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COMMENT ON “EFFICIENT RESOURCE ALLOCATION
ON THE BASIS OF PRIORITIES”
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This note points out that the proof of Theorem 1, the main theorem, in Ergin (2002)
needs two corrections. We provide two counterexamples to Ergin’s (2002) proof and
show that the theorem holds as it is by providing an alternative proof.
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1. INTRODUCTION

FOR ALLOCATING RESOURCES TO AGENTS, many institutions use matching mechanisms
involving no monetary transfer. For instance, consider a one-to-many matching problem
of school choice where each school has a quota on the number of students and a priority
ranking of students, and each student has a preference order over the set of schools and
remaining unmatched. Schools’ quotas and priority rankings are exogenously fixed and
common knowledge among all agents, including a planner, while students’ preferences
are not known to the planner.1 In such an environment, the planner matches each student
with at most one school, so that the number of students matched with each school is within
that school’s quota.

For such problems, Ergin (2002) presents a necessary and sufficient condition on prior-
ities and quotas under which there exists a stable matching rule which associates a stable
matching to each preference profile that is (i) Pareto efficient for students, (ii) group
strategyproof, or (iii) consistent across outcomes for problems involving different groups
of students and levels of quotas.2 According to his Theorem 1, a stable matching rule
satisfying each of the conditions (i), (ii), and (iii) exists if and only if a profile of priority
rankings and quotas of schools satisfies a condition called acyclicity.3 Following this result,
many papers use acyclicity as a crucial condition. (See, e.g., Kesten (2006), Haeringer and
Klijn (2009), and Kojima (2011).)

However, Ergin’s (2002) proof of the theorem needs two corrections. In this note, we
provide two counterexamples to the proof and show that the theorem holds as it is by
providing an alternative proof that accommodates these counterexamples.
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3Acyclicity requires that for any preference profile and associated student-optimal stable matching, there is
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another student and either one of the two schools to be exchanged.
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2. NOTATION AND DEFINITIONS

Let A be a set of types of goods (schools in the above example) and N be a set of agents
(students in the above example). q := (qa)a∈A denotes a vector of quotas where for each
a ∈ A, qa ≥ 1 represents the number of available goods of type a. A priority structure is a
profile of linear order over agents � := (�a)a∈A, where for each a ∈ A, �a ranks agents
with respect to their priority for a. For each a ∈ A and i ∈ N , let Ua(i) := {j ∈ N|j �a i}.
Distinct a�b ∈ A and i� j�k ∈ N constitute a cycle if

(C) Cycle condition: i �a j �a k �b i.
(S) Scarcity condition: There are (possibly empty) disjoint sets of agents Na�Nb ⊂N \

{i� j�k} such that Na ⊂Ua(j), Nb ⊂ Ub(i), |Na| = qa − 1, and |Nb| = qb − 1.
If � and q have no cycle, they are called acyclical. More generally, distinct a0� a1� � � � �

an−1 ∈A and j� i0� i1� � � � � in−1 ∈ N with n ≥ 2 constitute a generalized cycle if
(C) i0 �a0 j �a0 in−1 �an−1 in−2 �an−2 · · · i2 �a2 i1 �a1 i0.
(S) There are disjoint sets of agents Na0�Na1� � � � �Nan−1 ⊂ N \ {j� i0� i1� � � � � in−1} such

that Na0 ⊂ Ua0(j), Na1 ⊂ Ua1(i0), Na2 ⊂ Ua2(i1), . . . , Nan−2 ⊂ Uan−2(in−3)�Nan−1 ⊂
Uan−1(in−2), and for all l = 0�1� � � � � n− 1, |Nal | = ql − 1.

In the definition, we consider n to be the “size” of the generalized cycle. Then, it is
clear that the generalized cycle of size 2 is a cycle. Ergin (2002) argues that the following
proposition holds and uses this as a critical lemma for proving Theorem 1.

LEMMA—Ergin (2002, p. 2495): If � and q have a generalized cycle, then they also have
a cycle.

3. COUNTEREXAMPLE TO ERGIN’S PROOF

To prove the Lemma above, suppose that a0� a1� � � � � an−1 ∈ A and j� i0� i1� � � � � in−1 ∈
N constitute the shortest generalized cycle of size n > 2 with Na0�Na1� � � � �Nan−1 ⊂ N \
{j� i0� i1� � � � � in−1} as in the above definition. In the original proof of the Lemma, Ergin
(2002) utilizes the following two claims.

CLAIM 1: If i0 �a2 i2, then a1, a2 and i0, i1, i2 constitute a cycle with Na1 and Na2 , that is,
i0 �a2 i2 �a2 i1 �a1 i0, Na2 ⊂Ua2(i2), and so on.

CLAIM 2: If i2 �a2 i0, then a0� a2� a3� � � � � an−1 and j� i0� i2� i3� � � � � in−1 constitute a gener-
alized cycle with Na0�Na2�Na3� � � � �Nan−1 , that is, i0 �a0 j �a0 in−1 �an−1 · · · i3 �a3 i2 �a2 i0,
Na2 ⊂Ua2(i0), and so on.

