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B.1 Exploration incentives

In Section 2.4 we assumed ψ =∞ for analytical tractability. Relaxing that assumption generally

reduces the experimentation incentives of the firm, in the sense that it flattens the continuation

value Ṽ . The reason is that when ψ < ∞, observing a signal yt at a price pt is informative not

only about x(pt) itself, but also about other prices p around pt, with the informativeness dropping

to zero as the distance |p− pt| goes to infinity. Moreover, a higher ψ implies that the correlation

between x(p) and x(p′) at distinct p and p′ decreases faster with the distance between p and p′.

Hence, higher ψ increases the specificity of new information, making it more localized.

Lower ψ on the other hand, makes the information at a given pt more useful at any p. As a

result, this erodes the firm’s incentive to experiment with new prices – it could learn most of the

same information by repeating one of its established, safe prices anyways. Formally, this means

that the continuation value function Ṽ becomes flatter. In fact, as we show in Proposition B1

below, in the limit ψ → 0 the continuation value is a perfectly flat line.

Proposition B1. The expected continuation value E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
becomes flat in

respect to the time t price pt as ψ → 0:

lim
ψ→0

∂E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
∂pt

= 0

Proof. First we will prove that with ψ <∞, the expected continuation valueE
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
is differentiable. The key intuition is that if the firm selects a time t price away from p0, thus

obtaining a signal at a new price pt 6= p0, in expectation this would not create a second kind in

the expected future worst-case demand. The only kink in the time t expectation of the future

worst-case demand appears at the already observed p0, since it evolves recursively as:

x̂∗t (p) = x̂∗t−1(p) + αt(p)(yt − x̂∗t−1(p))

where

αt(p) =
(σ2

x + σ2
z/N0)σ2

x exp(−ψ2(p− pt)2)− σ4
x exp(−ψ2((p− p0)2 + (pt − p0)2))

σ4
x(1− exp(−2ψ2(pt − p0)2)) + σ2

xσ
2
z
N0+1
N0

+ σ4
z/N0

is the signal-to-noise ratio applicable to the new signal at pt, when updating beliefs about x(p)

at some price p.

There is obviously a kink at p0in x̂∗t (p), since x̂∗t−1(p) has a kink there. However, there is no
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other kink, because the firm correctly perceives that

yt ∼ N(x̂∗t−1(pt), σ̂
2
t−1(pt)).

In other words, there is no possibility for a kink arising from the signal innovation term, since

the signal is evaluated against the proper worst-case belief at time t, leaving only one kink in the

expectation of the future worst-case demand. Of course, that is what happens only in expectation

– once the signal is realized, and the firm perceives some surprise, the time t + k worst-case will

indeed feature two kinks. Still, in expectation, the kink is smoothed over, hence does not affect

the time t pricing incentives of the firm.

We are going to use the notations for signal innovation level, ẑt, and the signal-to-noise ratios

defined above. Also recall that E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
= β

1−βE

[
ν∗t+k(p

∗
t+k, c

∗
0)

∣∣∣∣ε0, pt

]
, where

p∗t+k is the resulting static optimal price, given the updated information set {ε0, pt, yt}. And to

simplify notation, we will again use the shorthand Et−1(Ṽ ) to denote the expected continuation

value E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
.

To show that the expected continuation value is differentiable, we will show two things. First,

we show that the derivatives of Et−1(Ṽ |pt > p0) and Et−1(Ṽ |pt < p0) in respect to pt exist

everywhere. Second, we show that

lim
pt↑p0

∂Et−1(Ṽ |pt < p0)

∂pt
= lim

pt↓p0

∂Et−1(Ṽ |pt > p0)

∂pt
.

Let’s start with showing that ∂Et−1(Ṽ |pt>p0)
∂pt

exists everywhere. The firm has perfect foresight

on ct+k = c∗0, and since p0 = ln(b/(b − 1)) + c∗0 absent any information in the new signal yt the

optimal price at t+ k would be p0. Thus, the worst-case expected profit given a choice of pt > p0

can be written as:

Et−1(Ṽ |pt > p0) = Φ(z(pt))Et−1(ν∗t+k(p
∗(pt), c

∗
0|pt > p0, ẑt < z(pt)) + (Φ(z̄(pt))− Φ(z(pt)))Et−1(ν∗t+k(p0, c

∗
0|pt > p0)

+ (1− Φ(z̄(pt)))Et−1(ν∗t+k(p
∗(pt)|pt > p0, ẑt > z̄(pt))

where z(pt) and z̄(pt) are the threshold values for the innovation of the signal at pt such that: (1)

if ẑt > z̄(pt), the demand realization at pt is so good that it pulls the optimal price away from p0,

and to an interior optimal price p∗(pt) closer to the new, good signal at pt; (2) if ẑt < z(pt), the

new demand realization is so bad that it pushes the optimal price away from both p0 and p1, to

a new interior optimal p(pt)
∗ < p0 < pt. For ẑt realizations in between these two threshold, the

optimal price at time t+k is at the kink p0. We will prove that all of the components in the above

expression are differentiable.

