + ω̃2
2 =K

}
�

Fix ω̃ ∈ �◦(ω0�K). Note that by letting tω̃ = arctan(ω̃2/ω̃1) ∈ [−π�π], we can write
u(ω̃� ti) = ω0 +K cos(ti − tω̃). Moreover, all ω̃ ∈�◦(ω0�K) are equally likely. To see this,

note that Pr(ω̃) = φ(ω̃0)φ(ω̃1)φ(ω̃2) = φ(ω0) 1
2π e

K2
2 , which only depends on (ω0�K).

Therefore, tω̃ is uniformly distributed in [−π�π].
Clearly, (ω′

0�K
′) �= (ω′′

0�K
′′) and �◦(ω′

0�K
′) ∩ �◦(ω′′

0�K
′′) = ∅. Moreover, let C =

{(ω0�K) ∈ R
2 | ω0 > K ≥ 0}. We have that �+ = ⋃

(ω0�K)∈C �
◦(ω0�K). Too see this, let

first ω ∈ �+. Define K = √
ω1 +ω2 ≥ 0. There is tω ∈ [−π�π] such that u(ω� ti) =

ω0 +K cos(tω− ti) > 0 for all ti. Moreover, there is t̄i ∈ [−π�π] such that cos(t̄i− tω) = −1.
Therefore, u(ω� t̄i) =ω0 −K > 0. Therefore, (ω0�K) ∈ C and, thus, ω ∈ �◦(ω0�K). Con-
versely, suppose ω̂ ∈�◦(ω0�K) for some ω0 >K. Since for all ti cos(tω̂−ti) ≥ −1, we have
0 <ω0 −K ≤ ω̂−K cos(tω̂ − ti) = u(ω̂� ti) for all ti, therefore, ω̂ ∈ �+. We conclude that
{�◦(ω0�K)}(ω0�K)∈C partitions �+.

Step 2. Next assume ω0 > K ≥ 0, and focus on the set of policies �◦(ω0�K) ⊂ �+.
We want to show that the total probability of implementing these policies, namely

1
2π

∫
�◦(ω0�K) A

�(ω) dω, decreases in N . We have that

1
2π

∫
�◦(ω0�K)

A�(ω) dω= 1
2πI

∑
i

∫
�◦(ω0�K)

ā�
i (ω� ti) dω

= 1
2πI

∑
i

∫ π

−π



(√

x�ω0 +
√

1 − x�K cos
(
t�n�i

− tω
))
dtω

= 1
2πI

∑
i

∫ 2π

0



(√
x�ω0 +

√
1 − x�K cos(y)

)
dy

= 1
2π

∫ π

0



(√
x�ω0 +

√
1 − x�K cos(y)

)
+


(√
x�ω0 −

√
1 − x�K cos(y)

)
dy�
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The first and second equalities follow from the definition of approval rate and the proof
of Lemma B.10. In the second equality, we use notation n�

i to indicate the firm from which
agent i acquires information in equilibrium. To obtain the third equality, we used y = t�n�i

−
tω̃ and the fact that for any l and u such that u = l + 2π,

∫ u

l
− cos(y) dy = ∫ 2π

0 cos(y) dy .
Finally, to obtain the fourth equality, we used cos(y +π) = − cos(y).

Step 3. In order to show that 1
2π

∫
�◦(ω0�K) A

�(ω) dω is decreasing in N , it is sufficient to
show that for all y ∈ [0�π], 
(

√
x�ω0 +√

1 − x�K cos(y)) +
(
√
x�ω0 −√

1 − x�K cos(y))
is decreasing in N . To this purpose, fix y ∈ [0�π]. For notational convenience, let α= √

x�

and β= √
1 − x�K. We want to show that

d

dN

(



(
αω0 +β cos(y)

) +

(
αω0 −β cos(y)

))
< 0� (B.10)

This derivative is equal to(
φ

(
αω0 +β cos(y)

) +φ
(
αω0 −β cos(y)

))
ω0α

′

+ (
φ

(
αω0 +β cos(y)

) −φ
(
αω0 −β cos(y)

