
Appendix

A-1 Identification under Patient Selection

A-1.1 Quantifying Selection in Terms of Predicted Outcomes

The analyses to evaluate selection have focused on implications on the EOS effect on length
of stay, because qualitative differences in observed patient characteristics suggest that slightly
easier patients are assigned near EOS. Easier patients would suggest that cost, orders, and
admissions should be lower near EOS, and therefore to the extent that there is any bias of from
selection, estimated effects on these other outcomes should be conservative lower bounds of the
true effect. This appendix section formally assesses this intuition and quantifies selection on
observable characteristics with respect to predicted outcomes.

As above, consider predicted outcomes Ŷ set
it , where set ∈ {ante, full}. I estimate regressions

of predicted outcomes, similar to the baseline regression in Equation (1):

Ŷ set
it = αm(i,t) + γm(i,t) + ηTt + ζp(i) + νj(i),k(i) + εit, (A-1.1)

leaving out variables in Xit as regressors. I interpret the coefficients αm as the amount patient
selection in the mth hour prior to EOS (compared to greater than 6 hours prior to EOS) according
to the predicted outcome Ŷ set

it .
Figure A-1.1 presents estimates of selection for each set of patient characteristics and for each

of the outcomes of length of stay, orders, admission, and costs. To reference magnitude, selection
estimates are overlaid onto estimates for the EOS effect from Equation (1) for each respective
outcome. Coefficients for selection estimated using the two sets of characteristics are extremely
similar, which supports Assumption 1. Selection nearing EOS appears to be in the direction of
healthier patients: those expected to have shorter lengths of stay, lower admission probabilities,
lower costs, and fewer orders. Predicted length of stay is 5.4% lower in the last hour prior to EOS
compared to seven or more hours prior to EOS, about an order of magnitude smaller than effects
for actual length of stay. All predicted outcomes show a decreasing relationship with proximity
to EOS, in contrast to increases in actual admission, costs, and orders.

A-1.2 Assessing Identifying Assumptions

In Section 4.1 and Tables 1 and A-1.1, I assess two identifying assumptions: Assumption 1 is
that patient selection occurs only via ex ante patient characteristics, which I observe in the data.
Other patient characteristics that are correlated with potential outcomes are mostly unknown
to physicians before assignment and, under this assumption, excluded from assignment policies.
This assumption would be violated if physicians and triage nurses make further assessments of
patient severity and use these assessments to assign to physicians according to their time to
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EOS. In this setting, such violations are less likely because triage and assignment is specifically
supposed to be summarized by the sufficient statistic of ESI, which is an ex ante characteristic
observable in the data.

I assess Assumption 1 by considering an ex post characteristic Xpost and estimating the
following regression:

Xpost
it = αm(i,t) + γm(i,t) + βXante

i + ηTt + ζp(i) + νj(i),k(i) + εt. (A-1.2)

Excludable characteristics (and any linear combination of them, such as an outcome prediction
based on them) should be mean independent of time relative to EOS, conditional on ex ante
characteristics, time categories, pod identities, and provider identities. Therefore, under this
assumption, the set of coefficients {αm} in Equation (A-1.2) should be jointly insignificant.
Results are shown in Table 1, Columns 1 and 2, and in Table A-1.1, Panel A.

Assumption 2 is that, conditional on time categories, pod identities, and provider identities,
patient potential outcomes are unrelated to specific ED arrival times that drive the propensity
for assignment to a physician nearing EOS. Specifically, variation in shift schedules within a time
category of ED arrival drives the propensity of being assigned to a physician near EOS but is
mean independent of potential outcomes of the arriving patients. This assumption would be
violated if patients were to know ED shift schedules and arrive according to their severity and
the propensity to be assigned to a physician ending her shift. The assumption would also be
violated if the ED changed EOS times to meet changing patient severity within time categories.
These violations do not seem likely because schedule changes are primarily driven by changes in
physical capacity and physician availability (e.g., new hires).

To assess Assumption 2, I regress any patient characteristic or linear combination of charac-
teristics as follows:

Xit =

1∑
m=6

αmPm (t) + ηTt + ζp(i) + νj(i),k(i) + εt. (A-1.3)

Pm (t) represents the fraction of patients arriving at time t who are assigned to m hours prior to
EOS, where the omitted category is 7 or greater hours. Results are in Table 1, Columns 3 to 8,
and in Table A-1.1, Panel B. Assumption 2 formally conditions on pod and provider identities
because in my preferred specification I use arrival hour at the ED floor as the primary measure
of arrival time t. Conditioning on pod and provider identities is of course part of my baseline
specification for estimating EOS effects in Equation (1).

A-1.3 Eliminating Selection between Physicians (Chetty et al, 2014)

This appendix section considers additional robustness checks using variation across arrival times,
similar to Assumption 2. I only use variation in the overall composition of ED shifts at the
patient’s time of arrival. Because I control for hour of the day, day of the week, and month-year
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interactions, correlations between patient arrival and underlying ED shift structure would have
to be conditional on these time categories.

This approach is closely related to one used by Chetty et al. (2014). First, I estimate “leave-
shift-out” (jackknife) EOS effects specific to shift s, using Equation (1) on all observations except
those corresponding to s (Jacob et al., 2010). I denote these estimates as

{
α̂−s
m

}
. This method

thus excludes any idiosyncratic selection within a shift that would otherwise introduce bias into
{α̂m}. Next, I construct hourly patient-weighted averages (at the level of the entire ED) that
represent the overall ED shift environment at hour t. That is, for patients i arriving at time
tai = t, construct the average EOS effect

Qt ≡
∑

i 1 (t
a
i = t)

∑6
m=1 α̂

−s
m 1

(⌈
t (J (i, t) , t)− t

⌉
= m

)
1 (S (J (i, t) , t) = s)∑

i 1 (t
a
i = t)

, (A-1.4)

where J (i, t) is a physician assignment function for patient i at time t, and S (j, t) is a shift
assignment function for physician j at time t.

A-1.3.1 Forecast Bias

I first evaluate systematic bias in baseline estimates by using only cross-time variation in hourly
averages. I construct hourly averages Yt of (residualized) length of stay Ỹit:

Yt ≡
∑

i 1 (t
a
i = t) Ỹit∑

i 1 (t
a
i = t)

(A-1.5)

where
Ỹit ≡ Yit −

[
γ̂m(i,t) + β̂Xi + η̂Tt + ζ̂p(i) + ν̂j(i)

]
. (A-1.6)

Coefficients γ̂m, β̂, η̂, ζ̂p, and ν̂j are estimated using within-EOS variation from an equation very
similar to Equation (1):

Yit = αm(i,t) + γm(i,t) + βXi + ηTt + ζp(i) + νk(i) + εit,

where I use attending-physician fixed effect νk(i) instead of physician-team fixed effects νj(i),k(i)

to broaden the number of observations for which I observe an identified residual. This approach,
which includes effects for time to EOS, only uses within-EOS-time variation to estimate coeffi-
cients and therefore provides consistent estimates even if the covariates are correlated with time
relative to EOS.

I compare these residualized outcomes with average EOS effect Qt from Equation (A-1.4)
with the regression

Yt = a+ bQt + χt. (A-1.7)

This regression yields an estimate of “forecast bias” due to systematic selection of patients arriving
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within t across physicians,

Bias
(
α̂
−s(j(i),t)
m(i,t)

)
= Cov

(
εit, α̂

−s(j(i),t)
m(i,t)

)
/Var

(
α̂
−s(j(i),t)
m(i,t)

)
= 1− b,

under the assumption that
Cov (Qt, χt) = 0. (A-1.8)

This assumption is similar to Assumption 2, that there is no selection of unobservable patient
types across average ED times relative to EOS, conditional on time categories, observable char-
acteristics, pod, and physician, but is even less restrictive in the sense that Qt is formed by
leave-shift-out estimates.

Column 1 of Table A-1.2 reports estimates of b from Equation (A-1.7). The point estimate
of b is 1.029 with a robust standard error of 0.060 (clustered at each hour of t), which reflects
tight estimation indistinguishable from 1 (i.e., I cannot reject the hypothesis of α̂−s

m − αm = 0).
That is, under the assumption in (A-1.8), I cannot reject the null of no unobservable selection
across physicians within time (i.e., Assumption 1). Panel A of Figure A-1.2 plots the relationship
between Yt and Qt nonparametrically, dividing the data into 20 equal-sized groups (“vigintiles”)
according to Qt. This plot nonparametrically represents the expectation function of Yt condi-
tional on Qt. The relationship is highly linear, with slope close to 1.