It is straightforward to show that the expected profit function (at any price p), Et−1(ν∗t+k(p, c
∗
0)|pt >

p0), is differentiable in respect to pt:

2



Et−1(ν∗t+k(p, c
∗
0)|pt > p0) = (ep − ec∗0) exp(x̂∗t−1(p) + αt(p)ẑt +

1

2
(σ̂2

t (p) + σ2
z))

The only components that are a function of pt are the signal to noise ratio, αt(p) and the

posterior variance σ̂2
t (p), and both of those are differentiable in respect to pt everywhere. The

signal-to-noise ratio αt(p) was already defined above, and it is obviously differentiable, and the

posterior variance can be obtained by the familiar recursive formula:

σ̂2
t (p) = σ2

x(1− α0(p))(1− αt(p))

where

α0(p) =
σ2
x

σ2
x + σ2

z/N0

e−ψ(p−p0)2

is the signal-to-noise ratio applicable to the y0 signal. This only depends on pt through αt(p),

hence it is differentiable as well.

Next, consider the optimal interior price p∗ – it satisfies the first order condition

p∗ − (c∗0 + ln(
x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

1 + x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

)) = 0 (38)

We can show that the derivative ∂p∗

∂pt
exists by using i) the implicit function theorem and ii) the

fact that x̂∗t−1(p) has no kinks for p > p0. To save on notation let

θ∗(p∗, pt) =
x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

1 + x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

be the effective markup at the optimal price. By the implicit function theorem

∂p∗

∂pt
= −

∂θ∗

∂pt

1− 1
θ∗
∂θ∗

∂p∗

The derivative of ∂θ
∗

∂pt
is only a function of the derivatives α′t(p) and σ̂2′

t (p) which exist everywhere

since their expressions (as defined above) are infinitely differentiable. The derivative ∂θ∗

∂p∗
depends

on the second derivatives of αt(p) and σ̂2
t (p), and the time-t information worst-case demand,

x̂∗t−1(p) – which is infinitely differentiable everywhere outside of p1 = p0. Hence, for pt > p0 the

interior optimal price p∗ is differentiable in respect to pt.

Next, we work with the upper threshold z̄(pt), which is implicitly defined by the equality

Et−1(ν∗t+k(p0|pt > p0, ẑt = z̄(pt)) = Et−1(ν∗t+k(p
∗|pt > p0, ẑt = z̄(pt))

⇐⇒
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(ep0−ec∗0) exp(x̂∗t−1(p0)+αt(p0)z̄(pt)+
1

2
(σ̂2

t (p0)+σ2
z)) = (ep

∗−ec∗0) exp(x̂t−1(p∗)+αt(p
∗)z̄(pt)+

1

2
(σ̂2

t (p
∗)+σ2

z))

which can similarly be shown to be differentiable in respect to pt by the implicit function

theorem. Similar argument can be shown for the lower threshold z(pt) as well.

Thus, we conclude that ∂Et−1(Ṽ |pt>p0)
∂pt

exists everywhere. Similar arguments can be used to

show that the mirror image derivative, ∂Et−1(Ṽ |pt<p0)
∂pt

exists everywhere as well. Hence the only

thing that remains to be shown, is that

lim
pt↑p0

∂Et−1(Ṽ |pt < p0)

∂pt
= lim

pt↓p0

∂Et−1(Ṽ |pt > p0)

∂pt
.

Note that outside of the limit pt → p0 the thresholds z(pt) and z̄(pt) are different for the

two cases i) pt > p0 and ii) pt < p0. Intuitively, the optimal interior price p∗ could be different

depending on whether the firm received a very good signal (ẑt > z̄(pt)) for a price higher or lower

than p0. Importantly, the distance |p∗ − p0| could also be different, because (at least locally) the

slope of worst-case demand to the left of p0 is different from that to the right of p0. So resulting

interior prices, and also the thresholds for ẑt at which they become optimal are different – i.e. the

problem is not symmetric around p0.

However, in the limit pt → p0 the candidate interior prices and thresholds converge to the

same values. The candidate interior price is given by the first-order condition (38), the minimum

threshold limpt→p0 z(pt) = z is defined as

Et−1(ν∗t+k(p0|pt = p0, ẑt = z) = Et−1(ν∗t+k(p
∗|pt = p0, ẑt = z)

⇐⇒

(ep0 − ec∗0) exp(x̂∗t−1(p0) + αt(p0|p0 = pt)z +
1

2
(σ̂2

t (p0|p0 = pt) + σ2
z))

= (ep
∗ − ec∗0) exp(x̂t−1(p∗) + αt(p

∗|p0 = pt)z +
1

2
(σ̂2

t (p
∗|p0 = pt) + σ2

z))

and the upper threshold, z̄(pt), converges to infinity – intuitively a new positive signal at p0 only

strengthens the desire to pick price p0. New information will only destroy the kink at p0 if it is

sufficiently bad, while good new information will strengthen it.

