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APPENDIX A: GENERAL RESULTS ON THE TRIANGULAR ARRAY CONVERGENCE OF
THE QUADRATIC VARIATION OF SEMIMARTINGALES

DEFINITION 5—Orders in Probability: For a sequence α(n)
t of semimartingales, we say

that (α(n)
t ) = Op(1) if the sequence is tight, with respect to convergence in law relative to

the Skorokhod topology on D (Jacod and Shiryaev (2003, Theorem VI.3.21, p. 350)), and
also P-UT (ibid., Chapter VI.3.b, and Definition VI.6.1, p. 377). For scalar random quan-
tities, Op(·) and op(·) are defined as usual; see, for example, Pollard (1984, Appendix A).

CONDITION 4: Let α(n)
t and β(n)

t be sequences (in n) of semimartingales. Each of these
sequences is (separately) assumed to be Op(1).

DEFINITION 6—Notation: The symbol F will refer to a collection of nonrandom func-
tions f (l�n)

· ∈ D[0�T ], n ∈ N, and l = 1� � � � �2Kn satisfying

(A.1)
∣∣f (l�n)

t

∣∣ ≤ 1 for all t� l� and n�

Similarly, G will refer to a collection g(l�n)
t with the same size and properties.

Given F and G, set

(A.2) α(l�n)
t =

∫ t

0
f (l�n)
s− dα(n)

s and β(l�n)
t =

∫ t

0
g(l�n)
s− dβ(n)

s for l = 1� � � � �2Kn�

Also,

(A.3) i ≡ L[2K] means that i = 2Kj +L� where j is an integer.

DEFINITION 7—Decomposition of F and G by Block: Recall that Bn is the set of ba-
sic blocks, and that �Tn = T /Bn. With reference to the collection F: For given (l� n), the
function f (l�n)

t is allowed to jump at times TKnj+l but must otherwise satisfy certain com-
pactness properties.

Specifically, for each n ∈ N, and l = 1� � � � �2Kn, define, for j ∈ N∩[1� (Bn− l)/(Kn+1)],

(A.4) f
(l�j�n)
t =

⎧⎪⎪⎨
⎪⎪⎩
f (l�n)
TKnj+l

for t ∈ [0�TKnj+l)�

f (l�n)
t for t ∈ [TKnj+l� T(Kn+1)j+l)�

lim
t↑T(Kn+1)j+l

f (l�n)
t for t ∈ [T(Kn+1)j+l)�T ]�

The set of such f
(l�j�n)
t will be denoted F

′. G′ is defined similarly.

THEOREM 7—Consistency of Triangular Array Rolling Quadratic Variation: Under
Condition 4, assume (A.1), and that the sets F

′ and G
′ (from Definition 7) are relatively
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compact for the Skorokhod topology.42 Also suppose that Kn�Tn → 0 as n → ∞. Then,

(A.5)
1

2Kn

2Kn∑
l=1

∑
Kn≤i≤Bn−Kn�i≡l[2Kn]

(
α(l�n)
Ti+Kn

− α(l�n)
Ti−Kn

)2 = 1
2Kn

2Kn∑
l=1

[
α(l�n)�α(l�n)

]
T + op(1)�

and similarly for β. Also,

1
2Kn

2Kn∑
l=1

∑
Kn≤i≤Bn−Kn�i≡l[2Kn]

(
α(l�n)
Ti+Kn

− α(l�n)
Ti−Kn

)(
β(l�n)

Ti+Kn
−β(l�n)

Ti−Kn

)
(A.6)

= 1
2Kn

2K∑
l=1

[
α(l�n)�β(l�n)

]
T + op(1)�

REMARK 15—Uniformity in �T : Theorem 7 does not impose any requirement on �Tn,
except that �Tn > 0 and Kn�Tn → 0. See the final comment in the proof of the theorem.

Before proving our results, we recall the following useful concept.

DEFINITION 8—The Canonical Decomposition of α: We shall be using the canonical
decomposition of αt (Jacod and Shiryaev (2003, Chap. II.2a pp. 75–76)), which is defined
for a general semimartingale (ibid. Definition I.4.21, p. 43), by writing

(A.7) αt = α0 + α(h)t +B(h)t + ᾰ(h)t�

h is called the truncation function. Compared to the notation in our reference work,
their X is our α, their M(h) is our α(h), while their B(h) is the same as ours. Also, let
C̃t = 〈α(h)�α(h)〉. This is the “second modified characteristic” (ibid., Definition II.2.16,
p. 79). For the case of no truncation function, α can similarly be decomposed into a local
martingale and a finite variation process At . See also ibid., p. 84, for further clarification of
the relationship between the untruncated and the truncated processes. We let TV denote
total variation,43 and set

(A.8) D(α)(h)t = TV(ᾰ)t + TV
(
B(h)

)
t
�

Similar notation applies to α(n), β(n), etc.