A-1.3.2 Observable Selection between Hours

I use a similar exercise to consider the amount of selection on observables across hours in order
to support the assumption in Equation (A-1.8) (and Assumption 2). Similar to the analysis in
Appendix A-1.2, I form predictions about length of stay using two sets of patient characteristics.
The first is the set of ex ante characteristics Xante that are observable to the physician prior to
assignment, while the second set Xfull is a superset (simply referred to by X in the main text)
that also includes ex post clinical characteristics that generally unobserved to the physician until
after assignment. I average predictions for all patients within a given hour, again eliminating
selection across physicians within hour. This exercise therefore evaluates the degree of selection
(on observable characteristics) remaining across hours.

For each variable in Xfull, I form residualized variables obtained after subtracting predictions
of each variable based on time categories, Tt, and indicators for hours relative to shift beginning,
m = bt− t (j, t)c. Using residualized characteristics in each set, I construct respective predictions
Ŷ ante and Ŷ full. Similar to Equation (A-1.5), I average these predictions over all patients arriving
at a given hour:

Ŷ set
t ≡

∑
i 1 (t

a
i = t) Ŷ set

it∑
i 1 (t

a
i = t)

, (A-1.9)

where t denotes an hour, and set ∈ {ante, full}.
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The regression
Ŷ set
t = a+ bsetQt + χt (A-1.10)

quantifies the degree of selection across hours, as predicted by characteristics Xset: Under (A-1.8),
bset = Cov

(
E
[
α̂−s
m |t

]
, Ŷ set

t

)
/Var (E [α̂ms|t]) for m =

⌈
t (j, t)− t

⌉
and set s = S (j, t). Although

the assumption in Equation (A-1.8) is not directly testable, a lack of observable selection (bset

is indistinguishable from 0) supports this assumption.
Columns 2 and 3 of Table A-1.2 report of estimates bante and bfull, respectively, from Equation

(A-1.10). Both estimates are small and indistinguishable from 0: The point estimate of bante

is 0.029 (robust standard error 0.025), and the point estimate of bfull is 0.024 (robust standard
error 0.026). Panels B and C of Figure A-1.2 show corresponding nonparametric expectations of
Ŷ ante
t and Ŷ full

t , respectively conditional on Qt, where the data is again divided into vigintiles
of Qt. The relationship is again linear, but consistent with the regression results, there is no
relationship between length of stay predicted by time relative to EOS (Qt) and that predicted
by patient characteristics.

A-1.4 Required Selection on Unobservables (Altonji et al, 2005)

This appendix section details a procedure similar to that outlined in Altonji et al. (2005). The
goal of this exercise is to quantify the amount of selection on unobservables necessary to explain
decreases in length of stay for patients assigned at each hour near EOS. The basic intuition is
that the possibility that selection on unobservables explains estimated effects can be quantified
by the extents to which selection and outcomes can be explained by observables.

A-1.4.1 Conceptual Framework

Consider a condensed form of the outcomes regression Equation (1):

Y =
∑
m

αmAm +Ω′Γ

=
∑
m

αmAm +W′ΓW + ξ, (A-1.11)

where I omit subscripts for simplicity. I define Am ≡ 1
(⌈
t (j, t)− t

⌉
= m

)
for whether the

time t that patient i was assigned to physician j was in the mth hour from j’s EOS. αm is the
causal effect of a patient being assigned in the mth hour prior to EOS. Ω is the full set of other
variables, both observed and unobserved, that determine outcome Y , while W includes only
observed patient, time, and provider characteristics (to be distinguished from Xit in Equation
(1), which only includes patient characteristics). Γ is the causal effect of Ω on Y . ΓW is the
subvector of Γ that corresponds to W within Ω, and ξ is an index of the unobserved variables.
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Since variables in W are likely correlated with ξ, rewrite Equation (A-1.11) as

Y =
∑
m

αmAm +W′γW + ε, (A-1.12)

where γW and ε are constructed so Cov (ε,W) = 0 by definition. Thus γW captures both the
causal effect of W on Y , orΓW , as well as the portion of ξ that may be correlated with W. Note
that, for the regression estimate of αm to be unbiased, the standard OLS assumption is that
Cov (ε,Am) = 0, or E [ε |Am = 1]− E [ε |Am = 0] = 0.

A-1.4.2 Measure of Selection on Unobservables

Altonji et al. (2005) argue for upper bound of selection on unobservables, specified by

E [ε |Am = 1]− E [ε |Am = 0]

Var(ε)
=

E [W′γW |Am = 1]− E [W′γW |Am = 0]

Var(W′γW )
, (A-1.13)

which states that the relationship between the index of unobservables in Equation (A-1.12) and
the indicator for selection Am is equal in magnitude to the relationship between observable
predictors of Y and Am, respectively normalizing for variance.

They argue that this condition represents an upper bound because of observed variables are
not randomly collected but rather represent characteristics that are collected precisely because
they are more important for outcomes of interest. Furthermore, because many observed variables
are in fact collected after the selection event, they include random shocks that cannot have
influenced the selection event. This latter argument is related to the fact that patient clinical
characteristics are generally unknown by the physician at the time of assignment.

A-1.4.3 Estimation of Potential Bias

In order to estimate the potential bias at the upper bound implied by Equation (A-1.13), consider
the following linear selection equation:

Am = W′βm
W +A∗

m, (A-1.14)

where A∗
m is a residual that is orthogonal to W. Then Equation (A-1.12) can be stated as

Y =
∑
m

αmA∗
m +W′

(
γW +

∑
m

αmβm
W

)
+ ε.
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This leads to a statement of the potential bias due to selection on unobservables:

plim α̂m ≈ αm +
Cov (A∗

m, ε)

Var (A∗
m)

= αm +
Var (Am)

Var (A∗
m)

(E [ε |Am = 1]− E [ε |Am = 0]) ,

From Equation (A-1.13), the bias can be stated in terms of E [W′γW |Am = 1]−E [W′γW |Am = 0]:

Bias =
Var (Am)Var (ε)

Var (A∗
m)Var (W′γW )

(
E
[
W′γW |Am = 1

]
− E

[
W′γW |Am = 0

])
(A-1.15)

Under the null hypothesis that αm = 0, γW can be consistently estimated by Equation (A-1.11).
I can then arrive at a consistent estimate of bias in Equation (A-1.15) with the following

procedure, with results shown in Table A-1.3: For each m ∈ {−6, . . . ,−1}, I define Am over
all observations and empirically calculate V̂ar (Am). I also calculate V̂ar (A∗

m) after estimating
Equation (A-1.14) for each m. Similarly, I estimate V̂ar (ε) = 0.160 and V̂ar (W′γW ) = 0.580

from Equation (A-1.12). Equation (A-1.12) also allows me to form an estimate of selection
on observables, Ê [W′γW |Am = 1] − Ê [W′γW |Am = 0], for each m. Using the condition in
Equation (A-1.13) that normalized selection on unobservables is bounded by normalized selection
on observables, I then calculate an upper bound of the bias due to selection on unobservables
with Equation (A-1.15). As shown in Table A-1.3, the upper bound of the bias in α̂1, the effect
of arriving in the last hour of shift on the length of stay, estimated by Equation (1), is −0.00124.
Given that α̂1 = −0.5873, this implies that normalized selection on unobservables would have
to be 475 times greater than normalized selection on observables. As a comparison, in their
example of the impact of Catholic school on educational attainment, Altonji et al. (2005) argue
that selection on unobservables is highly unlikely with a ratio 3.55.

A-2 Effects Relative to Shift Beginning

The literature on shift work has almost exclusively focused on cumulative health effects and
fatigue (e.g., Brachet et al., 2012; Shetty and Bhattacharya, 2007; Volpp and Rosen, 2007),
while I explore the possibility of strategic behavior in this paper. Unlike shifts of 36 hours in
the residency work-hours debate, significant fatigue is less likely near the end of a shift of nine
hours, the modal shift length in this setting. Nonetheless, I specifically address this issue by
exploiting variation in shift length to control for effects, such as fatigue, correlated with time
since the beginning of shift. I assume that, conditional on time since beginning of shift, fatigue
is independent of time to EOS.