With that in mind we can show

lim
pt↑p0

∂Et−1(Ṽ |pt < p0)

∂pt
= φ(z)Et−1(ν∗t+k(p

∗(pt)|pt = p0, ẑt < z))
∂z

∂pt
+ Φ(z) lim

pt→p0

∂Et−1(ν∗t+k(p
∗(pt)|pt = p0, ẑt < z)

∂pt

+ φ(z)Et−1(ν∗t+k(p
∗(pt)|pt = p0, ẑt ≥ z))

∂z

∂pt
+ (1− Φ(z)) lim

pt→p0

∂Et−1(ν∗t+k(p
∗(pt)|pt = p0, ẑt ≥ z)

∂pt

= lim
pt↑p0

∂Et−1(Ṽ |pt > p0)

∂pt
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which follows from (i) all limits exist and (ii) limpt↑p0 z(pt) = limpt↓p0 z(pt) = z as argued above.

Lastly, we need to take the limit ψ → 0. In this case, the signal-to-noise ratio function becomes

flat, i.e. αt(p) = αt for all p, and the same holds for the posterior variance σ̂2
t (p) = σ̂2

t , since

now information at a price p′ is equally useful at all prices p. As a result, it follows directly

that limψ→0 z = −∞ – i.e. since the signal realization erodes the expected profit equally at all

prices, it does not make any price p∗ better than p0. By extension, limψ→0
∂z
∂pt

= 0. Lastly, since

limψ→0
∂αt(p)
∂pt

= 0, it also follows directly that limψ→0
∂Et−1(ν∗t+k(p∗(pt)|pt=p0,ẑt≥z)

∂pt
= 0.

Essentially, the position of the new signal pt no longer matters, as a result

lim
ψ→0

∂E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
∂pt

= 0

B.2 Joint uncertainty over demand shape and relative price

In section 3.4 we have developed the solution to the worst-case beliefs when the firm observes

one previous unambiguous estimated relative price, which here for brevity we call an estimated

relative price. In this appendix we show how the analysis extends to multiple prices. The analysis

follows the similar logic as in the real model, detailed in appendix A.1, with the added analysis of

the worst-case belief of the unknown industry price. We do so by presenting details on the case

of updating beliefs in the third period of life, when the firm has seen demand realizations at two

previous prices pi,0 and pi,1, with corresponding quantities sold there yi,0 and yi,1. In addition, the

firm observes the history of aggregates, {y0, y1, y2, p0, p1, p2}, and signals on the industry price level,

{p̃j,0, p̃j,1, p̃j,2}. We will use the helpful r̃i,t = pi,t − p̃j,t notation for the unambiguously estimated

relative price. In particular, without loss of generality, suppose that the prior observations imply

unambiguously estimated relative price such that r̃i,0 < r̃i,1, where the analysis for the opposite

case is analogous.

The firm is interested in updating beliefs at a current price pi,2. Consider first a case where

pi,2 implies an estimated relative price r̃i,2 > r̃i,1. The expectation of demand is a function of the

worst-case prior m(r) at the true (unobserved) relative prices ri,2, ri,1, and ri,0.

The worst-case prior at ri,2 is again simply m∗(ri,2) = −γ − bri,2, (implying lowest prior level

of demand at the current price). The resulting demand estimate ignoring all known aggregate

effects, is given by

−γ − bri,2 + α0yi,0 + α1yi,1 − α0 [m(ri,0)− bφ(p0 − p̃j,0)]− α1 [m(ri,1)− bφ(p1 − p̃j,1)] ,

where α0 and α1 are weights on the perceived innovations in the signals yi,0 and yi,1, respectively.
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The prior belief about demand at ri,0 and ri,1 can be written as

m(ri,0) = −γ − bri,0 + δ′0(ri,1 − ri,0); m(ri,1) = −γ − bri,1 + δ′1 (ri,2 − ri,1)

where δ′0, δ
′
1 are the local derivatives of the mean prior around ri,0 and ri,1 respectively (they do

not have to be the same).

We can use the definition of ri,t ≡ pi,t − pj,t and substitute pj,t from equation (16) to simplify

the portion of the demand estimate over which nature chooses the joint worst-case demand shapes

δ′0 and δ′1, together with the short-run co-integrating relationship φ(pt − p̃j,t), as follows:

min
δ′0,δ
′
1

min
φ(pt−p̃j,t)

−α0δ
′
0(r̃i,1−r̃i,0)−α0δ

′
0φ(p0−p̃j,0)−α1δ

′
1(r̃i,2−r̃i,1)+α1δ

′
1φ(p2−p̃j,2)+(α0δ

′
0 − α1δ

′
1)φ(p1−p̃j,1)

We obtain the solution for the joint worst-case

δ∗1 = δ∗0 = δ; φ∗(p2 − p̃j,2) = −γp;φ∗(p0 − p̃j,0) = γp

φ∗(p1 − p̃j,1) = γpI(α0 < α1)− γpI(α0 > α1)

where I(α0 < α1) denotes the indicator function of whether α0 < α1.