PROOF OF THEOREM 7: We prove (A.5). The result (A.6) is obtained similarly but
with longer notation. For (A.6), we specifically need that α(n) and β(n) be tight, which
is assumed, and that D(α(n)(h)T , D(β(n)(h)T , 〈α(n)(h)�α(n)(h)〉T , 〈β(n)(h)�β(n)(h)〉T ,
and 〈β(n)(h)�α(n)(h)〉T be tight. The first four of these follow from the P-UT prop-
erty of α(n) and β(n) (Jacod and Shiryaev (2003, Theorem VI.6.15)), the final one since
|〈β(n)(h)�α(n)(h)〉T | ≤ (〈α(n)(h)�α(n)(h)〉T + 〈β(n)(h)�β(n)(h)〉T )/2.

42A criterion can be found in Jacod and Shiryaev (2003, Theorem VI.1.14(b), p. 328). The condition is
satisfied in all our applications (B.1), (C.6), and (C.11).

43 Jacod and Shiryaev denoted the total variation by Var.
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In analogy with (A.2), define α
(l��j�n)
t = ∫ t

0 f
(l�j�n)
s− dα(n)

s . Also, define

Zn�l(t)=
∑

Ti+Kn≤t�i≡l[2K]

(
α(l�n)
Ti+Kn

− α(l�n)
Ti−Kn

)2 + (
α(l�n)
t − α(l�n)

T∗�L
)2 − [

α(l�n)�α(l�n)
]
t
�(A.9)

where T∗�L = max{Ti : Ti+Kn ≤ t� i ≡L[2Kn]}, so that

dZn�l(t)= 2
(
α(l�n)
t− − α(l�n)

T∗�l
)
dα(l�n)

t �(A.10)

For given truncation function h, define the processes α(l�n)
t (h) = ∫ t

0 f
(l�n)
s dα(n)(h)s,

ᾰ(l�n)
t (h) = ∫ t

0 f
(l�n)
s dᾰ(h)s, etc. (The truncation is done on the original jumps, those

of α(n)
t , and not starting with the process α(l�n)

t . This assures uniformity in the fol-
lowing argument.) Similarly, define dZl�n(h)(t) = 2(α(l�n)

t− − α(l�n)
T∗�l ) dα

(l�n)(h)t , starting at
Zl�n(h)(0)=Zl�n(0)= 0. Also set

(A.11) Zn(t)= 1
2Kn

2Kn∑
l=1

Zl�n(t) and Zn(h)(t)= 1
2Kn

2Kn∑
L=1

Zl�n(h)(t)�

Observe that Zn(T ) = the difference between the explicit terms on left- and right-hand
sides of (A.5).

To bound the difference between Zn(t) and Zn(h)(t), note that

∣∣Zl�n(h)(t)−Zl�n(t)
∣∣ ≤ 2

∫ t

0

∣∣α(l�n)
s− − α(l�n)

T∗�l

∣∣dD(n)(h)t�(A.12)

where D(n)(h) is defined as in (A.8), and with the original α(n). Also, in the notation of
Jacod and Shiryaev (2003, VI.1.8, p. 326), it follows from (A.1) that, for all t ∈ [0�T ] and
all s ∈ [T∗�L� t],∣∣α(l�n)

s− − α(l�n)
T∗�l

∣∣ ≤ 2 max
j

w′
T

(
α(l�j�n)�Kn�Tn

) + sup
T∗�L<s<t

∣∣�α(n)
s

∣∣(A.13)

≤ 2 max
j

w′
T

(
α(l�j�n)�Kn�Tn

) + vn(t−)�

where vn(t−)= supT∗∗<s<t |�α(n)
s |, with T∗∗ = max{Ti : Ti+2Kn ≤ t� }, so that

sup
0≤t≤T

∣∣Zn(h)(t)−Zn(t)
∣∣ ≤ 4 max

l�j
w′

T

(
α(l�j�n)(h)�K�T

)
D(n)(h)(T )(A.14)

+ 2
∫ T

0
vn(t−)dD(n)(h)t�

This is because the right-hand side bounds sup0≤t≤T |Zl�n(h)(t) − Zl�n(t)| for each l, and
thus the average.

Meanwhile, to assess the size of Zn(h)t , by similar argument,

〈
Zn(h)�Zn(h)

〉
T ≤ 8

(
4 max

l�j
w′

T

(
α(l�j�n)�K�T

)2
C̃(n)

T +
∫ T

0
v2
n(t−)dC̃(n)

t

)
�(A.15)

This is because the same bound applies to each 〈Zn�l1(h)�Zn�l2(h)〉T .



4 P. A. MYKLAND AND L. ZHANG

We now seek to describe the asymptotic behavior of maxl�j w′
T (α

(l�j�n)(h)�Kn�Tn) and
vn(t−) so as to control the asymptotic behavior of (A.14)–(A.15).