In the full model of Equation (1), I show robust EOS effects controlling for time since the
beginning of shift. The effect attributable to time since shift beginning is minor compared to
the overall effect for length of stay. Here I illustrate the robustness of EOS effects more directly
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by simply showing the effect on length of stay for each hour prior to EOS separately for three
categories of shift lengths. I study shifts that are nine hours in length, as well as shifts that
are seven or eight hours in lengths and shifts that are ten hours in length. Figure A-2.1 plots
coefficients αm from Equation (1) estimated separately for each shift-length category. Panel A
plots coefficients according to time relative to EOS and shows coefficients largely similar across
shift lengths and within hour prior to EOS. Panel B arranges the coefficients according to time
from shift beginning, illustrating the corollary that the EOS effect is largely independent of the
time since beginning the shift.

A-3 Time Components of Length of Stay

In Section 4, length of stay decreases while formal utilization increases near EOS. This suggests
that formal utilization is a net substitute for time in patient care. In this appendix, I further
examine this hypothesis by a closer look at the time components of length of stay. In practice,
time is not neatly divided into pure substitute or complement components with formal utilization
(call these components τ1 and τ2, respectively), but some intuitive distinctions can be made:
Time before the first formal order likely belongs to τ1 (e.g., time spent interviewing the patient
or performing serial abdominal examination as opposed to CT scan). Time after the last formal
order likely belongs to τ2, reflecting time needed to follow up on utilization (e.g., waiting for CT
scan report). Although time in between the first and last orders could belong to either τ1 or τ2,
the spacing of these orders often reflects clinical monitoring and reasoning more closely related
to τ1.

Measuring length of stay in three component shares – time between pod arrival and first
order, time between first and last (non-discharge) orders, and time between last and discharge
orders – I estimate a fractional logit model (Papke and Wooldridge, 1996) using similar regressors
as in Equation (1). Figure A-3.1 presents results of marginal effects relative to EOS. Panel A
scales time shares by the median predicted length of stay in each hour prior to EOS according to
Equation (1); Panel B simply plots the unscaled proportional shares. These proportions remain
relatively unchanged except for the last hour prior to EOS, when the proportions for time prior
to first order and inter-order time both decrease. These results suggest relative reductions in
τ1, particularly in the last hour prior to EOS, and are consistent with the increase in formal
utilization (net substitution) in the last hour shown in Table 3 and Figure 6.

A-4 Stylized Model Proposition Proofs

A-4.1 Proof of Proposition 1

Denote inputs in Section 6.1 that maximize expected utility in Equation (7), conditional on patient
assignment (a = 1), as (τ∗ (t) , z∗ (t)). Denote corresponding inputs that maximize welfare as
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(
τFB (t) , zFB (t)

)
. Assume that Fp′ (p

∗) < 1
2 .

(a) As t → t, τ∗ (t) weakly decreases, z∗ (t) may weakly increase (if τ and z are net substitutes)
or decrease (if τ and z are net complements), and E [d|τ∗ (t) , z∗ (t)] weakly increases.

Proof. The partial derivative of E [U | a = 1] with respect to τ is

∂E [U | a = 1]

∂τ
= −∂c̃τ

∂τ
+ λ

(
∂

∂τ
E
[
v
(
θ, d

(
θ̂
))]

− ∂c

∂τ

)
. (A-4.1)

Define ∆θ=1
v ≡ v (1, 1)− v (1, 0) and ∆θ=0

v ≡ v (0, 0)− v (0, 1). Using this notation, note that

E
[
v
(
θ, d

(
θ̂
))]

=

E [v (θ, 0)] + ∆θ=1
v p′q, p′ < p∗

E [v (θ, 1)] + ∆θ=0
v (1− p′) q, p′ ≥ p∗

,

which implies that

∂

∂τ
E
[
v
(
θ, d

(
θ̂
))]

=

∆θ=1
v p′ ∂q∂τ , p′ < p∗

∆θ=0
v (1− p′) ∂q

∂τ , p′ ≥ p∗
. (A-4.2)

From Equation (A-4.1), the first-order condition with respect to τ is

∂

∂τ
E
[
v
(
θ, d

(
θ̂
))]

=
1

λ

∂c̃τ
∂τ

+
∂c

∂τ
.

The only part of this relationship that depends on t is ∂c̃τ/∂τ . As t → t, ∂c̃τ/∂τ weakly increases,
which implies that τ∗ weakly decreases as a function of t. Note that this relationship is stronger
when λ is smaller (i.e., when the physician cares less about patient outcomes relative to her
leisure and income).

The corresponding first-order condition with respect to z is

∂

∂z
E
[
v
(
θ, d

(
θ̂
))]

=
∂c

∂z
,

where
∂

∂z
E
[
v
(
θ, d

(
θ̂
))]

=

∆θ=1
v p′ ∂q∂z , p′ < p∗

∆θ=0
v (1− p′) ∂q

∂z , p′ ≥ p∗
.

If z and τ are complements (i.e., if ∂2q/ (∂z∂τ) > 0), then ∂q/∂z decreases as τ decreases. This
implies that z∗ decreases as τ∗ decreases. Given that τ∗ weakly decreases as a function of t,
z∗ weakly decreases as a function of t. On the other hand, if z and τ are substitutes (i.e., if
∂2q/ (∂z∂τ) < 0), then ∂q/∂z increases as τ decreases. This implies that z∗ increases as τ∗

decreases. Given that τ∗ weakly decreases as a function of t, z∗ weakly increases as a function
of t.

A-9



As t → t, the cost of producing q weakly increases since ∂c̃τ/∂τ weakly increases. Thus
q (τ∗ (t) , z∗ (t)) weakly decreases in t. If Pr (p′ > p∗) > Pr (p′ < p∗) (i.e., Fp′ (p

∗) > 1
2 as as-

sumed), then E [d |τ∗ (t) , z∗ (t) ] weakly increases since the probability that θ̂ = ∅ (i.e., 1 − q)
weakly increases, and discharge is the default when p′ > p∗.

(b) For all t, τ∗ (t) ≤ τFB (t), and E [d|τ∗ (t) , z∗ (t)] ≥ E
[
d|τFB (t) , zFB (t)

]
.

Proof. Now define the first best, by λ = 1 (relative to λ > 1). For any t,

1

λ

∂c̃τ
∂τ

≥ ∂c̃τ
∂τ

,

which implies that τFB ≥ τ∗. Similarly, qFB ≥ q∗, which implies that E [d|τ∗ (t) , z∗ (t)] ≥
E
[
d|τFB (t) , zFB (t)

]
if Fp′ (p

∗) < 1
2 .

(c) If τ and z are net substitutes, then z∗ (t) > zFB (t) for all t, and z∗ (t)− zFB (t) weakly
increases in wt, holding t constant. The reverse is true if τ and z are net complements.

Proof. By similar argument, if τFB ≥ τ∗, then z∗ ≥ zFB if τ and z are net substitutes, and
z∗ ≤ zFB if τ and z are net complements. If ∂2q/ (∂τ∂wt) < 0, then τFB − τ∗ weakly increases
with wt for any t. This implies that z∗ − zFB weakly increases with wt if τ and z are net
substitutes, or weakly decreases with wt if τ and z are net complements. Regardless of whether
τ and z are net substitutes or net complements,

∣∣z∗ − zFB
∣∣ weakly increases with wt for any

t.

A-4.2 Proof of Proposition 2

Consider a∗ as the patient assignment in Section 6.1 that maximizes expected utility in Equation
(7), aFB as the assignment that maximizes expected welfare when optimal

(
τFB, zFB

)
is pub-

licly known and contractible, and aSB as the assignment that maximizes expected welfare when(
τFB, zFB

)
is either publicly unknown or non-contractible. Assignment will follow threshold rules

in which assignment occurs if and only if E [O (θ; Et)] is greater than a threshold. The respective
threshold rules are O∗, OFB, and OSB, where O∗ < OSB < OFB. OFB − OSB and OSB − O∗

increase as t → t decreases or as λ decreases.

Proof. The expected utility under a = 0 is E [O (θ; Et)], and the expected utility under a = 1 is

E [U | a = 1] = y +max
z

{
λ
(
E
[
v
(
θ, d

(
θ̂
))∣∣∣ τ, z]− c (τ, z)

)
− c̃τ (τ)

}
,

where

E
[
v
(
θ, d

(
θ̂
))∣∣∣ τ, z] =

E [v (θ, 0)] + ∆θ=1
v pq (τ, z) , p < p∗

E [v (θ, 1)] + ∆θ=0
v (1− p) q (τ, z) , p ≥ p∗

.
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Note that at the time of patient assignment, the physician only knows the (publicly known)
probability that θ = 1, p, instead of the probability p′ privately observed by the physician after
assignment.