Intuitively, if the current entertained estimated relative price r̃i,2 is higher than the highest

previously estimated relative price, then the joint worst-case beliefs over the demand shape and

the unknown industry price index have the following characteristics. First, the prior demand

shape between the three prices is steep. Second, the current industry price index is low and the

price index at the lowest previously estimated relative price is high. In this way, the relative price

between today and the lowest different estimated relative price is high, which, together with the

steep demand curve, leads to the largest possible losses. Third, the worst-case belief about the

industry price index at the previously estimated relative price that sits in the middle of the two

extreme prices is a function of the updating weights. If these weights are the same then this belief

is not determinate, as it does not matter for the posterior estimate.

Consider now the case where the entertained pi,2 implies an unambiguously estimated relative

price r̃i,2 < r̃i,0. We follow the same steps as above to write the demand estimate and obtain the

minimization objective

min
δ′0,δ
′
1

min
φ(pt−p̃j,t)

−α0δ
′
0(r̃i,2−r̃i,0)+α0δ

′
0φ(p2−p̃j,2)−α1δ

′
1φ(p1−p̃j,1)−α1δ

′
1(r̃i,1−r̃i,0)−(α0δ

′
0 − α1δ

′
1)φ(p0−p̃j,0)

The joint worst-case beliefs are given by

δ∗1 = δ∗0 = −δ; φ∗(p2 − p̃j,2) = γp;φ
∗(p1 − p̃j,1) = −γp

φ∗(p0 − p̃j,0) = γpI(α0 < α1)− γpI(α0 > α1)
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Intuitively, if the current estimated relative price is lower than the lowest previously estimated

relative price, then the worst-case prior demand is one with a flat shape between these three

prices. In addition, the current unknown industry price index is high and the index at the highest

previously estimated relative price is low. In this way, the relative price between today and highest

different price is low, which together with the flat curve means the gain in demand is as low as

possible. Finally, the belief about the industry price index at the intermediate price between the

two extremes is a function of the updating weights. When these weights are the same then this

belief is not determinate.

The final case is when the current entertained price r̃i,2 is between r̃i,0 and r̃i,1. The same steps

as above deliver:

min
δ′0,δ
′
1

min
φ(pt−p̃j,t)

−α0δ
′
0(r̃i,2−r̃i,0)−α0δ

′
0φ(p0−p̃j,0)−α1δ

′
1φ(p1−p̃j,1)−α1δ

′
1(r̃i,1−r̃i,0)+(α0δ

′
0 + α1δ

′
1)φ(p2−p̃j,2)

and the worst-case beliefs:

δ∗0 = δ; δ∗1 = −δ;φ∗(p0 − p̃j,0) = γp;φ
∗(p1 − p̃j,1) = −γp

φ∗(p2 − p̃j,2) = γpI(α0 < α1)− γpI(α0 > α1)

Intuitively, if the current price is in between the two previously estimated relative prices, then the

worst-case prior demand is steep to the left and flat to the right. This concern for losing demand

then also activates a concern that the industry price index is high at the left and low to the right.

The belief about the current industry price index is a function of the updating weights. If these

weights are the same then this belief does not matter. If the updating weight is larger on the

previously low estimated relative price, then the worst-case is that the current index is low. This

way the firm is worried about losing a lot of demand since it already acts as if it faces a steep

part of the curve. If the weight is larger on the previously high estimated relative price, then the

worst-case is that the current index is high. This way, the firm is concerned that it does not gain

much demand since it already acts as if it faces a flat part of the demand curve.

By induction, we can build the worst-case belief of the firm in this fashion for any length of

the previous history of observations, with the key result that the worst-case expected demand will

have kinks around the unambiguous estimates of the previously observed prices r̃i,t.

B.3 Counter-factual economies where indexation is optimal

Naturally, if either of our two key primitives on the structure of the economy or the structure

of uncertainty is modified, then we recover full nominal flexibility. For example, if there is no

industrial structure and firms understand they compete directly against all other firms in the

economy, then the observed aggregate price pt is the price index of the firm’s direct competitors.
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On the other hand, even if there is industrial structure with unknown industry-level demand

functions, but the firms are somehow fully confident that movements in pt translate one-to-one in

movements in the underlying pj,t, then pt provides an unambiguous signal of the relevant pj,t.

Below we analyze both of these alternative economies in detail. In particular, first we consider

an economy where firm i directly competes against the aggregate price index pt. Alternatively, on

the information side, we assume that the firm still competes against the unobserved pj,t, but is

now endowed with full knowledge of the true DGP φ(pt− p̃j,t) = pt− p̃j,t. Using the law of motion

of pj,t in equation (16), the firm is now confident that pj,t = pt.

As in our benchmark model, in both of these alternative economies the uncertainty about the

demand curve xj retains the perceived kinks in expected profits at the unambiguous estimated

relative prices. However, unlike in our benchmark model, in both cases the perceived kinks now

lead the firm to change pi,t one-to-one in response to the observed pt. Indeed, by equation (27)

the perceived kink at the previous r̃i,0 implies a kink at the nominal price pi,1 = pi,0 + p1− p0. As

a result, indexation is now optimal. Hence, while ambiguity about the shape of demand generates

real rigidity, it is its interaction with uncertainty about the link between aggregate and industry

prices that turns it into a nominal rigidity.