On the one hand, since F
′ from Definition 7 is relatively compact for the Skorokhod

topology (ex hypothesi), we obtain from Jacod and Shiryaev (2003, Theorem VI.3.21,
p. 350, and Theorem VI.6.22, p. 383) that

(A.16) max
l�j

w′
T

(
α(l�j�n)(h)�Kn�Tn

) p→ 0 as n→ ∞�

On the other hand, we bound vn(t−) as follows. Let ε > 0 be arbitrary. Since α(n) is
tight, we shall without loss of generality be working with a convergent subsequence so
that α(n) L→ α. Redo the canonical decomposition (Definition 8) with a specific truncation
function given by hε(x) = x if |x| ≤ ε, and = ε sgn(x) otherwise:

α(n)
t = α(n)

0 + α(n)(hε)t +B(n)(hε)t + ᾰ(n)(hε)t and(A.17)

αt = α0 + α(hε)t +B(hε)t + ᾰ(hε)t�

Set vn�ε(t−)= supT∗∗<s<t |�ᾰ(n)(hε)s| and observe that

(A.18) vn(t−)≤ vn�ε(t−)+ ε�

Let τn�i be the ith jump time of ᾰ(n)(hε)t , with τn�0 = 0. Similarly, τi is the ith jump time
of ᾰ(hε)t . We note that, for given t ∈ [0�T ], and for any δ > 0,

{
vn�ε(t−)= 0

} ⊇
⋃
i

{τn�i ≥ t ≥ τn�i−1 + 2Kn�Tn}(A.19)

⊇
⋃
i

{τn�i ≥ t ≥ τn�i−1 + δ}

as soon as δ ≥ 2Kn�Tn (and this does happen eventually, by assumption). By invoking
Jacod and Shiryaev (2003, Proposition VI.3.15, p. 349) with τn�i as Ti(ᾰ

(n)(hε)�
ε
2 ) and τi

as Ti(ᾰ(hε)�
ε
2 ), the proposition yields that (τn�1� � � � � τn�k)

L→ (τ1� � � � � τk) as n → ∞ for
any k. This is because the process ᾰ(n)(hε) converges in law to ᾰ(hε) in view of ibid.,
Proposition VI.3.16, p. 349.

By approximating the indicator of the set {τn�i ≥ t ≥ τn�i−1} by a continuous function, and
then undoing the approximation, we obtain P{τn�i ≥ t ≥ τn�i−1 + δ} → P{τi ≥ t ≥ τi−1 + δ}
as n→ ∞. Since the union (A.19) is disjoint, it follows that

lim inf
n

P
{
vn�ε(t−)= 0

} ≥
k∑
i=1

P{τi ≥ t ≥ τi−1 + δ}(A.20)

→ P{τk ≥ t} as δ ↓ 0

→ 1 as k→ ∞�

Hence from (A.18), P{vn(t−) ≥ ε} → 0. Since ε was arbitrary, we obtain

(A.21) ∀t ∈ [0�T ]: vn(t−)
p→ 0 and

∣∣vn(t−)
∣∣ ≤ sup

0≤s≤T

∣∣�α(n)
s

∣∣�
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the latter statement assuring dominated convergence.
We can now combine (A.14)–(A.15) with (A.16) and (A.21) to obtain, as n→ ∞,

sup
0≤t≤T

∣∣Zn(h)(t)−Zn(t)
∣∣ p→ 0 and(A.22)

〈
Zn(h)�Zn(h)

〉
T

p→ 0�

The transition to (A.22) did not assume that D(n)(h)t or C̃(n)
T has a limit as n → ∞. By the

assumption that the α(n)
t is Op(1) and hence P-UT, however, Jacod and Shiryaev (2003,

Theorem VI.6.15, p. 380) yields that D(n)(h)T and C̃(n)
T are tight.

From the second line in (A.22), by Lenglart’s inequality (Jacod and Shiryaev (2003,
Lemma I.3.30, p. 35)),

sup
0≤t≤T

∣∣Zn(h)(t)
∣∣ p→ 0�(A.23)

Combining (A.23) with the first line of (A.22) yields the result of the theorem, since
Zn(T ) = the left-hand side of (A.5). Since none of the bounds used depend on �Tn but
only on Kn�Tn, the result does not impose any requirement on �Tn, except that �Tn > 0
and Kn�Tn → 0. Q.E.D.

APPENDIX B: RESULTS ON THE QUADRATIC VARIATION OF θ: TIGHTNESS AND
CONVERGENCE PROPERTIES

PROOF OF THEOREM 1: Because we shall use Theorem 7, we here let all quantities
depend on index n. Thus, unlike Definition 2 in Section 2, K = Kn, etc., though we shall
often omit the subscript when the meaning is obvious. For the purposes of the current
proof, one can simply take n = B, but this will no longer be the case in later appendices.
Set

f (l�n)
t = 1

K�T

∑
K≤i≤B−K;i≡l[2K]

(
(Ti+K − t)I{Ti+K > t ≥ Ti}(B.1)

+ (t − Ti−K)I{Ti > t ≥ Ti−K})�
where i ≡ l[2K] means that i is on the form 2Ki+ l. We note that f (l)

t = f (l�n)
t depends on

n through �T , K, and B. It is easy to see that the family F = {f (l�n)} satisfies (A.1), and that
the set F′ (from Definition 7) is indeed relatively compact for the Skorokhod topology.