Denote O∗ as the threshold rules such that accepting the patient maximizes expected utility
(a∗ = 1) if and only if E [O (θ; Et)] > O∗. Define W (τ, z) ≡ E

[
v
(
θ, d

(
θ̂
))∣∣∣ τ, z]−c (τ, z)−c̃τ (τ)

as the net expected social welfare from assigning the patient to the physician, conditional on
patient care inputs (τ, z). It is easy to see that O∗ = W (τ∗, z∗) −

(
λ−1 − 1

)
c̃τ (τ

∗), where the
second term represents the wedge from the physician overvaluing her leisure relative to other
welfare-relevant objects. The corresponding threshold that determines the first-best assignment
aFB is OFB = W

(
τFB, zFB

)
, when optimal

(
τFB, zFB

)
can be implemented. Finally, consider

the second-best assignment policy, in which the patient may be assigned as a policy, aSB ∈ {0, 1},
but the physician controls (τ, z). In this policy, aSB = 1 if and only E [O (θ; Et)] > OSB =

W (τ∗, z∗), because the physician will choose inputs (τ∗, z∗) downstream.
Since

(
τFB, zFB

)
maximizes W , it must be that W

(
τFB, zFB

)
≥ W (τ∗, z∗). Furthermore,

Proposition 1 shows us how (τ∗, z∗) 6=
(
τFB, zFB

)
given λ < 1 and when EOS distortions are

binding through c̃τ > 0. In other words, when c̃τ > 0, W
(
τFB, zFB

)
> W (τ∗, z∗). This implies

that OSB < OFB. Furthermore, if c̃τ (τ∗) > 0 and λ < 1, O∗ < OSB.
As t → t or as λ decreases,

(
λ−1 − 1

)
c̃τ (τ

∗) increases, and W
(
τFB, zFB

)
− W (τ∗, z∗)

increases because (τ∗, z∗) is increasingly distorted (Proposition 1). This implies that OFB−OSB

and OSB −O∗ increase as t → t or as λ decreases.

A-5 Counterfactual Simulations

This appendix details the procedure to simulate outcomes under counterfactual assignment poli-
cies, as discussed at a high level in Section 7. To summarize, I first estimate a dynamic dis-
crete choice model. Second, I construct counterfactual assignment policies and use the dynamic
discrete choice model to compute counterfactual physician discharge choice probabilities under
these policies. I use the counterfactual assignment policies and conditional choice probabilities
to simulate patient arrivals and discharges. Third, I use the sequences of simulated assignments
and discharges to impute welfare-relevant costs of physician time, patient time, and hospital
resources.

A-5.1 Dynamic Programming Model

Consider a doctor-time observation (j, t), in state Sj,t. To simplify the decision space, I model
time in five-minute intervals and assume that the doctor may discharge at most one patient
i ∈ I (j, t) in the interval, including i = ∅ indicating no discharge of any patient. Denote the
same doctor in the next period as (j, t′), in the corresponding state Sj,t′ simply S′. Suppressing
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notation for j and t for now, the integrated value function is

V (S) = E

[
max
i∈I

{
u (i, S) + δ

∫
S′
V
(
S′) dF (S′|i, S

)}]
. (A-5.1)

u (i, S) includes both a fixed component of utility and a random error term, εi, i.i.d. as Type I
extreme value:

u (i, S) = u (i, S) + εi.

F (S′|i, S) is the Markov transition probability function, and implicit in this transition function
is the assignment policy function, mapping S to probabilities of new patient assignments.

The corresponding choice-specific value function (not including the error term) is

v (i, S) = u (i, S) + δ

∫
S′
V
(
S′) dF (S′|i, S

)
. (A-5.2)

The physician chooses i∗ = argmaxi∈I (v (i, S) + εi). Given that εi is distributed as Type I
extreme value, this implies the physician’s conditional discharge choice probabilities, Pr (i|S):

Pr (i|S) = exp (v (i, S))∑
i′∈I exp (v (i

′, S))
. (A-5.3)

The expected utility flow and subsequent value function from the choice i∗ is in fact the
integrated value function and can be stated differently using Euler’s constant γ:

V (S) = γ + log

[∑
i∈I

exp (v (i, S))

]

= γ + log

[∑
i∈I

exp
(
u (i, S) + δE

[
V
(
S′) |i, S])] . (A-5.4)

The setting has a finite horizon and is non-stationary. Because assignment policies do not
differ past EOS (i.e., no patients are assigned past EOS), discharge policies past EOS will be
the same in any counterfactual assignment policy. I therefore take EOS as the terminal period
of the dynamic programming problem to estimate, bypassing the fact that the time a physician
leaves work is unobserved. In other words, I directly estimate conditional choice probabilities
for states past EOS using a simple logit model, and I use these choice probabilities regardless of
any potential counterfactual assignment policy prior to EOS.

A-5.1.1 Estimating the Transition Probability Function

Considering time in discrete five-minute intervals, I estimate the probability of being assigned
a given number of patients. In 23,990 shifts in the study period ranging from June 2005 to
December 2012, I observe 1,151,888 observations over time t and shift s. Of 370,843 patients
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arriving during valid times, I further restrict the estimation sample to arrivals and discharges of
350,053 patients whose length of stay is at most twelve hours and who arrived at most twelve
hours prior to EOS. The remaining 20,790 patients, whom I denote as i ∈ Ioutside, are therefore
not modeled in either arrivals or discharges, but I count them toward workload defined below.
In simulations described below in Appendix A-5.3, I take arrivals and discharges of patients
i ∈ Ioutside as fixed in every simulation.

I estimate an ordered logit model of the number of patients assigned at t to shift s, a (s, t) ∈
{0, 1, 2, 3}. I consider the shift type 〈`, o, o〉s , the time of EOS t (s), and physician j’s census
(or workload) w (j, t− 1) in the previous period (for j satisfying s (j, t) = s), the number of
patients assigned in the last hour, the hour of the day, and the pod as the relevant variables in
S determining assignments. w (j, t) is defined in Equation (3), which I slightly rephrase here as

w (j, t) ≡
∑
i

1 (t ≥ ta (i))1
(
t ≤ td (i)

)
1 (j = J (i)) , (A-5.5)

where ta (i) is the arrival (assignment) time of i, td (i) is the corresponding discharge order
time, and J (i) is the physician corresponding to i. This model represents the assignment policy
function A0 (S).

In addition to the number of patients assigned, I also estimate the expected log length of stay
of patients assigned, as a function of hour of the day, day of the week, month-year interactions,
pod, time relative to EOS, and the physician identity.

A-5.1.2 Estimating Utility Flow Parameters

The state space includes characteristics of all patients currently under the physicians’ care as
well as time to EOS. In order to accommodate such a complex state space, I use a sieve approach
by Barwick and Pathak (2015). This approach also allows for continuous states and states
that are either never or rarely encountered in the data. Additionally, I collapse many patient
characteristics into a single index, such as expected length of stay, and sum these indices across
patients to reduce the dimensionality of the state space.

1. Set a functional form approximation for u (i, S) ≈ b (i, S) θu, where b (i, S) is a 1 × K

vector of splines.

2. Set a functional form approximation for V (S) ≈ h (S) θV , where h (S) is a 1×L vector of
splines.

3. A given set of parameters θ̂u implies θ̂V from Equation (A-5.4). One way of estimating θ̂V

is minimizing the L2 norm

θ̂V = argmax
θV

∥∥∥∥∥h (S) θV − log

[∑
i∈I

exp
(
b (i, S) θ̂u + δE

[
h
(
S′|i, S

)]
θV

)]∥∥∥∥∥ (A-5.6)
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by nonlinear least squares across observations {(j, t)}. In practice, I implement Equation
(A-5.4) by setting the constraint

E

[
h (S) θ̂V − log

[∑
i∈I

exp
(
b (i, S) θ̂u + δE

[
h
(
S′|i, S

)]
θ̂V

)]]
= 0. (A-5.7)

Expectations E [h (S′|i, S)] are given by the transition probability function, estimated as
described in Section A-5.1.1.

4. Perform constrained maximum likelihood estimation, where the relevant data include the
indicator variables {d (i, t)}, such that d (i, t) = 1

(
ij(i),t = i∗j(i),t

)
, and the set of basis

functions {b (i, Sj,t)} and
{
E
[
h
(
Sj,t′

)
|i, Sj,t

]}
for each physician-time (j, t) and choice i.

