
1-Code_for_Figures_2_to_4

November 2, 2018

1 Generating Figures 2,3,4 w/ Python & Stata

1.1 0 Preliminaries

1.1.1 0.1 Import third Party code

In [1]: import time

import os #for benchmarking

import ipystata #allows us to work with Stata

import importlib #in case we need to update user-defined code e.g. importlib.reload(diffP)

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

Check the current directory

In [3]: current_dir=os.getcwd()

print(current_dir)

C:\Users\Miller\Dropbox\josh\work\projects\HotHand-Surprised\Sandbox-Theory

1.1.2 0.2 Print out .py python files that exist in current directory

In [11]: for file in os.listdir(current_dir):

if file[-3:]=='.py':

print(file)

DifferenceInProportions.py

diffP.py

grayscale.py

prop.py

prop_old.py

1



1.1.3 0.3 Import the necessary Python code

In [5]: import diffP #The programs live here

importlib.reload(diffP)

#help(prop)

print('Locked and loaded')

Locked and loaded

1.2 1. Generate the dictionary of sequence types and their frequency:

1.2.1 1.1 Here is an explanation of the objects in diffP.py (can be skipped)

B below is an (n + 1)3 matrix of dictionaries B[m][h][s], where: + n is the number of shots, and k is
the length of streaks we are interested in
+ m = min{lm, k} where lm is the length of the miss streak to the left + h = min{lh, k} where lh is
the length of the hit streak to the left + s is the number of remaining shots to be take

The on element of the matrix B[m][h][s] is the dictionary of elements

B[m][h][s] := { (nM|kM, nH|kM, nM|kH , nH|kH) : γ }nM|kM ,nH|kM ,nM|kH ,nH|kH ,γ

• The key (nM|kM, nH|kM, nM|kH , nH|kH) is a tuple consisting of the number of misses after k
missess, the number of hits after k misses, etc.

• The value γ is the probability of a length n sequence with those key attributes, where at that
trial in the sequence there are s shots remaining, the current streak of misses and hits (up to
k) is (m, h), note if m > 0 then h = 0 and vice-versa.

If k = 1 and n = 2, there are 4 sequences: + B[0][0][2] = {(1, 0, 0, 0) : .25, (0, 1, 0, 0) :
.25, (0, 0, 1, 0) : .25, (0, 0, 0, 1) : .25}

If k = 1 and n = 3, there are 8 sequences, but some sequences have identical keys, e.g. 010 or
101 have key (0, 1, 1, 0), so + B[0][0][3] = {(2, 0, 0, 0) : .125, (0, 1, 1, 0) : .25, . . . }

1.3 2 Create the data and graph for Figures 2, 3, 4

1.4 2.1 Create data

For each k, p, we (i) generate the dictionary that associates each count tuple with it’s probability
for all n, (ii) run the code to compute the expected difference as a function of n, (iii) write the csv.

Note: - for k = 1 the expected difference doesn’t depend on rate of success (p or fgs_1 below),
as was proven in Appendix A.4, theorem 4 - for k = 2 we consider 3 probabilites p = .25, .5, .75
to illustrate in Figure 4 - for k = 3 we consider the range of shooting percentages in the task for
adjustments in Figure 2, and p=.25,.5,.75$ to illustrate in Figure 4

In [13]: #It's symmetric, but we'll do both

#Note: did k=1, k=2 already,

max_number_of_shots = 100

max_streak_length = 3

#It's symmetric, but we'll do both

fgs_1 = [50]

2



fgs_2 = [25, 50, 75]

fgs_3 = [25, 32, 34, 35, 36, 39, 40, 41, 42, 44, 45, 46, 48, 50, 53, 54, 56, 57, 58, 59, 60, 61, 75]

fgs = [None, fgs_1, fgs_2, fgs_3]

#B=[None]

for k in range(1,max_streak_length+1):

for fg in fgs[k]:

t0 = time.time()

probability_of_hit = fg/100

N = max_number_of_shots

k = streak_length

p = probability_of_hit

B = diffP.outcome_and_frequency_dictionary(N,k,p)

data= [(p,k,n,diffP.expected_difference(n,k,B)) for n in range(2*k+1,max_number_of_shots+1)]

labels = ['prob_hit', 'streak_length', 'nshots', 'expected_difference']

expectdiff_df = pd.DataFrame.from_records(data, columns=labels)

filename = 'Expected_diff' + '_' + str(k) + '_' + str(fg)' + '.csv'

expectdiff_df.to_csv(filename, sep=',')

del B

del data

t1 = time.time()

total = t1-t0

print('time in seconds=',total)

print('Dictionary Ready')

time in seconds= 204.59098505973816

time in seconds= 205.78911900520325

time in seconds= 265.5576286315918

time in seconds= 251.3963007926941

time in seconds= 214.3576533794403

time in seconds= 206.26020002365112

time in seconds= 205.64297938346863

time in seconds= 208.6247878074646

time in seconds= 209.11938905715942

time in seconds= 206.78878211975098

time in seconds= 212.72659492492676

time in seconds= 207.26458477973938

time in seconds= 203.05377578735352

time in seconds= 209.5119891166687

time in seconds= 208.84478735923767

time in seconds= 204.3961799144745

time in seconds= 207.92779970169067

time in seconds= 211.08779001235962

time in seconds= 203.25337767601013

3



time in seconds= 204.31258058547974

time in seconds= 205.54258179664612

time in seconds= 206.9627833366394

Dictionary Ready

1.4.1 2.1.1 Make a bias adjustment file that is used in "Analysis_Surprised.do" to generate
Figure 2

