
Expected Proportion Graph (Section 2)

November 2, 2018

1 Graph of Expected Proportion (Figure 1 in Section 2)

We use Juptyer to open "Expected Proportion Graph (Section 2).ipynb." Alternatively Github will
render it in a browser.

For different values of p, n, k

1.1 0 Preliminaries

1.1.1 0.1 Import third Party code

In [1]: import time

import os #for benchmarking

import pandas as pd

import ipystata

from collections import Counter

import matplotlib.pyplot as plt

import numpy as np

import importlib #in case we need to update user-defined code e.g. importlib.reload(diffP)

What is my current directory?

In [7]: current_dir=os.getcwd()

print(current_dir)

C:\Users\Miller\Dropbox\josh\work\projects\HotHand-Surprised\Sandbox-Theory

Let’s see which Python code we have in the current directory

In [8]: for file in os.listdir(current_dir):

if file[-3:]=='.py':

print(file)

DifferenceInProportions.py

diffP.py

grayscale.py

prop.py

prop_old.py

1

1.1.2 0.2 Let’s import specialized Python code

In [9]: import prop #The programs live here

importlib.reload(prop)

#help(prop)

print('Locked and loaded')

Locked and loaded

1.2 1. Exploring the distribution of the proportion, and its expected value

1.2.1 1.1 Here is an explanation of the objects in prop.py (can be skipped)

The recursive algorithm presented here is replaces the numerical numerical formula derived in
Miller & Sanjurjo (2015), which is based on the joint distributions of runs. It extends an idea from
Michael Wiener’s C++ code shared on twitter. See Appendix E of the online Supplment Material
for a dicussion of the algorithm.

B below is an (n + 1)2 matrix of dictionaries B[h][s], where: + n is the number of shots, and k
is the length of streaks we are interested in
+ h = min{lh, k} where lh is the length of the hit streak to the left + s is the number of remaining
shots to be taken

Each entry of the matrix B[h][s] consists of a dictionary of elements

B[h][s] := { (nM|kH , nH|kH) : γ }nM|kH ,nH|kH ,γ

• The dictionary key (nM|kH , nH|kH) is a tuple consisting of the number of misses after k hits,
the number of hits after k hits, etc.

• The value γ is the probability that given the h consecutive hits to the left (up to length k), the
next s trials will produce (nM|kH, nH|kH).

• Example 1: for k = 1 the dictionary B[0][2] characterizes 4 possible sequences from the two
shots remaining, and 3 unique keys: B[0][2] = {(0, 0) : .5, (1, 0) : .25, (0, 1) : .25}

• Example 2: for k = 2 the dictionary B[2][2] characterizes 4 possible sequences from the two
shots remaining, and 3 unique keys: B[2][2] = {(1, 0) : .5, (1, 1) : .25, (0, 2) : .25}

• Example 3: for k = 3 the dictionary B[3][1] characterizes 2 possible sequences from the one
shot remaining, and 2 unique keys: B[3][1] = {(1, 0) : .5, (0, 1) : .5}

We can build B iteratively by observing that B[n][0] = {(0, 0) : 1} for all n as there is only possi-
bility for (nM|kH , nH|kH) if there are no more trials to observe. Further that outcome of the next shot
will be a miss (probability= q) or a make (probability = p), in each case the number of remaining
shots is decremented by one, and if the current streak h < k then it either ends, or is increased by
one, i.e. B[h][s] = B[0][s − 1](0,0):q + B[h + 1][s − 1](0,0):p for h < k; otherwise if the current streak
is of length k that streak iether ends or continues, B[k][s] = B[0][s − 1](1,0):q + B[k][s − 1](0,1):p.
Note on notations: the keys from the exponent are summed with the corresponding keys in the
dictionary while the values in the exponent are multiplied by the corresponding values in the
dictionary. When adding two dictionaries together, if a key appears in both dictionaries then the
corresponding values are added together. We now only need to be careful to build the dictionaries
in the correct order after initializing, and we are done.