))
cos(y)β′�

We show that both terms of these derivatives are negative. Let us start from the first
term. By assumption ω0 > 0, since ω0 −K > 0 and K ≥ 0. Moreover, the probability den-
sity function φ(·) is everywhere strictly positive. Finally, by Proposition 1, α′ < 0. There-
fore, the first term is strictly negative. Next, we analyze the second term of the derivative.
Suppose cos(y) ≥ 0. Then since ω0 > 0, αω0 + β cos(y) ≥ αω0 − β cos(y). Moreover,
αω0 > 0. This implies that φ(αω0 +β cos(y)) −φ(αω0 −β cos(y)) ≤ 0. Conversely, sup-
pose cos(y) ≤ 0. Then αω0 +β cos(y) ≤ αω0 −β cos(y). Since αω0 > 0, this implies that
φ(αω0 +β cos(y)) −φ(αω0 −β cos(y)) ≥ 0. In summary, we showed that(

φ
(
αω0 +β cos(y)

) −φ
(
αω0 −β cos(y)

))
cos(y) ≤ 0�

Since β′ > 0 (Proposition 1), this implies that the second term of the derivative is weakly
negative. We conclude that the derivative in Equation (B.10) is strictly negative, as we
wanted to show. Since y was chosen arbitrarily, this implies that 1

2π

∫
�◦(ω0�K) A

�(ω) dω is
decreasing in N . Moreover, since �◦(ω0�K) is an arbitrary cell in the partition of �+, we
conclude that

∫
�+ A

�(ω)φ(ω) dω is decreasing in N .
A similar argument can be made to prove that

∫
�− A

�(ω)φ(ω) dω is increasing in N .
The only differences being that in Step 1, we define C ′ ={(ω0�K) ∈ R

2 | ω0 +K < 0�K ≥
0}, and in Step 3, we use the fact that ω0 < 0. Q.E.D.

APPENDIX C: ADDITIONAL EXTENSIONS

C.1. Variance of Signals and Constraints on Learning

Throughout the paper, we assumed that if agent i acquires information from firm n, she
privately observes a signal realization si(ω�bn) = bn ·ω+εi, where εi ∼N (0�1). In partic-
ular, we assumed that εi has a variance of 1 and, more importantly, that it does not depend
on N , the number of firms. This implies that agents are constrained in how much they can
learn about the policy from the media and that this constraint is independent of the com-
petitiveness of the market. This is in line with an interpretation of the model where the
error εi is borne by the agent. For example, it arises because she has a limited time to
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allocate to learning about the policy. In our extension to multimedia (Appendix B.2), we
retained this assumption. Agents are still endowed with a unit of time but they can split it
freely across multiple firms in the market. By doing so, agents can construct signals that
are better tailored to their own needs, even when these are not directly supplied by the
market.

The goal of this paper has been to demonstrate how a competitive market can affect
welfare simply by changing what information agents consume. However, competition may
affect not only what information is supplied by firms, but also how much agents can learn
from them. Here we provide two such examples. First, the level of competitiveness in
the market could have an impact on how much firms invest in generating information.
This could be modeled by endogenizing supply side constraints on ‖bn‖, which is equiva-
lent to a change in σN . A priori, it is not clear whether a more competitive market could
lead firms to invest more or less. Second, in a more competitive market, agents may re-
ceive multiple signals from different firms. This could be modeled as a decline in σN as
N increases. Note how this is different from the multimedia model of Section B.2, where
agents get a single signal by mixing the editorial strategies of different firms.

Without adding more structure to the model, we investigate how the results presented
in Section 5 are affected when σN is allowed to change as a function of N . In particular,
we consider a decreasing sequence of σN and show a counterpart of our most general
result of the paper, namely Proposition 5.