Proposition B2. Consider a counterfactual economy, where the firm knows that the unique co-

integrating relationship is φ(pt−p̃j,t) = pt−p̃j,t, ∀t. For a given realization of the current state s1 =

{ωi,1, p1, y1, p̃j,1}, the difference in worst-case expected profits ln υ∗(ε0, s1, pi,1)−ln υ∗(ε0, s1, p1+ri,0),

up to a first-order approximation around p1 + ri,0, is[
eri,0

eri,0 − ey1−ωi,1
− (b+ αδ∗)

]
(pi,1 − p1 − ri,0) ,

where δ∗ = δ sgn (pi,1 − p1 − ri,0).

Proof. In this counterfactual economy the firm has the same ambiguity about demand shape as

in the benchmark model but is endowed with the knowledge that

φ(pt − p̃j,t) = pt − p̃j,t, ∀t. (39)

Therefore this firm now knows that the unobserved industry price equals the observed aggregate

price, since

pj,t = p̃j,t + φ(pt − p̃j,t) = pt.

As a result, the estimated relative price simply equals

ri,t = pi,t − pt. (40)

Let us analyze the property of this economy in the simple two period model. The resulting
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worst-case expected profit is given by

(
epi,1−p1 − emci,1

)
ex̂
∗
0(pi,1,y1,p1,p̃j,1), (41)

where the conditional payoff x̂∗0(pi,1, y1, p1, p̃j,1) equals .5 (σ̂2
0 + σ2

z) plus

min
δ′∈[−δ,δ]

exp {y1 − b (pi,1 − p1)− γ + α [y0 − (−γ − bri,0)]− αδ′ (pi,1 − p1 − ri,0)} (42)

The worst-case demand shape is therefore given by

δ∗ = δ sgn (pi,1 − p1 − ri,0) .

Having described the worst-case expected profit, the proof follows from taking the derivatives

of expected profit in (41) and payoff in (42) with respect to the action pi,1.

Different from the benchmark economy, we note that in this counterfactual the worst-case

expected profit does not depend directly on the aggregate price. Indeed, the optimal choice of

the relative price in equation (42) is independent of p1. In this economy indexation is built in, as

instructed per equation (40) where, holding constant the relative price, the nominal price moves

one to one with p1. Therefore, not surprisingly, a nominal price policy that deviates from indexation

is suboptimal. To show this, consider a firm that lives in this counterfactual economy but does not

index to the aggregate price. Instead, it targets the same ri,0 but by setting pnoindexi,1 = ri,0 + p̃j,1.

Put differently, this firm uses only the review signal as the source of relevant information for pj,1

but targets the same relative price. Proposition A5 below details how the non-indexing policy is

strictly suboptimal.

Proposition B3. In the counterfactual economy, the difference ln υ∗(ε0, s1, p1+ri,0)−ln υ∗(ε0, s1, p̃j,1+

ri,0), up to a first-order approximation around p̃j,1, equals(
eri,0

eri,0 − ey1−ωi,1
− b− αδnoindex

)
(p1 − p̃j,1) > 0

where δnoindex = −δ sgn(p1 − p̃j,1).

Proof. The firm that sets pnoindexi,1 is subject to the same informational assumption as the firm

that indexes, and, therefore, it still knows that the co-integrating relationship is given by (39).

Compared to the indexing policy, this firm simply follows a different nominal pricing policy. The

resulting worst-case expected profit is

υ∗(ε0, s1, p
noindex
i,1 ) =

(
eri,0+p̃j,1−p1 − ey1−ωi,1

)
ex̂
∗
0(pnoindexi,1 ,y1,p1,p̃j,1)

where x̂∗0(pnoindexi,1 , y1, p1, p̃j,1) equals .5 (σ̂2
0 + σ2

z) + y1− b [ri,0 + p̃j,1 − p1]− γ+α [y0 − (−γ − bri,0)]
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plus

min
δ′∈[−δ,δ]

−αδ′ (ri,0 − (p1 − p̃j,1)− ri,0) .

The worst-case demand shape is therefore simply

δnoindex = −δ sgn (p1 − p̃j,1) . (43)

Compute now the log-linear approximation with respect to p1, for this worst-case expected profit

υ∗(ε0, s1, p
noindex
i,1 ), evaluated to the right and left of p̃j,1. Those derivatives are

d ln υ∗(ε0, s1, p
∗
i,1)

dp1

= − eri,0

eri,0 − ey1−ωi,1
+ b+ αδnoindex

The resulting ln υ∗(ε0, s1, p1 + ri,0)− ln υ∗(ε0, s1, p̃j,1 + ri,0), up to a first order approximation, is(
eri,0

eri,0 − ey1−ωi,1
− b− αδnoindex

)
(p1 − p̃j,1) > 0

since when p1 is larger (smaller) than p̃j,1, by the worst-case in (43) we have δnoindex = −δ or δ,

respectively. Here we have used that the optimal ri,1 sitting at the kink ri,0 implies that

eri,0

eri,0 − ey1−ωi,1
− b+ δ > 0 >

eri,0

eri,0 − ey1−ωi,1
− b− δ.