The log likelihood of the data is

logL =
∑
j,t

∑
i∈I(j,t)

d (i, t) log P̂r (d (i, t) |i, Sj,t) , (A-5.8)

where P̂r (d (i, t) |i, Sj,t) is given by Equation (A-5.3). I maximize Equation (A-5.8) as a
function of θ̂u, subject to constraints in Equation (A-5.7) that imply θ̂V . In estimation,
I fix δ = 0.98, informed by comparing the maximum log likelihood of various candidate
values of δ.

A-5.1.3 Identification

For identification of the dynamic model, features of the state space need to be excluded from
the utility flow (Magnac and Thesmar, 2002). In this problem, these exclusion restrictions are
grounded in what I consider relevant to the physician’s utility: Physicians receive flow utility
from predicted length of stay and the difference between length of stay and predicted length
of stay, since discharging patients with lower predicted length of stay could be easier and since
physicians would prefer to discharge patients close to predicted length of stay. A variety of
other features of the state space, including time to EOS, only enter the value function. Given
these exclusion restrictions, the dynamic model is identified by conditional choice probabilities
as shown by Hotz and Miller (1993).

In the conceptual framework (Section 6), I also consider foregone leisure as relevant for
physician utility. However, because I do not observe the actual time that a physician goes home,
and because patients are never assigned past EOS, I conveniently ignore modeling this utility
explicitly.1 Instead, I include the number of patients remaining on the physician’s census at

1In an alternative specification of the dynamic programming problem, I model future utility flows from sim-
ulated outcomes, as in Hotz et al. (1994), including the times that physicians are likely to go home, based on
a simple rule that they are likely to go home between when all but one or two patients have been discharged
(as assumed in Section A-5.4). This results in utility estimates that suggest that leisure time is quite important:
staying an extra hour is two to five times as important as deviating from ideal (predicted) length of stay by 50%
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EOS as a state variable in the value function. As argued above, because patients are never
assigned past EOS, counterfactual assignment policies and therefore conditional discharge choice
probabilities only differ prior to EOS.

Finally, as is well known in discrete choice, utility is normalized for a reference choice. I
normalize the choice i = ∅ to have flow utility of zero, since this choice exists for all observations
(j, t). Similarly, the effect on the value function of characteristics of S′ that never vary in
expectation across i is not directly identified, although the impact on the value function of these
characteristics interacted with other characteristics that do vary across i is identified.

A-5.1.4 Specification and Model Fit

I specify a relatively simple baseline model. Utility flow u (i, S) is a linear function of an indicator
for whether i 6= Ø, predicted length of stay (based on patient characteristics for i) if i 6= ∅, and
two cubic splines of the current difference between length of stay and predicted length of stay
if i 6= Ø. Importantly, I rule out physicians receiving different flow utilities from discharging
patients when they are at different times relative to EOS. The value function V (S) is a linear
function of the number of patients remaining on census, the sum of differences between length of
stay and predicted length of stay (across patients on census), and the interaction between time to
EOS and the number of patients on census. I show parameter estimates for various specifications
of u (i, S) in Table A-5.1.

Figure 9 shows the model fit according to discharge probabilities using a sample of 792,687
patient-time observations. The figure shows three types of discharge probabilities Pr (i|S), along
characteristics of i (e.g., predicted length of stay, difference between length of stay and predicted
length of stay) and variables in S (e.g., time to EOS, number of patients on census). The first
discharge probability is calculated by binning the raw data and involves no model. The second
is calculated by a flexible multinomial logit model, with no restrictions on how state variables
affect choices (i.e., this model is outside of a dynamic programming framework). The third is
the probability implied by Equation (A-5.3), with the restrictions in the dynamic model that
separate flow utilities from value functions. Figure 9 shows that the dynamic model fits quite
well compared to the flexible model, despite the exclusion restrictions on utility and relatively
parsimonious state variables. I consider more state spaces for V (S) – additional variables (e.g.,
the average time of arrival for patients on census, the time since the last patient discharge),
nonlinear relationships, and interactions between the variables – but do not find that these
complications appreciably improve the fit of the dynamic model.

In Figure A-5.2, I further evaluate model fit by average shift outcomes with respect to time
to EOS. In particular, I evaluate fit by the following averages for patients arriving in each 30-
minute period with respect to EOS: the number of patients arriving in the period; the length of
stay (and its log); and the average workload during a patient’s length of stay, or w (i) defined in

for a single patient. However, this specification does not allow me to calculate counterfactual discharge policies.
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Equation (5). The panels of this figure evaluating length of stay and average workload are based
on the same simulation algorithm, described in Appendix A-5.3, used to evaluate counterfactual
assignment policies. This figure shows that the fit is reasonably good using the conditional
choice probabilities implied by Equation (A-5.3) in the dynamic model, although length of stay
(particularly, its log) does not seem to decrease by as much in the last two hours prior to EOS.

A-5.2 Counterfactual Assignment Policies

The counterfactual assignment policies A∆ (S) ≡ A0 (m (∆) , S−) are constructed by modifying
time to EOS. That is, for a true time to EOS m, the assignment function considers a modified
time to EOS m (∆) that is a function of the scalar parameter ∆:

m (∆) =


max (∆,m) ∆ > 0

m, ∆ = 0

m (1−min (max (|∆| −m, 0) , 1)) ∆ < 0

. (A-5.9)

In this convenient parameterization, m (∆) is at most ∆ greater than m if ∆ > 0 and at most
∆ smaller than m if ∆ < 0. In the case where ∆ < 0, the function is slightly more complicated
so that it is continuous; starting at m = |∆|, m (∆) = m and decreases to m (∆) = 0 by
m = |∆| − 1. A∆ (S) correspondingly increases assignments relative to A0 (S) for ∆ > 0 and
decreases assignments for ∆ < 0. Figure A-5.1 shows both the time modification function m (∆)

as well as the corresponding counterfactual assignment policies A∆ (S) for ∆ ∈ {−4,−2, 2, 4}.
Anticipating a counterfactual assignment policy A∆, the physician will adopt counterfactual

conditional choice probabilities that can be characterized by the parameters θ̂u and θ̂∆V , where
θ̂∆V is calculated by Equation (A-5.6) and counterfactual transition probabilities implied by A∆.
I constrain the counterfactual value function to take the same value as the actual value func-
tion at EOS, i.e., h

(
S|t = t (s)

)
θ̂∆V = h

(
S|t = t (s)

)
θ̂V . The conditional choice probabilities

characterize the physician’s discharge policy, D∆.

A-5.3 Simulation

For a given assignment policy A∆ (S) and corresponding discharge policy D∆ (S), I simulate pa-
tient arrivals and discharges to create a set of patient arrival and discharge observation. Specifi-
cally, I follow this procedure for each simulation r:

1. Start t at three hours before the beginning of each shift s. Set w∆,r (j, t− 1) = 0.

2. Determine new assignments at t for each s.

(a) Simulate a∆,r (s, t) new assignments for s at t, using A∆. Denote each of these new
assignments with an unused i /∈ Ioutside, note that ta∆,r (i) = t, and also simulate
predicted log length of stay for each i.
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(b) Assign patients i ∈ Ioutside where t,aoutside (i) = t to the relevant shifts s.

3. Calculate workload w∆,r (j, t) by Equation (A-5.5).

4. If t ≥ t (s) and w∆,r (j, t) > 0, determine discharges at t for each s.

(a) Simulate d∆,r (i, t) ≡ 1
(
td∆,r (i) = t

)
for each i /∈ Ioutside where d∆,r (i, t− 1) = 0,

using D.

(b) Discharge patients i ∈ Ioutside where tdoutside (i) = t from the relevant shifts s.

5. The procedure is complete for s such that t ≥ t (s) and w∆,r (j, t) = 0. For the remaining
s, revise t = t+ 1 and return to Step #2.

The resulting collection of visits I∆,r =
⋃

j,t I∆,r (j, t), where ta∆,r, (i) and td∆,r, (i) are observed
for each i ∈ I∆,r, form the data under ∆ in simulation r. Simulated workload-adjusted length of
stay for patient i under physician j can be calculated by dividing i’s simulated length of stay by
simulated average censuses under j during i’s length of stay.