Define the processes θ(l�n)
t = ∫ t

0 f
(l�n)
s− dθs. To motivate the following development, note

from Theorem 2 in Section 2.3 that, for fixed i ≡ l[2K],
1

K(�T)
(Θ(Ti�Ti+K ] −Θ(Ti−K�Ti])= 1

K(�T)

(
Θ′

(Ti�Ti+K ] +Θ′′
(Ti−K�Ti]

)
(B.2)

=
∫ Ti+K

Ti−K

f (l�n)
t dθ

= θ(l�n)
Ti+K

− θ(l�n)
Ti−K

�
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whence

(B.3)
1

K2(�T)2

∑
K≤i≤B−K�i≡l[2K]

(Θ(Ti�Ti+K ] −Θ(Ti−K�Ti])
2 =

∑
K≤i≤B−K�i≡l[2K]

(
θ(l�n)
Ti+K

− θ(l�n)
Ti−K

)2

and

(B.4)
1
2

1
K2(�T)2 QVB�K(Θ)= 1

2Kn

2K∑
l=1

∑
K≤i≤B−K�i≡l[2K]

(
θ(l�n)
Ti+K

− θ(l�n)
Ti−K

)2
�

We now wish to show that

1
2Kn

2K∑
l=1

∑
K≤i≤B−K�i≡l[2K]

(
θ(l)
Ti+K

− θ(l)
Ti−K

)2 = 1
2K

2K∑
l=1

[
θ(l�n)� θ(l�n)

]
T + op(1)(B.5)

=
∫ T

0
f (n)
t d[θ�θ]t + op(1)� where

f (n)
t = 1

2K

2K∑
l=1

(
f (l�n)
t

)2
(B.6)

= 1
2K3(�T)2

∑
K≤i≤B−K

(
(Ti+K − t)2I{Ti+K ≥ t > Ti}

+ (t − Ti−K)
2I{Ti ≥ t > Ti−K})�

If K is finite, this is a simple matter of checking that∑
K≤i≤B−K�i≡l[2K]

(
θ(l)
Ti+K

− θ(l)
Ti−K

)2 = [
θ(l�n)� θ(l�n)

]
T + op(1) for each l = 1� � � � �2K�

where we recall that i ≡ l[2K] means that i is on the form 2Ki + l. For the general case
where K can be finite or infinite, we proceed as follows. The class of functions f (l�n)

t given
by (B.1) satisfies the conditions of Theorem 7. So does α(n)

t = θt ; since the process does
not move with n, it is both tight and P-UT. Theorem 7 therefore yields (B.5)-(B.6).

For t ∈ (Tj−1�Tj] ⊆ (TK�TB−K],

f (n)
t = 1

2K3(�T)2

( ∑
j−K≤i≤j−1

(Ti+K − t)2 +
∑

j≤i≤j+K−1

(t − Ti−K)
2

)
(B.7)

= 1
3

(
1 − 1

K2

)
+ 1

2
1
K2

((
Tj − t

�T

)2

+
(
t − Tj−1

�T

)2)
�

hence, eventually, on all [δ�T − δ], for any δ > 0. Since, for all t ∈ [0�T ], 0 ≤ f (n)
t ≤ 1,

and since f (n)
T = 0, Theorem 1 follows. Remark 15 in Appendix A continues to apply, for

the same reasons. Q.E.D.

PROOF OF THEOREM 2: By Itô’s formula, d(T + δ − t)(θt − θT ) = (T + δ − t) dθt −
(θt − θT )dt. Integrating from T to T + δ yields

(B.8) 0 = Θ′
(T�T+δ] −Θ(T�T+δ] + θTδ�
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Similarly, d(t − (T − δ))(θT − θt) = −(t − (T − δ))dθt + (θT − θt)dt. Integrating from
T − δ to T yields

(B.9) 0 = −Θ′′
(T−δ�T ] −Θ(T−δ�T ] + θTδ�

Combining (B.8)–(B.9) yields the result. Q.E.D.

APPENDIX C: PROOF OF THEOREM 3, AND A MORE GENERAL RESULT

We here show a broader result of which Theorem 3 is a corollary. First of all, we replace
the “omnibus” Condition 1 by the weaker and more precise Condition 5. Also, it shows
what happens when one gives up on forcing negligibility in the form of conditions (22)
and �T = o(n−α). The former is conceptually important as it separates out what part of
Condition 1 is required for the convergence of quadratic variations (as opposed to being
a valid asymptotic variance). The latter is useful in case one were tempted to take K fixed
in the discontinuous θt case. We first state and prove the more general Theorem 8, and
then derive Theorem 3.

CONDITION 5—Relative Size of Semimartingale and Edge Effect in Θ̂ in (13): We as-
sume that Mn�t is a sequence of semimartingales. We assume that there is a rate α > 0
(which need not be known) so that the sequence of semimartingales (nαMn�t) = Op(1)
in the sense of Definition 5 in Appendix A. We assume that en�T = op(n

−α) and ẽn�S =
op(n

−α) for any S and T .