B.4 Simulated hazards

In this section, we use simulations to confirm that our econometric approach is appropriate and

allows us to recover the true slope of the hazard function, even in the presence of pervasive

heterogeneity.

We simulate panels of 500 price changes for 100,000 products. Each product i is characterized

by a randomly-chosen unconditional price change probability, ξi, as well as a coefficient that

determines the slope of its hazard function, φi. To make the comparison between the true and

estimated slopes easier, we assume for this exercise that the hazard functions are linear at the

product level. The slope of product i’s hazard, si, is defined as:

si = (1− φi)ξi/13

As a result, the probability of a price change after a spell of length τ smaller or equal than

13 is given by ξτi = ξi − τsi. In other words, the slope is not a function of τ . For τ > 13, the

probability is assumed to be constant at ξτi = ξi − 13si (we will only estimate the hazard slopes
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for spells less than or equal to 13 periods).

Panels differ in the distributions of the baseline probabilities ξi and slope factors φi. We run

the exact same code we use for actual data on the simulated panels, including regressions with

and without product fixed effects:

Pr(pi,t 6= pi,t−1) = α + βτi,t + γi + ui,t

The results are summarized in Table B.1. Each column of the table represents a different

simulated panel. The top portion of the table describes the distribution of the baseline price change

probabilities (ξ) and slope parameters (φ) across simulated products, as well as the average, known

slope of the hazard function across products. Unless otherwise noted, all distributions used for

simulation are uniform. The middle and bottom parts report the slope estimates β̂, the standard

error of the coefficient estimate and the p-value against the null of a flat slope, for regressions

without and with product fixed effects respectively.

The first column, A, shows estimates of the slope of the hazard function when there is no

heterogeneity in either price change probabilities or slope parameters. Not surprisingly, the

coefficient β̂ correctly recovers the true value of the slope and leads us to correctly conclude

that the hazards are flat, whether product fixed effects are included or not.

Next, we introduce heterogeneity in the unconditional price change frequencies ξi. We do,

however, keep a homogenous, flat slope of the hazard function. Our simulations confirm the

presence of the survivor-bias issue discussed in the literature: without fixed effects, the estimation

finds a hazard that is declining on average (column B), even if our simulation features no

relationship between spell length and price change frequency. This is also true if we use a

distribution of the price change probabilities ξi that mimics the empirical distribution from our

dataset (column C). Here we found that a χ2 distribution with 5 degrees of freedom, scaled to

match the mean frequency found in our dataset, provides a good fit. The inclusion of product

fixed effects, on the other hand, correctly leads us to conclude that the hazards are flat on average:

controlling for product-specific hazard shifters circumvents the downward bias that arises from

heterogeneous price rigidity.

If we instead assume a homogenous declining slope, the regression manages to recover perfectly

its value of -0.0036 once we include product fixed effects (column D). Without fixed effects,

however, the hazard is estimated to be three times steeper than it actually is, at -0.0091.

Finally, we also allow for heterogeneity in the slope factors φi. The last part of Table B.1

shows results for regressions run on simulated panels with two different distributions of φi. Once

again, the fixed-effects regression correctly finds a flat average hazard when the distribution of

φi is centered at 1 (column E). Second, it is able to recover a declining hazard function when it

should (column F), with an estimate of -0.0035 vs. the actual value of -0.0036. As we saw earlier,

omitting product fixed effects would lead us to find a slope that is almost three times larger (in
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Table B.1. Estimated slopes of the hazard function for various simulated panels

A B C D E F

ξ distribution [0.15,0.15] [0.01,0.3] Empirical [0.01,0.3] [0.01,0.3] [0.01,0.3]
φ distribution [1,1] [1,1] [1,1] [0.7,0.7] [0.5,1.5] [0.2,1.2]
Actual slope (avg) 0 0 0 -0.0036 0 -0.0036

w/o fixed effects β̂ 0.00032 -0.00658 -0.00407 -0.00910 -0.00664 -0.00909
(0.00016) (0.00015) (0.00015) (0.00016) (0.00016) (0.00016)

p-value 0.042 0.000 0.000 0.000 0.000 0.000

w/ fixed effects β̂ 0.00032 0.00031 0.00026 -0.00360 0.00022 -0.00350
(0.00016) (0.00016) (0.00015) (0.00016) (0.00016) (0.00017)

p-value 0.042 0.052 0.096 0.000 0.185 0.000

absolute value) than it actually is, at -0.0091.

To conclude, our simulation exercises confirm that our econometric approach allows us to

drastically alleviate the well-known survivor bias that arises in the computation of hazards of

price changes.