We begin by fixing I and N , and let εi ∼N (0�σN) for some σN > 0. For a fixed N , it is
not surprising to see that σN �= 1 only rescales the main equilibrium objects of Section 3.
In particular, fix an editorial strategy bn and a type θi. Following Lemma 2, the value of
information bn for type θi is

v(bn|θi) = |θi · bn|
I
√

2π
(
σ2

N + ‖bn‖2
) �

Intuitively, a lower σN increases the value that θi attaches to the information from firm n.
Similarly, we can follow Lemma A.2 and transform bn and θi into polar coordinates to ob-
tain the value vσN ((xn� tn)|ti) = λσN (

√
xn + √

1 − xn cos(ti − tn)), where λσN = 1

I
√

2π(1+σ2
N )

.

Instead of replicating all results in the paper, we focus attention on Proposition 5 to
demonstrate the impact that an N-varying σN has on the main takeaways of the paper.

PROPOSITION 7: Fix a regular F . Let (σN)N be a decreasing sequence with σN → σ∞ > 0.
(a) Existence. An equilibrium exists for any N ≥ 1 and I ≥ 1.
(b) Daily-Me. Fix any ti. As N → ∞, the equilibrium value of information for type ti,

V (N|ti), converges in probability to the first-best value V̄∞ := λσ∞
√

2.
(c) Inefficiency. There exists Ī and σ̄ ≥ 0 such that

(i) if σ∞ > σ̄ and I > Ī, U (1) > limN→∞ U (N)
(ii) if σ∞ ≤ σ̄ and for any I, U (1) ≤ limN→∞ U (N).

Parts (a) and (b) are qualitatively identical to their counterparts in Proposition 5. Part
(c) shows that the inefficiency associated with competition remains even when agents can
learn more, in the sense of lower σ , in a more competitive market. It also shows that
if σN decreases too much, the inefficiency disappears. Part (c)(ii) should be considered
as a sanity check. It further highlights that information can play a positive role in our
model (see the discussion at the end of Section 4.4). For example, this result shows that
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for any distribution of preferences F , if the society converges to the complete information
benchmark, that is, if limN→∞ σN = 0, then the agents are indeed better off. That is, in this
limit, the expected welfare of the typical agent is higher under perfect competition relative
to a monopoly. This provides an important benchmark, illustrating how there is plenty of
scope in the model for information to play a positive role. The main inefficiency identified
in the model is not due to competition moving society closer to the complete information
benchmark; it arises because of the trade-offs firms face in terms of which aspects of the
policy to emphasize in their editorial strategies. As competition increases, firms specialize
by shifting emphasis from common-interest to private-interest components of the policy.

PROOF OF PROPOSITION 7: The proof is divided into five steps that closely follow Lem-
mas B.1–B.5. In the interest of space, we omit the proofs that are identical up to a rescal-
ing. We focus attention on the steps of the proof that are affected by the dependence of
σN on N .

Step 1: Existence. In this step, we fix N . As such, the proof of Lemma B.1 applies iden-
tically.

Step 2: Daily-Me. I. This follows the proof of Lemma B.2. Fix δ > 0 and let ξ1 = δ
2λσ∞

.

Let V̄σ∞ = max(xn�tn) vσ∞ ((xn� tn)|ti) = λσ∞
√

2. This is the highest possible value that
vσ∞ ((xn� tn)|ti) can achieve and, like in the baseline model, it is independent of ti. We
show that there exists N̄ such that for all N > N̄ and any equilibrium profile of possi-
bly mixed editorial strategies χ, we have Eχ(maxn{vσN (xn� tn|ti)}) > V̄σ∞ − δ for all ti ∈ T .
Suppose not. That is, suppose that for all N , there is an equilibrium profile of possibly
mixed editorial strategies χ and a type t̄i such that Eχ(maxn{vσN (xn� tn|ti)}) ≤ V̄σ∞ − δ.
This implies that for all tj ∈ [t̄i − ξ1� t̄i + ξ1], Eχ(maxn{vσN (xn� tn|tj)}) ≤ V̄σ∞ − δ

2 . To see
this, suppose, by way of contradiction, that Eχ(maxn{vσN (xn� tn|tj)}) > V̄σ∞ − δ