THEOREM 8—More General Expansion of QVB�K(Θ̂): Assume that θt is a semimartin-
gale on [0�T ], and suppose that Condition 5 holds. Define

QVB�K(Θ�M)= 1
K

B−K∑
i=K

(Θ(Ti�Ti+K ] −Θ(Ti−K�Ti])
(
(MTi+K

−MTi)− (MTi −MTi−K
)
)
�(C.1)

QVB�K(M)= 1
K

B−K∑
i=K

(
(MTi+K

−MTi)− (MTi −MTi−K
)
)2
� and

Rn�K = 1
K

B−K∑
i=K

(ẽTi+K
− eTi − ẽTi + eTi−K

)2�

and also

QVB�K(Θ̂) = QVB�K(Θ)+ 2 QVB�K(Θ�M)+ QVB�K(M)�(C.2)

Let K =Kn be positive integers, and assume that Kn�Tn → 0. Then, in extension of (23),

1
2K

∑
K≤i≤B−K

(Θ̂(Ti−K�Ti+K ] −Θ(Ti−K�Ti+K ])2 = [Mn�Mn]T +Rn�K +Op

(
n−αR1/2

n�K

)
�(C.3)
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Also, in extension of (25),

(C.4) QVB�K(Θ̂) = 2[Mn�Mn]T + (K�T)2 2
3

(
1 − 1

K2

)
[θ�θ]T −

+ (�T)2

∫ T

0

((
t∗ − t

�T

)2

+
(
t − t∗
�T

)2)
d[θ�θ]t

+ 2�T
∫ T

0

(
1 − 2

t − t∗
�T

)
d[θ�Mn]t + op

(
(Kn�T)

2
) + op

(
n−2α

)
and

(C.5) QVB�K(Θ̂) = QVB�K(Θ̂)+Rn�K +Op

((
K�T + n−α

)
R1/2

n�K

)
�

The convergence in probability is uniform in �Tn, so long as �Tn > 0 and Kn�Tn → 0.

For the proofs, set α(n)
t = θt , β

(n)
t = nαMn�t . Let f (l�n)

t be given by (B.1) above. We shall
use two different definitions of g(l�n)

t . For both cases, let α(l�n)
t and β(l�n)

t be as given by
(A.2).

PROOF OF (C.3) (CASE 1 FOR g(l�n)
t ): Set

(C.6) g(l�n)
t =

∑
K≤i≤B−K;i≡l[2K]

I{Ti+K > t ≥ Ti−K}�

From Theorem 7,

1
2K

B−K∑
i=K

(
β(n)

Ti+K
−β(n)

Ti−K

)2 = 1
2Kn

2K∑
l=1

∑
K≤i≤B−K�i≡l[2K]

(
β(l�n)

Ti+K
−β(l�n)

Ti−K

)(
β(l�n)

Ti+K
−β(l�n)

Ti−K

)
(C.7)

= 1
2K

2K∑
l=1

[
β(l�n)�β(l�n)

]
T + op(1)

= [
β(n)�β(n)

]
T + op(1)�

Thus, following (13), and using (C.7), write

1
2K

B−K∑
i=K

(Θ̂(Ti−K�Ti+K ] −Θ(Ti−k�Ti+K ])2(C.8)

= 1
2K

B−K∑
i=K

(
n−α

(
β(n)

Ti+K
−β(n)

Ti−K

) + (ẽTi+K
− eTi)

)2

= n−2α
[
β(n)�β(n)

]
T +Rn�K +Op

((
K�T + n−α

)
R1/2

n�K

)
�

by Cauchy–Schwarz. Since n−2α[β(n)�β(n)]T = [Mn�Mn]T , (C.3) is proved. Remark 15 in
Appendix A remains valid for the same reasons, and also in view of Proof of Theo-
rem 1. Q.E.D.
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PROOF OF THE REST OF THEOREM 8 (CASE 2 FOR g(l�n)
t ): Recall that

Θ̂(Ti�Ti+K ] − Θ̂(Ti−K�Ti](C.9)

=Θ(Ti�Ti+K ] −Θ(Ti−K�Ti]

+ (MTi+K
−MTi)− (MTi −MTi−K

)+ (ẽTi+K
− eTi − ẽTi + eTi−K

)�

We obtain from Cauchy–Schwarz that

QVB�K(Θ̂) = QVB�K(Θ̂)+Rn�K +Op

(
QVB�K(Θ̂)1/2R1/2

n�K

)
�(C.10)

whence (C.5) follows from (C.4).
It remains to show (C.4). The first term in (C.2) is covered by Theorem 1 in Section 2.3.