A-5.4 Imputing Cost Outcomes

Having simulated arrivals and discharges, I am now in the position to impute overall costs for
each counterfactual simulation r of ∆. Overall costs include physician-time, patient-time, and
hospital-resource costs. Repeating Equation (10):

Costs∆,r = PhysicianTime∆,r + PatientTime∆,r + HospitalResources∆,r. (A-5.10)

The first cost, physician-time costs, represents the value of leisure foregone. Physician hours
in a given shift s can increase either if a peer must arrive earlier before the index physicians
EOS, or if the index physician must stay longer past EOS:

PhysicianTime∆,r = Wage ×
∑
s

(
WorkCompletionTime∆,r (s)− PeerArrivalTime∆,r (s)

)
.

“Slacking off” in the assignment policy, by assigning fewer patients to the physician ending shift,
mechanically requires peers to arrive earlier. In the actual data, there are generally two unseen
patients at the time of peer arrival (see Figure A-7.3). I therefore model PeerArrivalTime∆,r (s) as
when there are two unseen patients near t(s), based on the assignment policy and an exogenous
pod flow rate of 2.22 patients per hour (see Figure 3). I model WorkCompletionTime∆,r (s)

(when the physician on shift s leaves the ED) as the midpoint between when the third-to-last
patient is discharged and when the second-to-last patient is discharged. This empirically matches
the stated work completion time of generally two to three hours past EOS, although results are
insensitive to the precise definition of work completion. Implicit in this rule is that physicians

A-17



are not more likely to pass off patients with more work at EOS; given that work completion
time is really insensitive to being assigned more work at EOS (due to quicker discharges), this is
unlikely to be quantitatively important. I multiply physician-hours by a wage of $120 per hour.

The second cost, patient-time costs, reflects the value of patient time:

PatientTime∆,r = TimeValue ×
∑
i

τ∆,r (i) ,

where TimeValue = $20/hour, or roughly the average hourly wage in the US, and τ∆,r (i) is the
simulated length of stay implied by ta∆,r (i) and td∆,r(i) in discrete time.

The third cost in Equation (A-5.10), hospital-resource costs, represents resource costs, via
formal utilization and admissions, incurred by the physician. As shown in Section A-3 and Table
3, workload-adjusted length of stay, formal orders, admissions, and total costs all increase only
in the last hour of shift, suggesting that workload-adjusted length of stay is a good measure
of time that increases patient-care costs as it is decreased. In each simulation r of each policy
∆, I estimate the EOS effect on workload-adjusted length of stay by coefficients α̂∆,r

m in this
regression:

log (τ (i) /w (i))∆,r = α∆,r
m(i,t) + g (m (i, t))′ γ∆,r

g + ε∆,r
i , (A-5.11)

where (τ (i) /w (i))∆,r is simulated workload-adjusted length of stay, t = ta (i) is the simulated
time of arrival, and g (·) is a vector of cubic splines of assignment time relative to shift beginning.

In simulated data with ∆ = 0, I estimate α̂0
1 ≡ 1

20

∑20
r=1 α̂

0,r
1 = −0.240 and α̂0

2 ≡ −0.059,
which implies that workload-adjusted length of stay decreases by 18.1% in the last hour of
shift under the observed assignment policy. Note that this difference is slightly smaller (more
conservative) than that implied by coefficients α̂1 = −0.232 and α̂2 = −0.069 estimated without
simulation using actual data (Table A-7.3 and Figure A-7.4). Given that total costs increase
by 20.8% in the last hour prior to EOS, I estimate the elasticity of hospital-resource costs to
workload-adjusted length of stay, for decreases in workload-adjusted length of stay that are 5.9%
below baseline, as 20.8%/− 18.1% = −1.15. I thus calculate hospital-resource costs as

HospitalResources∆,r =
∑
s

∑
m

t(s)∑
t=t(s)

1
(⌈
t (s)− t

⌉
= m

)
a∆,r (s, t)× (A-5.12)

exp
(
BaseLogCosts − 1.15 ·min

(
0, α̂∆,r

m − α̂0
2

))
,

where BaseLogCosts = [log $+] 6.750. Note hospital-resource costs increase with greater assign-
ments (higher ∆) both because per–patient costs increase, and the number of patients that this
applies to also increases. I assume that increases in workload-adjusted length of stay above base-
line do not reduce costs. Rather, increases seen in the data prior to the last hour of shift could be
consistent with “foot-dragging,” in which physicians delay discharge but do not otherwise change
patient care (Chan, 2016). Finally, as discussed in the main paper, I conservatively assume no
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negative effects on patient health, even as physicians produce less information for the discharge
decision, since I observe none in sample (Table 3).

A-5.4.1 Imputing the Value of Leisure

I can also impute the revealed value of leisure in terms of hospital-resource costs by calculating
the ratio between extra hospital-resource costs incurred and leisure time gained as a result of the
physician discharge behavior near EOS. The discharge function D0 (S) increases the discharge
hazard as t approaches t (s), shortening workload-adjusted length of stay and increasing hospital-
resource costs. I examine what discharges would look like if not influenced by EOS behavior
by modifying t in the discharge function. That is, I consider a modified discharge function
D (m,S−) ≡ D0 (max (4,m) , S−) that does change as a function of time relative to EOS, at
least in the four hours prior to EOS.

I then evaluate differences in hospital-resource costs and work-completion time under both
of these discharge functions. The ratio between these two differences reveals physicians’ implicit
valuation of an hour of leisure in terms of hospital-resource costs:

LeisureValue∆,r = −
HospitalResources∆,r |A∆,D∆ − HospitalResources∆,r |A∆,D∆

WorkCompletionTime∆,r |A∆,D∆ − WorkCompletionTime∆,r |A∆,D∆

.

Because LeisureValue∆,r is specific to a counterfactual assignment policy ∆, I link the value of
an hour of incremental leisure to the time when the physician would have been able to go home
under A∆ and D∆ (i.e., WorkCompletionTime∆,r |A∆,D∆ ). This time will be earlier for ∆ < 0

and later for ∆ > 0.

A-6 Heterogeneous Effects by Physician and Peer Types

In this appendix, I consider heterogeneous EOS effects using regressions of the following form:

Yit = α
Type(i)
m(i,t) + γm(i,t) + βXi + ηTt + κType(i) + ζp(i) + νj(i),k(i) + εit, (A-6.1)

where Yit is workload-adjusted log length of stay, defined in Equation (5), and Type (i) ∈ {0, 1}
refers to some category that observation i belongs to (Type (i) = 1) or the complement set
(Type (i) = 0).

The first set of categories refer to the physician j (i) at t: whether j (i) is male, whether the
j (i) is older than average at t, whether j (i) has greater tenure than average at t, and whether
j (i) is faster than average. The last characteristic is estimated from a regression of log length
of stay on patient characteristics, time categories, pod identities, and (the object of interest)
physician dummies. Results in Figure A-6.1 show roughly similar results, regardless of physician
type, except that faster physicians are much less likely to have EOS distortions.
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The second set of categories refer to the relationship between physician j (i) and the peer
j− (i) of the subsequent shift in the same managerial location, if there is one. This peer will
potentially assume the care of remaining patients who are not seen or who need to be transferred,
and he or she also observes the index physician ending shift to a greater degree than any other
physician. I consider whether (j (i) , j− (i)) are of the same sex, whether j (i) has less tenure
than j− (i), whether (j (i) , j− (i)) are “familiar” (i.e., they have previously worked more than 60
hours in the same location), and whether j (i) is slower than j− (i). Results in Figure A-6.2 show
that physicians are more likely to have EOS distortions when working with a senior peer, when
they are not familiar with the peer, and when the peer is faster.

A-7 Additional Results

This appendix presents the following additional results in tables and figures:

• Table A-7.2 describes the process of constructing the sample, including the number of
observations in each step.

• Table A-7.1 lists the number of observations for each shift type. Observations are counted
in terms of unique shifts, hours, potential patients (who could be assigned to a shift of that
shift type at time of arrival), and actual patients (who are assigned to a shift of that shift
type).

• Table A-7.3 reports coefficients for EOS effects on workload-adjusted length of stay, as
a continuation of Table 4. Results in this table only control for time relative to shift
beginning. I use these more parsimonious regressions to operationalize workload-adjusted
length of stay as the key substitute for hospital-resource costs in the structural model in
Section 7, in which simulating the full set of covariates would be impractical. Results are
estimated on both actual and simulated data.

• Figure A-7.1 shows evidence on how long physicians stay past EOS in terms of the share
of shifts in which an order written by the attending physician of record (AOR) is yet to
be written, out of shifts in which an order written by any attending physician is yet to be
written.