In [ ]: %%stata

clear

use "..\0-RAWDATA\GilovichValloneTversky--CognitivePsychology--1985_CornellData.dta"

collapse (count) nshots=make (mean) fgp = make (sum) nhits=make , by(sid)

gen bias =.

forvalues i = 1(1)26 {

local nhits = nhits[`i']

local nshots = nshots[`i']

preserve

clear

import delimited Expected_diff_3_`nhits'.csv

mkmat nshots expected_difference, matrix(bias3)

matrix bias3=J(6,2,.)\bias3

local bias = bias3[`nshots',2]

restore

replace bias = `bias' in `i'

}

save ""..\3-Analysis_and_Fig2\biasGVT-0-0.dta ""

1.5 ---> To Generate Figure 2, go to directory "3-Analysis_and_Fig2"

1.6 2.2 Generate Figure 4

In [24]: #plt.figure(figsize=(8, 6),facecolor="white")

import csv

#don't include gray borders

plt.figure(facecolor="white")

#plt.style.use('grayscale')

#don't incude negative x-axis

plt.xlim(0, 100)

#gray intensity for descrimination on my screen

g1 = .75

4



g2 = .5

g3 = 0

tableau3=[(g1,g1,g1),(g2,g2,g2),(g3,g3,g3)]

#tableau4=[(g-i/3*g,g-i/3*g,g-i/3*g) for i in range(4)]

max_number_of_shots = 100

max_streak_length = 3

fgs_1 = [50]

fgs_2 = [50, 25] #note by symmetry this includes fg =75

fgs_3 = [50, 25]

fgs = [None, fgs_1, fgs_2, fgs_3]

#B=[None]

for k in range(1,max_streak_length+1):

for fg in fgs[k]:

x = []

y = []

filename = 'Expected_diff' + '_' + str(k) + '_' + str(fg) + '.csv'

with open(filename,'r') as csvfile:

plots = csv.reader(csvfile, delimiter=',')

next(plots, None)

# take the 3rd and 4th column from each row

for row in plots:

x.append(int(row[3]))

y.append(float(row[4]))

if fg == 50:

plt.plot(x,y,color=tableau3[k-1] ,label='$k=$'+str(k)+', $p=.5$')

else:

plt.plot(x,y,'k--',color=tableau3[k-1] ,label='$k=$'+str(k)+', $p=.25,.75$')

#plot text

#plt.text(45, .645, '$p=.75$')

#plt.text(45, .38, '$p=.5$')

#plt.text(45, .195, '$p=.25$')

#plot axis labels

plt.ylabel('Expected Difference')

plt.xlabel('Number of shots')

#plot legend

plt.legend(bbox_to_anchor=(1, .51), loc=1,prop={'size': 8})

#save figure

plt.savefig("ExpectedDiff.pdf", bbox_inches="tight");

#plt.axis([0, 6, 0, 20])

5



1.7 2.3 Generate data used for Figure 3, and create Figure 3

note: While the iterative procedure we used above is a lot more efficient to implement for cal-
culated expected differences than formula we derived in the previous version of our paper (see
Miller & Sanjurjo, 2015) that was based on the joint distributions of the number of runs of each
length, it is not more efficient for the case of histograms conditional on the number of hits, e.g. as
done in Figure 3 with 50 hits out of 100 shots. In that case the approach used in the formula we
derived is more efficient. Nevertheless, to maintain some uniformity in approach, the recursive
dictionary-based approach is extended to this case.

1.7.1 2.3.1 Create the dictionary of tuple-probability pairs for Figure 3

This section of code is not efficient and took 1.5 hours on my machine.
note: in this case the tuple has an additional entry for the total number of hits,

and this extra entry demands a lot more memory. To adjust for this, the method "out-
come_and_frequency_dictionary_totalhits" uses a dictionary of dictionaries, instead of a matrix
of dictionaries, which is what was used before. In addition, memory that is no longer needed, is
freed up along the way. See diffP for details.