To handle the two remaining terms, we redefine

(C.11) g(l�n)
t =

∑
K≤i≤B−K;i≡l[2K]

(
I{Ti+K > t ≥ Ti} − I{Ti > t ≥ Ti−K})�

but keep the rest of the notation from the beginning of this section (Appendix C). Note
that f (l�n)

t is absolutely continuous, and that g(l�n)
t = −(K�T)df (l�n)

t /dt (except at disconti-
nuities), whence by Fubini’s theorem, where f (n)

t is given in equation (B.6),

2K∑
l=1

g(l�n)
t f (l�n)

t = −1
2
(K�T)

d

dt

2K∑
l=1

(
f (l�n)
t

)2
(C.12)

= −(
K2�T

) d
dt

f (n)
t

= 1 − 2
t − t∗
�T

eventually for all t ∈ [δ�T − δ], by (B.7). One can alternatively verify (C.12) directly.
From Theorem 7,

1
2
n2α QVB�K(M)= 1

2K

2K∑
l=1

∑
K≤i≤B−K�i≡l[2K]

(
β(l�n)

Ti+K
−β(l�n)

Ti−K

)(
β(l�n)

Ti+K
−β(l�n)

Ti−K

)
(C.13)

= 1
2K

2K∑
l=1

[
β(l�n)�β(l�n)

]
T + op(1)

= [
β(n)�β(n)

]
T + op(1)

and

1
2K�T

nα QVB�K(Θ�M)= 1
2K

2K∑
l=1

∑
K≤i≤B−K�i≡l[2K]

(
α(l�n)
Ti+K

− α(l�n)
Ti−K

)(
β(l�n)

Ti+K
−β(l�n)

Ti−K

)
(C.14)

= 1
2K

2K∑
l=1

[
α(l�n)�β(l�n)

]
T + op(1)
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= 1
2K

2K∑
l=1

∫ T

0
g(l�n)
t f (l�n)

t d
[
θ�β(n)

]
t
+ op(1)

= 1
2K

∫ T

0

(
1 − 2

t − t∗
�T

)
d
[
θ�β(n)

]
t
+ op(1)

by (C.12). Q.E.D.

REMAINING PROOF OF THEOREM 3: Condition 1 implies Condition 5. Equation (22) is
the same as requiring that

∑
i e

2
Ti

= op(Knn
−2α) and

∑
i ẽ

2
Ti

= op(Knn
−2α), whence Rn�K =

op(n
−2α). Expressions (23) and (25) then follow directly from Theorem 8 when assuming

Condition 1. This is because of (18) in Proposition 1. For expression (18), we also have
invoked the assumption (24). Q.E.D.

REMARK 16—AVAR versus AMSE: There are situations of interest when Condition 5
is satisfied, but the additional assumptions of Condition 1 are not. Most notably, consider
the situation where [L�L]T is not G-measurable but instead just integrable. For simplicity,
assume that Ln�t = n−αMn�t converges in law to Lt relative to the Skorokhod metric on D

(as oppsed to just being tight). In this case, (15) needs to be replaced by

(C.15) AMSE(Θ̂−Θ) = n−2α[L�L]T + op

(
n−2α

)
�

where AMSE is the asymptotic mean squared error. This situation arises, for example,
in the case of endogenous sampling times for realized volatility (Li, Mykland, Renault,
Zhang, and Zheng (2014)). The same phenomenon occurs under direct estimation of
skewness (Kinnebrock and Podolskij (2008, Example 6); Mykland and Zhang (2009, Ex-
ample 3, pp. 1414–1416)).

APPENDIX D: STABLE CONVERGENCE AND OF THE P-UT CONDITION

D.1. Concepts

Stable Convergence (Definition 3 in Section 3.1) allows you to take the information from
the data (represented by sigma-field G) into the asymptotic distribution. Most commonly,
this information is the quadratic variation [L�L]T , which plays the role of variance in
the asymptotic distribution, but which can be consistently estimated from the data by any
consistent estimator of n2α[Mn�Mn]T . This is the content of Proposition 1.

General conditions for stable convergence to hold can be found in Hall and Heyde
(1980), and have a quite general formulation in Jacod and Shiryaev (2003, Theorem
VI.6.26, p. 384). Stable convergence of estimators has also been found in countless ar-
ticles in specific situations, including in high frequency data. See also the book by Jacod
and Protter (2012) and the review paper by Podolskij and Vetter (2010).

The amount of data G that one wishes to carry to asymptopia may vary. The theory
described in this paper will work for any G ⊆ F , so long as [L�L]T is G-measurable.
(This is true under minimal conditions; see Proposition 6 at the end of this section.)
One may, however, wish to carry other information. First, for suitably chosen G, stable
convergence commutes with measure change (Mykland and Zhang (2009, Proposition 1,
p. 1408)), and this can simplify analysis. Second, stable convergence can help weaken
conditions with the assistance of localization; see, for example, Jacod and Protter (2012,
Lemma 4.4.9, pp. 118–121), and Mykland and Zhang (2012, Section 2.4.5, pp. 160–161). In
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common practice, the information in G will include latent efficient prices Xt and parame-
ter processes θt , but typically not information from the microstructure noise, if present in
the model (Zhang, Mykland, and Aït-Sahalia (2005), Zhang (2006), Jacod, Li, Mykland,
Podolskij, and Vetter (2009), Podolskij and Vetter (2009), Jacod and Protter (2012), and
many others). Thus, Ln�t = nαMn�t may in some circumstances not be G-measurable.