2 . Denote
by n(tj) the random variable that, for each realization of χ, indicates the firm from which
tj acquires information. Note that for all tn ∈ T , cos(t̄i − tn) ≥ cos(tj − tn) − ξ1, since
d
dt

cos(t − tn) ≤ 1. We have that

Eχ

(
max

n

{
vσN

(
(xn� tn)|ti

)}) ≥ Eχ

(
vσN

(
(xn(tj )� tn(tj))|ti

))
= λσNEχ

(√
xn(tj ) +

√
1 − xn(tj ) cos(t̄i − tn(tj ))

)
≥ λσNEχ(

√
xn(tj) +

√
1 − xn(tj)

(
cos(tj − tn(tj)) − ξ1

)
≥ λσNEχ

(√
xn(tj ) +

√
1 − xn(tj ) cos(tj − tn(tj ))

) − λσNξ1

≥ Eχ

(
max

n

{
vσN (xn� tn|tj)

}) − λξ1

> V̄σ∞ − δ

2
− λσNξ1

> V̄σ∞ − δ

2
− λσ∞ξ1

= V̄σ∞ − δ�

The first inequality holds as, in the right-hand side, agent t̄i chooses the firm n(tj) that
is optimal for tj . The second inequality holds since cos(t̄i − tn) ≥ cos(tj − tn) − ξ1 for all
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tn. The last inequality holds because λσN < λσ∞ , since σN is decreasing. In summary, this
contradicts our assumption that Eχ(maxn{v(xn� tn|ti)}) ≤ V̄ −δ. Therefore, it must be that
Eχ(maxn{v(xn� tn|tj)}) ≤ V̄ − δ

2 .
Fix N̄ . Note that by continuity of vσN ((xn� tn)|tj) in tj , there exists ξN̄

2 > 0 such that
for all tj ∈ [t̄i − ξN̄

2 � t̄i + ξN̄
2 ] such that vσN ((1/2� t̄i)|tj) ≥ V̄σ∞ − δ

4 . Since σN is decreasing,
this holds for all N > N̄ . Hence, ξN̄

2 is independent of N as it increases to infinity. Let
ξ = min{ξ1� ξ

N̄
2 }, which in turn is independent of N . We have established that for all tj ∈

[t̄i − ξ� t̄i + ξ],

Eχ

(
max
n′ �=n

{
vσN (xn′� tn′|tj)

}) ≤ Eχ

(
max

n

{
vσN (xn� tn|tj)

})

≤ V̄σ∞ − δ

2
< V̄σ∞ − δ

4
≤ vσN

(
(1/2� t̄i)|tj

)
� (C.1)

Consider an arbitrary firm n that deviates from its equilibrium editorial strategy (χn) in
favor of the pure strategy (xn = 1/2� tn = t̄i). Its expected profits are

�n

(
(xn� tn)� (χn′)n′ �=n

) = I

∫ π

−π

Eχ

(
max

{
vσN

(
(xn� tn)|tj

) − VσN

(
(xn′� tn′)n′ �=n|tj

)
�0

})
dF (tj)

≥ I

∫ t̄i+ξ

t̄i−ξ

Eχ

(
max

{
vσN

(
(xn� tn)|tj

) − VσN

(
(xn′� tn′)n′ �=n|tj

)
�0

})
dF (tj)

≥ I

∫ t̄i+ξ

t̄i−ξ

Eχ

(
vσN

(
(xn� tn)|tj

) − VσN

(
(xn′� tn′)n′ �=n|tj

))
dF (tj)

= I

∫ t̄i+ξ

t̄i−ξ

vσN
(
(xn� tn)|tj

) −Eχ

(
VσN

(
(xn′� tn′)n′ �=n|tj

))
dF (tj)

= I

∫ t̄i+ξ

t̄i−ξ

vσN
(
(xn� tn)|tj

) −Eχ

(
max
n′ �=n

{
vσN (xn′� tn′|tj)

})
dF (tj)

≥ I

∫ t̄i+ξ

t̄i−ξ

(
V̄σ∞ − δ

4
− V̄σ∞ + δ

2

)
f (tj) dtj

≥ ICδξ

2
�

Note that that the industry profits are bounded above by IV̄σ∞ . Then an identical argu-
ment as in the last paragraph of Lemma B.2 applies here.