• Figure A-7.2, Panel A, shows the AOR order share from Figure A-7.1 at one hour past EOS
for shifts ending at each hour of the day. Panel B of the figure shows the corresponding
census of patients remaining at EOS.

• Figure A-7.3 shows average patient counts (“censuses”) for physicians in shifts with different
overlap o.

• Figure A-7.4 shows coefficients for EOS effects on workload-adjusted length of stay, reported
in Table A-7.3, estimated on both actual and simulated data.
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Table A-1.1: Balance Tests, Other Predicted Outcomes

(1) (2) (3) (4) (5)
A. Assumption 1

Predicted outcome Order
count

Inpatient
admission

Log total
cost

30-day
mortality

14-day
bounce-

back
Hours prior to EOS

F -test p-value 0.748 0.867 0.855 0.579 0.208
Resid. char. distrib.

Mean 13.88 0.274 6.777 0.019 0.060
10th percentile 12.16 0.186 6.487 0.008 0.053
90th percentile 15.46 0.352 7.035 0.027 0.067

B. Assumption 2

Predicted outcome Order
count

Inpatient
admission

Log total
cost

30-day
mortality

14-day
bounce-

back
Hours prior to EOS

F -test p-value 0.740 0.869 0.833 0.793 0.962
Resid. char. distrib.

Mean 13.88 0.274 6.777 0.019 0.060
10th percentile 10.29 0.132 6.256 0.003 0.043
90th percentile 17.43 0.413 7.286 0.031 0.075

Note: This table continues Table 1 in assessing balance with respect to Assumptions 1 and 2. In Panel
A, outcomes are predicted by ex post clinical characteristics, and these predicted outcomes are regressed,
as in Equation (A-1.2), on hour relative to EOS while controlling for ex ante clinical characteristics,
time categories, pod, and providers. In Panel B, outcomes are predicted by all patient characteristics,
and the predicted outcomes are regressed, as in Equation (A-1.3), on hourly propensities for assignment
relative to EOS while controlling only for time categories, pod, and providers. Further details are given
in Appendix A-1.2. Estimates of coefficients for individual hours relative to EOS are omitted for brevity;
the p-value of the F -test that all coefficients are jointly 0 is given instead for each model. As in Table 1,
summary statistics of the variation in residualized predicted outcomes are reported at the patient level
(Panel A), or the residualized predicted outcomes are first averaged within each hour with summary
statistics of these averages reported at the hourly level (Panel B).
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Table A-1.2: Assessing Selection Bias Using Arrival Times

(1) (2) (3)

Mean
actual, Yt

Mean
predicted,
Ŷ ante
t

Mean
predicted,

Ŷ full
t

Mean EOS effect, Qt
1.029***
(0.060)

0.029
(0.025)

0.024
(0.025)

Number of visits 409,352 409,352 409,352
Number of shifts 22,501 22,501 22,501
Number of hour cells 63,345 63,355 63,355

Note: This table reports regressions assessing tests for selection bias using only variation in patients
arriving at the ED in different hours; its graphical form is presented in Figure A-1.2. Column 1 asks
whether residualized length of stay averaged within hour of arrival is predicted by EOS effects averaged
within hour, as in Equation (A-1.7). Columns 2 and 3 ask whether predicted length of stay averaged
within hour of arrival is correlated with EOS effects averaged within hour, as in Equation (A-1.10).
Average EOS effects within hour of arrival, Qt, is defined by Equation (A-1.4) and calculated as follows:
(i) Coefficients on time relative to EOS are calculated from (1) using a leave-shift-out sampling; (ii)
these coefficients are averaged across shifts in process at hour t, weighted by visits. Residualized length
of stay averaged within hour, Yt (Column 1), is calculated as follows: (i) Calculate residualized actual
log length of stay, by subtracting expected log length of stay based on all covariates listed in the note
for Table 2, using only variation within time to EOS; (ii) average within hour. To predicted log length
of stay by patient characteristics (Columns 2 and 3), I residualize the characteristics by time categories
and use within-EOS-time variation to predict log length of stay. As with Qt and Yt, I also average these
predictions within hour of arrival. Patient characteristics and time categories are described in the note
for Table 2. OLS is performed keeping visits as observations, though each observation within an hour t is
identical and standard errors are clustered by t. Standard errors are in parentheses. * denotes significance
at 10% level, ** denotes significance at 5% level, and *** denotes significance at 1% level. Details are
given in Appendix A-1.3.
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Table A-5.1: Dynamic Model Utility Parameter Estimates

(1) (2) (3) (4) (5)
Discharge choice utility

Deviation of log LOS from
predicted

Deviation = −1.5
-2.406
(0.179)

-2.320
(0.179)

-2.290
(0.179)

-2.072
(0.178)

-1.864
(0.175)

Deviation = −1
-1.629
(0.119)

-1.572
(0.119)

-1.549
(0.119)

-1.406
(0.119)

-1.264
(0.117)

Deviation = −0.5
-1.000
(0.061)

-0.978
(0.061)

-0.946
(0.061)

-0.886
(0.061)

-0.795
(0.060)

Deviation = 0
-0.666
(0.023)

-0.689
(0.023)

-0.616
(0.022)

-0.659
(0.022)

-0.586
(0.022)

Deviation = 0.5
-0.635
(0.069)

-0.714
(0.069)

-0.567
(0.069)

-0.733
(0.069)

-0.645
(0.068)

Predicted log LOS -0.823
(0.023)

-0.932
(0.034)

-0.745
(0.024)

-0.978
(0.035)

-1.137
(0.061)

Log workload-adjusted
LOS

0.085
(0.022)

0.193
(0.023)

0.216
(0.023)

Hours from last discharge -0.244
(0.017)

-0.289
(0.018)

-0.802
(0.047)

Other cubic splines N N N N Y
Observations 792,687 792,687 792,687 792,687 792,687
Groups 115,674 115,674 115,674 115,674 115,674
Log likelihood -77,577.04 -77,568.27 -77,463.99 -77,422.82 -77,321.02

Note: This table shows estimated utility flow parameters, with standard errors in parentheses. for
incurred by discharging a patient in discrete dynamic programming models. The utility of not discharging
any patient is normalized to 0. All models include utility flows for splines of deviation in current log length
of stay from predicted log length of stay (or “deviation LOS”) and linear predicted log length of stay.
To interpret the spline coefficients on deviation LOS, the first five rows report estimates for the utility
of discharging a patient at deviation LOS values of (−1.5,−1,−0.5, 0, 0.5), representing approximately
equally spaced quantiles in the data. These estimates are linear combinations of the spline coefficient
estimates, and standard errors for these linear combinations are calculated using the delta method. Log
workload-adjusted length of stay of a discharged patient is included in the utility flow of models 2, 4,
and 5; hours from last discharge is included in the utility flow of models 3 to 5. Model 5 is similar to
Model 4 but includes cubic splines for predicted log length of stay and hours from last discharge. In all
models, the value function at EOS is only a function of the number of patients remaining on census (or
“census”) and the average patient arrival time for these patients relative to EOS. Value functions at times
prior to EOS are otherwise constrained by Equation (A-5.7) from the dynamic programming Bellman
equation; in all models, I fit value functions with the census, the sum of deviation LOS (across patients
on census), and the census interacted with time to EOS and hours from last discharge. Details of the
estimation procedure are given in Appendix A-5.1. All models are fit on a sample of 792,687 patient-
interval observations, corresponding to 115,674 physician-interval choice sets (groups). Log likelihoods
are given in the last row. For comparison, a fully flexible static logit model (i.e., with no restrictions on
what enters the utility flow) had a log likelihood of -77,071.90. Graphical fit of discharge probabilities is
given in Figure 9.
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Table A-7.1: Shift Type Observation Numbers