For general discussions of stable convergence, see Jacod and Protter (1998, Section 2,
pp. 169–170; 2012, Chapter 2.2.1, pp. 46–50), Jacod and Shiryaev (2003, Chapter VIII.5c–
d, pp. 512–519), and Mykland and Zhang (2012, Section 2.4, pp. 150–161). For fur-
ther background on stable convergence, see Rényi (1963), Aldous and Eagleson (1978),
Rootzén (1980), and Zhang (2001). Stable convergence was originally thought of as a
form of conditional convergence (Jacod and Shiryaev (2003, top of p. 513)).

REMARK 17: In this paper, convergence in law for processes is relative to the Sko-
rokhod topology on the space D =D[0�T ] of càdlàg functions [0�T ] → R. In Definition 3,
the pair (Ln�Y) converges in the product topology. In other words, (Ln�Y)

L→ (L�Y)
means that Ef(Ln)g(Y) → Ef(L)g(Y), for all bounded continuous f : D → R and
g : R → R. For more on the Skorokhod topology, see Jacod and Shiryaev (2003, Chapter
VI.1–2, pp. 325–346). Note that Ft can depend on n; cf. the discretization discussion in
Section 6 and Appendix D.2.

The Predictably Uniformly Tight (P-UT) Condition was described and studied in Jacod
and Shiryaev (2003, Chapter VI.6, pp. 377–388). It is an additional regularity condition
which avoids certain idiosyncrasies associated with regular process convergence. If the
sequence of semimartingales Ln is tight in the Skorokhod topology, one can take as defi-
nition of P-UT that if Hn is a bounded family of predictable processes, then

∫ T

0 Hn�t dLn�t

is tight for each T (ibid., Definition 6.1, p. 377, and Corollary 6.20, p. 381). Also, by
ibid., Theorem VI.6.22 (p. 383), if (Hn�+�Ln)

L→ (H�L) (and subject to regularity con-
ditions), then

∫
Hn�t dLn�t

L→ ∫
Ht dLt . Also, and this is important for the current pa-

per, [Ln�Ln] L→ [L�L] (ibid., Theorem VI.6.26, p. 384). Finally, P-UT prevents the pre-
dictable finite variation part of Ln from turning into a different type of process (ibid.,
Theorem 6.15 (iii), p. 380, and Theorem VI.6.21, p. 382).

We have seen in Sections 6 and 7 that there is little additional burden in verifying the
P-UT condition once one proves stable convergence. Also, a sufficient condition for a
sequence of local martingales Ln�t to be P-UT is that (Jacod and Shiryaev (2003, Corollary
VI.6.30, p. 385))

(D.1) sup
n

E sup
0≤t≤T

|�Ln�t |<∞�

The condition (D.1) is weaker than what is usually required for a central limit theorem,44

and it does in particular not impose asymptotic negligibility. If (D.1) still seems too strong,
the requirement can be localized using stable convergence, as described above in this
section.

The following is an illustration of how stable convergence blends with P-UT.

44See, for example, Hall and Heyde (1980, conditions (3.18) and (3.20), p. 58).



12 P. A. MYKLAND AND L. ZHANG

PROOF OF PROPOSITION 1: Let (FL
t ) be the filtration generated by the process Lt , on

the extension (Ω̃� G̃� P̃). Since, by assumption, Lt is a local martingale with respect to fil-
tration (G ∨FL

t ), then it follows that L2
t − [L�L]t is also a local martingale w.r.t. G ∨FL

t ,
and hence E(LT | G) = 0 and E(L2

T − [L�L]T | G) = 0. Hence, Var(LT |G) = [L�L]T .
Set Ln�t = nαMn�t . Since Ln�t is P-UT, Jacod and Shiryaev (2003, Proposition VI.2.1,
p. 377 and Theorem VI.6.26, p. 384) yields that [Ln�Ln]T L→ [L�L]T stably in law as
n → ∞. However, since [L�L]T is G-measurable and hence defined on the original space,
[Ln�Ln] p→ [L�L]T by Jacod and Protter (2012, eq. (2.2.7), p. 47). (It is enough for the
“⇐” part of the cited result that the limiting random variable be G-measurable.) Q.E.D.

We finish with a result on minimal stable convergence.45

PROPOSITION 6—Automatic Minimal Stable Convergence: Assume that the sequence of
semimartingales Ln = nαMn converges in law to L, and is P-UT. Also assume that [Ln�Ln]T
converges in probability. Call this limit V (so [Ln�Ln]T p→ V ). Let G be the sigma-field gener-
ated by V . Then there is an extension (Ω̃� G̃� P̃) of (Ω�G�P) so that Ln converges stably in law
with respect to G as n → ∞. Also, on this extension, [L�L]T = V , and FL

T is conditionally
independent of F given G.