Step 3: Daily-Me. II. This follows the proof of Lemma B.3. Fix ti, ε > 0, and a se-
quence of equilibria. For any N , denote by (xN

n(ti)
� tNn(ti)

) the random variable specifying
the information structure that agent ti acquires in equilibrium. We want to show that
for all δ > 0, there exists N̄ such that for all N > N̄ , Pr(‖(xN

n(ti)
� tNn(ti)

) − (1/2� ti)‖ >

ε) < δ. Suppose not. Then there is δ > 0 such that for all N̄ there is N > N̄ such that
Pr(‖(xN

n(ti)
� tNn(ti)

) − (1/2� ti)‖ > ε) ≥ δ. Let (xn� tn) be a realization of (xN
n(ti)

� tNn(ti)
) such that

‖(xn� tn) − (1/2� ti)‖ > ε. That is,
√

(xn − 1/2)2 + (tn − ti)2 > ε. This implies that

max
{|xn − 1/2|� |tn − ti|

}
>

ε√
2
�
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Consider the difference V̄σ∞ −vσN ((xn� tn)|ti) = λσ∞
√

2−λσN (
√
xn +√

1 − xn cos(tn − ti)).
Suppose |tn − ti|> ε√

2
. Then, since λσ∞ > λσN ,

V̄σ∞ − vσN
(
(xn� tn)|ti

) ≥ λσ∞√
2

(
1 − cos(tn − ti)

)
>

λσ∞√
2

(
1 − cos

(
ε√
2

))
=: K1(ε) > 0�

Conversely, suppose that |xn − 1/2|> ε√
2
. Then

V̄σ∞ − vσN
(
(xn� tn)|ti

) ≥ λσ∞ (
√

2 − √
xn −

√
1 − xn)

> λσ∞

(√
2 − 1

2
(
√

1 + ε
√

2 +
√

1 − ε
√

2)
)

=: K2(ε) > 0�

Let K(ε) = min{K1(ε)�K2(ε)}. We established that for all realizations of the random vari-
able (xN

n(ti)
� tNn(ti)

) that satisfy ‖(xN
n(ti)

� tNn(ti)
) − (1/2� ti)‖ > ε, we have V̄σ∞ −vσN ((xn� tn)|ti) >

K(ε) > 0. This implies that

Pr
(
V̄σ∞ − vσN

((
xN
n(ti)

� tNn(ti)

)
|ti

)
>K(ε)

) ≥ δ�

Since δ and ε are independent of N , we conclude that E(vσN ((xN
n(ti)

� tNn(ti)
)|ti)) does not

converge to V̄σ∞—a contradiction.
Step 4: Convergence of U (N). In light of the previous two steps, the proof of Step 4

follows the proof of Lemma B.4.
Step 5: Monopoly Versus Competition. Following Lemma B.5, we compute U (1) and

limN→∞ U (N), taking into account the role of σN . In both cases, details associated with
the steps used for derivation can be found in the original proof. First, let N = 1. We have
that

U (1) = I − 1
I

Eω0

(
ω0
(b̃ω0) + βFb√

1 + b2
φ(b̃ω0)

)

= I − 1
I

(
b̃√

1 + b̃2

φ(0) + βFb√
1 + b2

1√
1 + b̃2

φ(0)
)

= I − 1

I
√

2
√

1 + σ2
1

√
π

(√
x� +βF

√
1 − x�

)

= (I − 1)λσ1

√
1 +β2

F � (C.2)

Second, let N → ∞. We have that

lim
N→∞

U (N) = I − 1
I

Eω�ti�tj

(



(
1√
2σ∞

uj(ω� tj)
)
ui(ω� ti)

)
+ V̄

= I − 1
I

Etj

(
1√

2
√

1 + σ∞2
φ(0)

+ 1√
2
√

1 + σ∞2
βFφ(0)

(
cos(tj) cos

(
tm

) + sin(tj) sin
(
tm

))) + V̄
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= I − 1
I

1√
2
√

1 + σ∞2
φ(0)Etj

(
1 +βF cos

(
tj − tm

)) + V̄

= I − 1
I

1√
2
√

1 + σ∞2

1√
2π

(
1 +β2

F

) + λσ∞
√

2

= λσ∞ (I − 1)
1√
2

(
1 +β2

F

) + λσ∞
√

2� (C.3)