B.5 Additional evidence on hazard functions

In Figure B.1 the distributions of the estimated hazard slopes across the 54 category/market

combinations. These estimates are obtained from our linear probability regression model with fixed

effects of equation (32). The left panel shows the slope estimates from unweighted regressions,

while results from weighted regressions are shown in the right panel.

B.6 Speed of learning

The evolution of the pricing policy function over time

To further illustrate how learning and the resulting pricing policy evolve over time, panel a) of

Figure B.2 shows how the policy function of one the longer-lived firms in the simulation changes

from period one-hundred and fifty, to the three hundredth period of this firm’s life. The blue line

corresponds to the optimal policy at t = 150, and shows that by that period the firm had sampled

a number of different prices, and established a fair number of kinks. While we might think that

establishing such “special prices” happens once and for all, in fact the position of the kinks can

move and they could even completely disappear as new information arrives. We can see that from

the red line, which plots the policy at t = 300, and shows that by that period the two lowest flat

spots in the policy became absorbed in a new, single flat spot at an intermediate price point.
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Figure B.1. Distribution of the slopes of hazard functions across 54 category/market pairs.
Unweighted and weighted regressions.

Thus, the accumulation of new information could change the optimal position of some of the

reference prices. Over time, it tends to be the case that any given neighborhood of the price space

becomes associated with one special price, and the firm does not visit other prices nearby – this

is another reason for the slow speed of learning.

A counterfactual economy with no firm exit

To showcase the slow nature of learning in our model, we focus on the limiting case of no

firm exit λφ = 0, hence firms never stop accumulating new signals. As we show here, however,

that by itself is not enough to ensure that firms eliminate demand uncertainty, because profit

maximization incentives lead them to often repeat estimated relative prices r̃it that have already

been visited in the past. Thus, the history of observations that the firm sees is endogenously

sparse, concentrated in a handful of individual price points, as opposed to being distributed all

over the support of the demand curve. As a result, the firm has good information about demand

at several different price points, but remains uncertain about the shape in between those prices.

Hence, our mechanism is preserved even in the very long run.

To illustrate, we note that the number of unique estimated relative prices that a firm has seen

after 5000 periods is just 40 on average. Moreover, most of the signals have been observed at

just 3 separate r̃it values, one of which accounts for 48% of all observations, and the other two

for 33% and 12% respectively. As a result, even though the firm has accumulated a lot of signals,
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it remains uncertain about the overall shape of its demand. The accumulated signals are very

informative about the average level of demand in the neighborhood of the few prices that the firm

keeps repeating and collecting more information on, but this provides little guidance about the

shape of the demand function between the observed prices. Thus, the mechanism we develop,

which emphasizes uncertainty in the local shape of demand, remains present even after thousands

of periods of observations. The key intuition behind this result is the endogeneity of the history of

observations: the firms are not collecting an exogenous stream of observations randomly spread out

over the whole demand curve, but are balancing the learning incentives with profit maximization.

As a result, even when firms are infinitely-lived and accumulate thousands observations about

demand, the behavior of prices remains qualitatively similar to that in the benchmark model, with

prices displaying both stickiness and memory. To understand this pricing behavior, we use our

procedure to compute the typical optimal policy function (in terms of the estimated relative price

r̃it) from this simulation, with results plotted in panel b) of Figure B.2. As can be seen from the

Figure, the policy function is qualitatively similar to that in the benchmark case, and is essentially

a step function across the whole support of the price space. Again, this is because even though

the firms have seen much longer histories of observations, they have concentrated their pricing,

and thus information accumulation, in the set of previously observed estimated relative prices.

This results in a pricing policy that is a step-function, generating both stickiness and memory in

prices.

In the model with no exit (λφ = 0), the frequency of changing posted nominal prices is 6.5%,

and the frequency of changing modal prices is 2.8%. Meanwhile, the median size of price changes

is 10.8%, and the probability of revisiting prices posted in the past (conditional on a price change)

is 50% (most non-revisits in this case come from new industry price review signals). Hence, even

without firm exit, the model shares many of the same characteristics as the benchmark model.

We have chosen to include firm exit in the benchmark model purely out of numerical convenience,

as exit introduces faster convergence to the stochastic steady state, with moments that are more

stable at smaller simulation sizes. This helps make the estimation feasible.

B.7 Comparative statics

We now turn to comparative statics. A common theme throughout is the nuanced link between

price flexibility and memory, which as we have shown in Section 4.3, is an important determinant

of how micro-data stickiness maps into the effects of monetary policy.