D.2. Proofs of Propositions 4, 5, and 6

PROOF OF PROPOSITION 5 IN SECTION 6: The only modification that is required in
our proofs is to replace our parameter process by θn�t = θtn�i for tn�i ≤ t < tn�i+1. Since
(the original (Ft) adapted) θt is a semimartingale, then so is θn�t . Also, θn�t converges
in probability to θt in the Skorokhod topology (Jacod and Shiryaev (2003, Proposition
VI.6.37, p. 387)) (and hence also in law). Also, θn�t is P-UT (ibid., Definition VI.6.1, p. 377)
since the relevant predictable functions on filtration Ftn�i are a subset of the corresponding
predictable functions on filtration Ft .

For example, the proof of Theorem 1 in Appendix B goes through with θn�t in lieu of
θt , because Theorem 7 in Appendix A allows time varying θn�t . The times Tn�i are not
changed in derivations that do not involve microstructure noise.

Arguments involving only (en�Tn�i � ẽn�Tn�i ) are directly converted to (en�Tn�i�∗� ẽn�Tn�i�∗).
Q.E.D.

PROOF OF PROPOSITION 4 IN SECTION 5.2: This is a corollary to Proposition 5. If Con-
dition 1 is valid (in its original form) for Mn�t , it certainly also holds when discretized as
in Condition 3, again using Jacod and Shiryaev (2003, Proposition VI.6.37, p. 387). This
shows the result. Q.E.D.

PROOF OF PROPOSITION 6: Let f : D → R and g : R → R be bounded and con-
tinuous. Since Ln�t is P-UT, Jacod and Shiryaev (2003, Proposition VI.2.1, p. 377 and
Theorem VI.6.26, p. 384) yields that (Ln� [Ln�Ln]T ) L→ (L� [L�L]T ) (in the non-stable
sense), that is, Ef(Ln)g([Ln�Ln]T ) = Ef(L)g([L�L]T ) + o(1). On the other hand,
by the assumed convergence in probability, |Ef(Ln)g([Ln�Ln]T ) − Ef(Ln)g(V )| ≤
supx |f (x)|E|g([Ln�Ln]T )− g(V )| → 0.

45The following proposition is conceptually related to Hall and Heyde (1980, condition (3.19), p. 58).
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We now construct our extension as in Jacod and Protter (2012, p. 36): Ω̃ =Ω×D[0�T ]
with product sigma-field, where the sigma-field on D[0�T ] is derived from the Skorokhod
topology (Jacod and Shiryaev (2003, Theorem VI.1.14c, p. 328)). The transition proba-
bility is given as the regular conditional probability Q(L|V ) (Ash (1972, Theorem 6.6.5,
p. 265)), where Q is defined as the joint distribution of (L� [L�L]T ) on D[0�T ] ×R (with
corresponding product sigma-field).

With these definitions, [L�L]T = V , and hence, from the above,

Ef(L)g(V ) = Ef(L)g
([L�L]T

) = Ef(Ln)g
([Ln�Ln]T

) + o(1)

= Ef(Ln)g(V )+ o(1) as n → ∞�

Hence, the stable convergence follows. The remaining statements of the proposition hold
by construction. Q.E.D.

D.3. P-UT Property in Example 2 in Section 7

P-UT Property for n1/2Mn. We make the following assumptions: (i) μt is locally integrable
and σ2

t is continuous,46 and (ii)

(D.2)
n∑

j=1

|�Jtj−1 ||�Jtj | = Op

(
n−1/2

)
�

In particular, (D.2) is satisfied when Jt = J(1)
t + J(2)

t , where J(1) has finitely many jumps
and J(2) is a purely discontinuous Itô-semimartingale (see, e.g., Jacod and Protter (2012,
Definition 2.1.1, p. 35; see also Theorem 2.1.2, p. 37)).

PROOF OF P-UT PROPERTY: Without changing either assumptions or conclusions, we
absorb the μt dt term into dJt , so that dXt = σt dWt + dJt . [J� J]t is unchanged, and so is
the statement (D.2). From (D.2) as well as Jacod and Shiryaev (2003, Definition VI.6.1
and the additivity VI.6.4, both p. 377), it follows that to verify P-UT of the original Mn,
it is enough that the P-UT property holds on a modified M̃n which has the same form
as (53) but with X replaced by Xc , where dXc

t = σt dWt . For this process, it is easy to
verify P-UT under the contiguous sequence of measures Qn from Mykland and Zhang
(2009, Section 3, pp. 1416–1421), and using the big block–small block device (Mykland,
Shephard, and Sheppard (2012, Appendix A.5, pp. 32–33)), again using Definition VI.6.1
from Jacod and Shiryaev (2003). But this definition is invariant to contiguous change of
measure, and hence M̃n is P-UT under the original measure P . It follows that the original
n1/2Mn is P-UT. Q.E.D.
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