2

1.2.2 1.2 Fully Monty: Run Python code to generate the matrix (3x5 list) of dictionaries

Adjust Parameters as needed

In [5]: number_of_shots=100

max_streak_length=5

num_probabilities = 3

B = [[None for column in range(num_probabilities)] for row in range(max_streak_length+1)]

#B=[None]

t0 = time.time()

for streak_length in range(1,max_streak_length+1):

for i in range(num_probabilities):

probability_of_hit=.25+ i*.25

B[streak_length][i]=prop.outcome_and_frequency_dictionary(number_of_shots,streak_length,probability_of_hit)

t1 = time.time()

total = t1-t0

print('time in seconds=',total)

print('Dictionary Ready')

time in seconds= 4.552440643310547

Dictionary Ready

1.2.3 1.3 Now let’s graph the expected proportion, as a function of the number of shots

In [6]: max_streak_length=4

num_probabilities = 3

#plt.figure(figsize=(8, 6),facecolor="white")

#don't include gray borders

plt.figure(facecolor="white")

#plt.style.use('grayscale')

#don't incude negative x-axis

plt.xlim(0, 100)

#gray intensity for descrimination on my screen

g1 = .75

g2 = .6

g3 = .4

g4 = 0

tableau4=[(g1,g1,g1),(g2,g2,g2),(g3,g3,g3),(g4,g4,g4)]

#tableau4=[(g-i/3*g,g-i/3*g,g-i/3*g) for i in range(4)]

#initialize list

nshots = [[None for column in range(num_probabilities)] for row in range(max_streak_length+1)]

3

exp_proportion = [[None for column in range(num_probabilities)] for row in range(max_streak_length+1)]

#plot each graph

for i in range(num_probabilities):

#plt.gca().set_prop_cycle(None)

for streak_length in range(1,max_streak_length+1):

#print(i)

n = number_of_shots

k = streak_length

probability_of_hit=.25+ i*.25

#make list x/y-values for plotting

nshots[k][i] = list(range(k+1,n+1))

exp_proportion[k][i]= [prop.expected_proportion(n,k,B[k][i]) for n in range(k+1,n+1)]

#plt.plot(nshots[k][i],exp_proportion[k][i],color=tableau5[k-1])

#plot the x/y values

if i==0:

plt.plot(nshots[k][i],exp_proportion[k][i],label='$k=$'+str(k),color=tableau4[k-1])

else:

plt.plot(nshots[k][i],exp_proportion[k][i],color=tableau4[k-1])

#plot reference lines

plt.plot([0, 100], [.75, .75], 'k--',lw=.75)

plt.plot([0, 100], [.5, .5], 'k--',lw=.75)

plt.plot([0, 100], [.25, .25], 'k--',lw=.75)

#plot text

plt.text(45, .645, '$p=.75$')

plt.text(45, .38, '$p=.5$')

plt.text(45, .195, '$p=.25$')

#plot axis labels

plt.ylabel('Expected Proportion')

plt.xlabel('Number of shots')

#plot legend

plt.legend(bbox_to_anchor=(1, .91), loc=1,prop={'size': 8})

#save figure

plt.savefig("test.pdf", bbox_inches="tight");

#plt.axis([0, 6, 0, 20])

4

In [10]: filename = 'a'+ str(2)+ 'z'

print(filename)

a2z

5

	Graph of Expected Proportion (Figure 1 in Section 2)
	0 Preliminaries
	0.1 Import third Party code
	0.2 Let's import specialized Python code

	1. Exploring the distribution of the proportion, and its expected value
	1.1 Here is an explanation of the objects in prop.py (can be skipped)
	1.2 Fully Monty: Run Python code to generate the matrix (3x5 list) of dictionaries
	1.3 Now let's graph the expected proportion, as a function of the number of shots