As a first comparison, we consider a myopic firm by setting β = 0, which eliminates all

experimentation incentives. The key pricing moments under this parameterization are reported

in Table B.2, where we see a drop in both the frequency and median size of price changes. This is

because without a reason to explore new parts of the demand curve, firms now have less incentives

to change prices often or by large amounts. Further investigation shows that this leads firms to
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Figure B.2. Optimal Pricing Policy Function

(a) Benchmark economy, at two intermediate points in time
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(b) Stochastic steady-state pricing policy function, λφ = 0
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Table B.2. Moments - Comparative statics

Benchmark β = 0 ψ = 0 Low δ High σω High b
Freq. regular prices changes 0.105 0.075 0.064 0.207 0.160 0.199
Median size of abs. changes 0.154 0.007 0.015 0.108 0.123 0.015
Freq. modal price changes 0.026 0.028 0.029 0.041 0.037 0.056
Prob. visiting old price 0.414 0.237 0.469 0.444 0.502 0.488
Real effect of st shock, (cumul. 52w) 7.22% 16% 21.9% 3.49% 5.52% 5.21%

Note: Moments are computed across versions of the model in which only the parameter in the column header

is changed, while all others are kept at their benchmark value. ’Low’ or ’High’ means that we halve or double,

respectively, the corresponding parameter compared to its benchmark value.

concentrate their information accumulation in the middle range of productivity shocks, leading to

an ergodic policy function with two large flat spots in the middle, but no other kinks. As a result,

the frequency of modal price changes rises slightly, but memory falls significantly because there

are no other attractive prices outside of those two. Moreover, in unreported results we find that

this myopic version generates very few large price changes and does not match the product pricing

life-cycle facts, as young firms no longer have an experimentation motive to change prices more

often. Lastly, this version of the model implies a significantly stronger monetary non-neutrality,

with a cumulative real output effect in the 52 weeks following a nominal shock rising to 16%. This

is a combination of the fact that prices are less flexible overall, and that the lack of experimentation

incentives also means that price change motives are more closely aligned with aggregate nominal

shocks.
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Next, we consider setting ψ = 0 to eliminate the local nature of learning. In that case,

each signal carries the same quantity of information for any other price point, irrespective of its

distance from the current price. This setting also kills the experimentation motive (Proposition

A.1 in the Online Appendix A.3), because the new information contained in a signal is not specific

to the position of the price at which the signal was observed. It is thus not surprising that the

resulting moments are mostly similar to the ones with β = 0, as can be seen in Table B.2. The

main difference is memory, which increases to 47%. This is due to the emergent ergodic policy

function, which we find that now features numerous, smaller kinks as opposed to just two large

ones, increasing the probability of switching between kinks. The intuition can be seen from section

2.3, which shows that when ψ = 0 the perceived demand loss of moving away from a kink to a

new price is relatively steeper for larger price changes as compared to smaller adjustments. As a

result, smaller price changes are perceived as relatively safer, leading the firm to establish several

kinks in the same neighborhood, as opposed to just a single one. Lastly, the real output effect of

this model is even bigger than in the case of β = 0, due to the lower frequency of price changes

and higher memory as compared to the myopic version.

As a third comparison, we decrease the degree of ambiguity by halving δ. By Proposition 1, this

lowers the as-if cost of moving away from the previously posted price. As a result, price changes

occur more often (both regular and modal), and the size of the resulting price changes is smaller.

Interestingly, this increased flexibility implies more kinks and hence more (but smaller) flat spots

in the pricing policy. The result is higher memory, as there is a higher number of attractive prices

that were set previously. Overall, the greatly increased price flexibility leads to a significantly

smaller cumulative real output effect of 3.49%.

Fourth, we consider a version of the model with high costs volatility, and double the standard

deviation of the idiosyncratic productivity shocks, σω. This raises the frequency of modal and

posted price changes, an intuitive result that is shared with a number of other standard frameworks

(see Klenow and Willis (2016) for a discussion on the role of shocks’ distribution in standard price-

setting models). In our model, however, the increased price flexibility is also accompanied by higher

memory. The reason is that with more frequent price changes, information accumulation is spread

out over a larger set of individual prices, resulting in a policy function with more steps and thus

increased memory. Hence, even though prices change more frequently, they are also more likely

to revert to past price levels. The combination of increased price flexibility and memory nets out

to a lower overall real output effect as compared to the benchmark model, but the fall in the real

effect is smaller as compared to the case of lower δ, because of the counterbalancing increase in

memory. The lower real output effect is consistent with the empirical evidence in Boivin et al.

(2009) who find that monetary non-neutrality indeed decreases with idiosyncratic volatility.

Finally, we increase the average price elasticity of demand by doubling the value of b. The

resulting higher sensitivity to deviations from the optimal markup, which is now just 9%, leads

to a significantly higher frequency and a smaller absolute size of price changes, as documented in
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the last column of Table B.2. These results are consistent with Mongey (2018) who reports that

products facing more competition are characterized by a larger frequency of posted prices and

smaller absolute price changes. We find that, as in the δ and σw comparative statics, the increased

flexibility comes with higher memory, from having more steps in the policy function. This positive

correlation of frequency and memory is not mechanical, as shown by the ψ = 0 case where the

two moments move in the opposite direction. Overall, the monetary non-neutrality in this version

of the model is also weaker, with a cumulative real output effect of 5.21%, again owing to higher

price flexibility balanced out with higher memory. This predictions of a smaller real output effect

is consistent with Kaufmann and Lein (2013) who empirically find that monetary non-neutrality

decreases with competition.
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