In [6]: #This is not efficient with memory

max_number_of_shots = 100

streak_length = 3

probability_of_hit = .5 # it doesn't matter which one we choose, since we will condition on # hits

N = max_number_of_shots

6



k = streak_length

p = probability_of_hit

t0 = time.time()

B = diffP.outcome_and_frequency_dictionary_totalhits(N,k,p)

t1 = time.time()

total = t1-t0

print('time in seconds=',total)

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Step 15

Step 16

Step 17

Step 18

Step 19

Step 20

Step 21

Step 22

Step 23

Step 24

Step 25

Step 26

Step 27

Step 28

Step 29

Step 30

Step 31

Step 32

Step 33

Step 34

Step 35

Step 36

Step 37

Step 38

Step 39

Step 40

7



Step 41

Step 42

Step 43

Step 44

Step 45

Step 46

Step 47

Step 48

Step 49

Step 50

Step 51

Step 52

Step 53

Step 54

Step 55

Step 56

Step 57

Step 58

Step 59

Step 60

Step 61

Step 62

Step 63

Step 64

Step 65

Step 66

Step 67

Step 68

Step 69

Step 70

Step 71

Step 72

Step 73

Step 74

Step 75

Step 76

Step 77

Step 78

Step 79

Step 80

Step 81

Step 82

Step 83

Step 84

Step 85

Step 86

Step 87

Step 88

8



Step 89

Step 90

Step 91

Step 92

Step 93

Step 94

Step 95

Step 96

Step 97

Step 98

Step 99

Step 100

time in seconds= 5678.250269412994

1.7.2 2.3.2 Create a histogram for Figure 3

This takes 30 minutes as the number of items in memory is large.
note: - the NameError. There was an error in writing the csv. That code has been deleted.

In the following cell we write the histogram datafile - There was an error in the method "his-
togram_counts_totalhits" which defined the difference incorrectly. That has been fixed in the .py
file, but the code was not run again to generate a new csv, so this mistake is fixed later using Stata
(see cell below)

In [11]: n = 100

number_of_hits = 50

t0 = time.time()

histogram = diffP.histogram_counts_totalhits(n,number_of_hits,streak_length,B)

t1 = time.time()

total = t1-t0

print('time=',total)

print('Histogram Ready')

time= 1710.5111014842987

Histogram Ready

---------------------------------------------------------------------------

NameError Traceback (most recent call last)

<ipython-input-11-108eb2413c2c> in <module>()

12 t0 = time.time()

13 with open('histogram.csv','wb') as f:

---> 14 w = csv.writer(f)

15 w.writerows(histogram.items())

16

9



NameError: name 'csv' is not defined

1.7.3 2.3.3 Write csv of histogram data for Figure 3

Write the outcome of the histogram in memory.

In [19]: import csv

t0 = time.time()

with open('histogram.csv', 'w') as f:

for key in histogram.keys():

f.write("%s,%s\n"%(key,histogram[key]))

t1 = time.time()

total = t1-t0

print('time=',total)

print('Histogram Written to CSV')

time= 0.33301568031311035

Histogram Written to CSV

1.7.4 2.3.4 Graph the histogram of Figure 3

In [3]: %%stata

clear

pwd

cd "C:\Users\Miller\Dropbox\josh\work\projects\HotHand-Surprised\Sandbox-Theory"

import delimited "histogram_modified.csv", asdouble

rename v1 diff

rename v3 count

* fix output error in Python code (now fixed in Python code, but didn't run it again.)

replace diff= -diff

sort diff

replace diff=diff*100

histogram diff [fweight = count], discrete width(4) fraction kdensity kdenopts(width(4)) ///

xtitle("Difference (percentage points)") ytitle(Fraction of sequences) scheme(s1manual) name(g3, replace)

*graph save g3 "Diffbigbins-100-50-3-v2.gph", replace

*graph export "Diffbigbins-100-50-3-v2.pdf", as(pdf) replace

C:\Users\Miller\Dropbox\josh\work\projects\HotHand-Surprised\Sandbox-Theory

10



C:\Users\Miller\Dropbox\josh\work\projects\HotHand-Surprised\Sandbox-Theory

(3 vars, 28854 obs)

(28,853 real changes made)

(28,853 real changes made)

(start=-100, width=4)

11


	Generating Figures 2,3,4 w/ Python & Stata
	0 Preliminaries
	0.1 Import third Party code
	0.2 Print out .py python files that exist in current directory
	0.3 Import the necessary Python code

	1. Generate the dictionary of sequence types and their frequency:
	1.1 Here is an explanation of the objects in diffP.py (can be skipped)

	2 Create the data and graph for Figures 2, 3, 4
	2.1 Create data
	2.1.1 Make a bias adjustment file that is used in "Analysis_Surprised.do" to generate Figure 2

	---> To Generate Figure 2, go to directory "3-Analysis_and_Fig2"
	2.2 Generate Figure 4
	2.3 Generate data used for Figure 3, and create Figure 3
	2.3.1 Create the dictionary of tuple-probability pairs for Figure 3
	2.3.2 Create a histogram for Figure 3
	2.3.3 Write csv of histogram data for Figure 3
	2.3.4 Graph the histogram of Figure 3