Shift type Shifts Hours Potential
patients

Actual
patients

〈7, 0, 1〉 95 665 1,645 1,160
〈7, 1, 0〉 237 1,659 6,674 2,597
〈7, 1, 1〉 101 707 4,281 1,783
〈8, 0, 1〉 319 2,552 8,453 4,952
〈8, 1, 0〉 174 1,392 7,440 1,981
〈9, 0, 1〉 3,453 30,879 84,292 58,589
〈9, 0, 2〉 325 2,349 6,411 4,541
〈9, 0, 4〉 408 2,898 9,326 4,839
〈9, 0, 6〉 364 3,276 16,186 5,899
〈9, 1, 0〉 3,414 30,528 118,030 59,897
〈9, 1, 1〉 2,909 26,181 116,108 54,221
〈9, 1, 4〉 2,249 19,170 80,279 28,694
〈9, 1, 5〉 60 540 2,554 892
〈9, 1, 6〉 211 1,899 8,157 2,524
〈9, 2, 0〉 464 3,294 12,027 6,317
〈9, 3, 1〉 485 3,277 17,013 6,699
〈9, 3, 3〉 60 540 3,226 1,089
〈9, 4, 0〉 347 2,347 9,996 3,994
〈9, 4, 1〉 212 1,908 8,974 3,370
〈9, 4, 3〉 426 2,752 16,730 5,344
〈9, 4, 4〉 772 5,094 26,094 9,413
〈9, 4, 6〉 2,141 19,269 99,726 29,007
〈9, 5, 3〉 60 540 2,851 1,043
〈9, 6, 0〉 634 5,706 34,943 9,244
〈9, 6, 1〉 1,504 13,536 61,197 21,861
〈9, 6, 4〉 575 5,175 31,088 9,597
〈9, 9, 1〉 353 3,177 15,965 4,598
〈10, 0, 0〉 176 1,760 4,812 2,578
〈10, 0, 1〉 243 2,430 5,783 4,615
〈10, 0, 2〉 137 1,040 2,631 1,901
〈10, 0, 4〉 139 1,050 3,616 2,378
〈10, 1, 0〉 277 2,770 9,092 4,401
〈10, 4, 0〉 139 1,050 4,335 1,834
〈12, 0, 0〉 142 1,704 4,119 2,423
〈12, 4, 9〉 319 3,828 16,490 5,566
Total 23,924 206,942 860,544 369,841

Note: This table lists the number of observations for each shift type, each defined as 〈`, o, o〉, where `
is the shift length in hours, o is the overlap in hours with a previous shift, and o is the overlap in hours
with a subsequent shift in the same location. Observations are counted in terms of unique shifts, hours,
potential patients (patients who arrive at the ED during a time when there is a shift of type 〈`, o, o〉 in
progress), and actual patients (patients who are treated by a physician on a shift of type 〈`, o, o〉).
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Figure A-1.1: Patient Selection on Observables Relative to End of Shift
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Note: This figure shows selection on observables for each hour prior to end of shift (EOS) on length of
stay (Panel A), orders (Panel B), inpatient admissions (Panel C), and costs (Panel D). Each outcome is
predicted based on patient characteristics observable prior to acceptance (age, sex, ESI) (closed circles)
and on the full set of characteristics usually unobservable until after patient acceptance (e.g., 29 Elixhauser
indices, race, language) (short-dashed line, open circles). Coefficients are estimated for predicted outcome
using Equation (A-1.1). For reference, adjusted effects on actual outcomes from Figure 6 are shown with
the dashed line. The reference category is any time greater than six hours prior to EOS.
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Figure A-2.1: Effects on Length of Stay by Shift Length
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Note: This figure shows coefficients from Equation (1) estimated separately for shifts of seven or eight
hours in length (open circles), nine hours in length (closed circles), and ten hours in length (open trian-
gles). Panel A arranges estimates by hours relative to end of shift (EOS). Panel B arranges estimates by
hours relative to shift beginning.
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Figure A-3.1: Time Components
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Note: This figure plots time components of length of stay as a function of hours relative to end of shift
(EOS): time from pod arrival to first order (open circles), time from first to last (non-discharge) order
(open triangles), and time from last order to discharge order (closed circles). Panel B shows marginal
effects from a fractional logit model on these shares. Panel A represents these results as time in hours,
incorporating results on the EOS effect on length of stay.
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Figure A-5.1: Example Counterfactual Assignment Policies
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Note: This figure shows example counterfactual assignment policies, parameterized as hours ∆ that time
relative to EOS can be modified by. With dashed lines, Panel A shows counterfactual policies that reduce
assignment near EOS (∆ ∈ {−4,−2}); Panel B shows counterfactual policies this increase assignment
near EOS (∆ ∈ {2, 4}). These counterfactual policies are constructed by modifying the way time to EOS
is considered, as specified by Equation (A-5.9). ∆ < 0 reduces time to EOS starting at |∆| hours prior
to EOS; ∆ > 0 increases time to EOS starting at ∆ hours prior to EOS. These modifications in time to
EOS are shown in the bottom Panels C and D, corresponding to Panels A and B, respectively. Further
details are given in Appendix A-5.2.
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Figure A-5.2: Model Fit by Simulated Outcomes on Shift
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Note: This figure shows the fit of simulated outcomes with actual outcomes observed on 22,434 shifts
with non-missing shift types out of the universe of 24,499 shifts. Outcomes are plotted against the x -axis
of hours relative to EOS, in 30-minute intervals. Panel A evaluates the fit of actual and simulated patient
assignments at each point in time, given the actual census of patients (i.e., discharges are not modeled).
Panels B to D evaluate the fit between actual outcomes (solid dots) and those simulated by two discharge
models, for any patient assigned in the relevant 30-minute interval: a fully flexible “static” model of
conditional discharge probabilities (hollow dots), and a dynamic model of the discharge probabilities
with restrictions on what can enter into the utility flow (triangles). The dynamic model, described in
greater detail in Appendix A-5.1, corresponds to the simplest model in Table A-5.1, Model 1, although
the fit and the estimated parameters do not qualitatively differ across specifications. The simulation
algorithm is given in Section A-5.3. Panel D (“Census”) reflects actual and simulated average census
during the length of stay of a patient i, w (i) in Equation (5).
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Figure A-6.1: End of Shift Effect by Physician Type
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D: Faster

Note: This figure shows estimates of effects of hour relative to end of shift (EOS) for physicians of
different types, using Equation (A-6.1). In each panel, estimates for physicians of the stated type are
shown in solid dots, while estimates for physicians not of the stated type are shown in hollow dots. Panel
A shows male vs. female; Panel B shows physicians who are older than average (about 39 years old) vs.
not; Panel C shows physicians who have higher tenure at the ED (about 5.5 years) vs. not; Panel C
shows physicians who have are faster than average (i.e., have a lower fixed effect in a regression of length
of stay) vs. not. p-values for the significance of the difference between the last hour effect for physicians
with and without the characteristic are given as notes in the lower right.
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Figure A-6.2: End of Shift Effect by Physician-Peer Relationship
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Note: This figure shows estimates of effects of hour relative to end of shift (EOS) for different types
of relationships between physicians and the peer in the subsequent shift, if there is one. Estimates are
from Equation (A-6.1). In each panel, estimates for physician-peer relationships of the stated type are
shown in solid dots, while relationships not of the stated type are shown in hollow dots. Panel A shows
physician-peer pairs of the same vs. different sex; Panel B shows physicians who have higher vs. lower
tenure than their peer; Panel C shows physicians who have worked more vs. less than 60 hours together;
Panel D shows physicians who are faster vs. slower than their peer. p-values for the significance of the
difference between the last hour effect for pairs with and without the characteristic are given as notes in
the lower right.
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Figure A-7.1: Attending Physician Order-writing over Time

0

.2

.4

.6

.8

1

A
O

R
 o

rd
e

r 
s
h

a
re

−6 −4 −2 0 2 4
Hours relative to EOS

Note: This figure shows the activity of order-writing by the attending physician of record (AOR),
conditional on an order written by any attending physician, at various points in time relative to end of
shift (EOS). The AOR is the physician on the bill for patient care, corresponding to the physician whose
shift is matched to a patient visit. The AOR order share on the y-axis is the number of shifts in which
there exists an AOR order at a later time divided by the number of shifts in which there exists any
attending physician order at a later time, as a function of time relative to EOS.
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Figure A-7.2: Order-writing and Censuses by Shift Ending Time
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B: Census

Note: This figure shows the attending of record (AOR) order share, defined in Figure A-7.1, at one
hour past end of shift (EOS) (Panel A) and the average number of patients remaining on census at EOS
(Panel B), for shifts ending at various times of the day. The shaded gray area indicates “daytime” hours
between 6:00 a.m. and 8:00 p.m.
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Figure A-7.3: Censuses over Time
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Note: This figure plots average censuses over time relative to the end of shift (EOS). Each panel shows
results for physicians in shifts with a given EOS overlap time. Subsequent shift starting times are marked
with a vertical line.
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