By Equations (C.2) and (C.3),

U (1) − lim
N→∞

U (N) = λσ1 (I − 1)
√

1 +β2
F − λσ∞ (I − 1)

1√
2

(
1 +β2

F

) − λσ∞
√

2

= λσ1 (I − 1)
√

1 +β2
F

(
1 − λσ∞

λσ1

√
2

√
1 +β2

F

)
− λσ1

√
2�

Note that for all nondegenerate distributions F , there is an associated βF ∈ [0�1). Note

that λσ∞
λσ1

√
2

√
1 +β2

F = (
√

1+σ2
1√

1+σ2∞
√

2
)
√

1 +β2
F . For any βF , there exist a σ̄ ≥ 0 such that the

sign of 1 − (
√

1+σ2
1√

1+σ2∞
√

2
)
√

1 +β2
F is positive whenever σ∞ < σ̄ and negative otherwise. Part

(ii) follows directly from the sign being negative for both terms. Part (i) relies on showing
that the first term is increasing in I, as we have done in the proof of Proposition 5. Q.E.D.

C.2. Policy Implementation Rule

Throughout the paper, we assume that the policy is implemented with a probability that
is equal to its approval rate. This implementation rule, combined with a finite number of
agents, implies that information has instrumental value for the agents, as their approval
decisions directly affect the policy outcome. At the same time, this simple implementation
rule eliminates the scope for pivotal reasoning to learn about the policy. As discussed
in Section 3.1.1, this substantially reduces the complexity of the agent’s problem, while
enabling us to focus attention on the most novel aspect of the model: the competitive
supply of information.

In general, the probability that a policy is implemented or that a candidate is elected
can be a nonlinear function of the behavior of individual agents within a society. The po-
litical science and political economy literature study conditions under which maximizing
vote share is equivalent to maximizing the probability of winning (see Banks and Duggan
(2004), Patty (2005, 2007), McKelvey and Patty (2006)). One of these is the presence of
aggregate uncertainty, for example, when voting decisions are influenced by independent
random perturbations. Under appropriate distributional assumptions, this aggregate un-
certainty generates linearity. Below, we discuss a simple extension of our baseline model
in which the policy is implemented according to the majority rule. In this extension, there
is aggregate noise due to behavior of “nonpolicy” voters, whose vote is a uniform ran-
dom variable that is independent of the actual policy ω. In light of this, the policy obtains
a simple majority with a probability that is proportional to its approval rate among the
“policy” voters, as in our baseline model.

More formally, let there be I agents that we refer to as policy voters. These voters ac-
quire information and vote as described in Section 2. A group of Ĩ agents, which we refer
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to as nonpolicy voters, also participates in the collective decision. For simplicity, assume
that Ĩ ≥ I and Ĩ + I is an odd number. Nonpolicy voters are not affected by the policy
outcome (e.g., for all such voters, θi = (0�0�0) and, thus, u(ω� ti) = 0). Their vote is de-
termined by other factors that are independent of the policy. Specifically, we assume that
the approval rate among nonpolicy voters, denoted Ã(ω), is distributed according to the
uniform distribution on the interval [0�1]. Finally, suppose that the policy is implemented
if it receives a simple majority of all the votes.

REMARK C.1: Under simple majority, the probability that the policy is implemented is
a linear function of the approval rate among policy voters, namely A(ω�θ).

PROOF: Fix t and suppose that the approval rate of the policy voters is A(ω� t). Under
a simple majority, the policy is implemented if IA(ω� t) + ĨÃ(ω) > I+Ĩ

2 . Since Ã(ω) ∼
Unif[0�1], the probability that ω is implemented is equal to Pr(Ã(ω) > I+Ĩ−2IA(ω�t)

2Ĩ
) =

Ĩ−I

2Ĩ
+ I

Ĩ
A(ω� t), which is a linear function of the approval rate of policy voters. Q.E.D.
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