However, both of these claims turn out to be incorrect. We provide two counterexam-
ples, the former to Claim 1 and the latter to Claim 2. For simplicity, consider a case where
for a0� a1� a2 ∈ A, qa0 = qa1 = qa2 = 2, and suppose that a0, a1, a2 and j� i0� i1� i2 ∈ N con-
stitute the shortest generalized cycle of size 3 with Na0 , Na1 , and Na2 , that is, i0 �a0 j �a0

i2 �a2 i1 �a1 i0 and Na0�Na1�Na2 ∈N \ {j� i0� i1� i2} are disjoint sets satisfying Na0 ⊂Ua0(j),
Na1 ⊂ Ua1(i0), Na2 ⊂ Ua2(i1) and |Na0 | = |Na1 | = |Na2 | = 1. Let k ∈ N be an agent such
that Na2 = {k}.

COUNTEREXAMPLE TO CLAIM 1: Suppose i0 �a2 i2 �a2 k �a2 i1. (Note that i0 �a2 i2,
i.e., the assumption of Claim 1, is satisfied.) Then, Na2 does not satisfy that Na2 ⊂ Ua2(i2)
because Na2 = {k}, but i2 �a2 k, so Na2 ∩Ua2(i2)= ∅. Therefore, a1, a2 and i0, i1, i2 cannot
constitute a cycle with Na1 and Na2 .
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COUNTEREXAMPLE TO CLAIM 2: Suppose i2 �a2 i0 �a2 k �a2 i1. (Note that i2 �a2 i0,
i.e., the assumption of Claim 2, is satisfied.) Then, Na2 does not satisfy that Na2 ⊂ Ua2(i0)
because Na2 = {k}, but i0 �a2 k, so Na2 ∩Ua2(i0)= ∅. Therefore, a0, a2 and j, i0, i2 cannot
constitute a generalized cycle of size 2, that is, a cycle, with Na0 and Na2 .

Note that we do not exclude a possibility that a cycle or a generalized cycle other than
those considered in Claim 1 and Claim 2 may exist. In the last section, we provide an alter-
native proof of the aforementioned Lemma that accommodates these counterexamples.

4. ALTERNATIVE PROOF

Suppose that � and q have a generalized cycle and let the size of the short-
est generalized cycle be n > 2, that is, a0� a1� � � � � an−1 ∈ A; j� i0� i1� � � � � in−1 ∈ N and
Na0�Na1� � � � �Nan−1 ⊂ N \ {j� i0� i1� � � � � in−1} constitute the shortest generalized cycle of
size n > 2.4

Case (1-α): If i0 �a2 i2 and, for all i ∈ Na2� i �a2 i2, then i0 �a2 i2 �a2 i1 �a1 i0 and
Na2�Na1 ⊂ N \ {i2� i1� i0} are disjoint sets satisfying Na2 ⊂ Ua2(i2), Na1 ⊂ Ua1(i0), |Na2 | =
qa2 − 1, and |Na1 | = qa1 − 1. Therefore, a2, a1 and i0, i2, i1 constitute a cycle, that is, a
generalized cycle of size 2, which is a contradiction.

Case (1-β): If i0 �a2 i2 and there exists i ∈ Na2 such that i2 �a2 i �a2 i1, let i∗ be the
minimum element in Na2 with respect to �a2 and N ′

a2
= Na2 ∪ {i2} \ {i∗}. Then, i0 �a2

i∗ �a2 i1 �a1 i0 and Na1�N
′
a2

⊂N \ {i1� i0� i∗} are disjoint sets satisfying N ′
a2

⊂ Ua2(i∗), Na1 ⊂
Ua1(i0), |N ′

a2
| = qa2 −1, and |Na1 | = qa1 −1. Therefore, a2, a1 and i0, i∗, i1 constitute a cycle,

that is, a generalized cycle of size 2, which is a contradiction.
Case (2-α): If i2 �a2 i0 and, for all i ∈ Na2 , i �a2 i0, then i0 �a0 j �a0 in−1 �an−1· · · i3 �a3 i2 �a2 i0, and Na0�Na2� � � � �Nan−1 ⊂ N \ {j� i0� i2� � � � � in−1} are disjoint sets sat-

isfying Na0 ⊂ Ua0(j), Na2 ⊂ Ua2(i0), Na3 ⊂ Ua3(i2), . . . , Nan−2 ⊂ Uan−2(in−3), Nan−1 ⊂
Uan−1(in−2), and for all l = 0�2�3� � � � � n− 1, |Nal | = qal − 1. Therefore, a0� a2� a3� � � � � an−1

and j� i0� i2� i3� � � � � in−1 constitute a generalized cycle of size n−1, which is a contradiction.
Case (2-β): If i2 �a2 i0 and there exists i ∈ Na2 such that i0 �a2 i �a2 i1, let i∗∗ be the

minimum element in Na2 with respect to �a2 and N ′′
a2

= Na2 ∪ {i2} \ {i∗∗}. Then, i0 �a2

i∗∗ �a2 i1 �a1 i0 and Na1�N
′′
a2

⊂ N \ {i1� i0� i∗∗} are disjoint sets satisfying N ′′
a2

⊂ Ua2(i∗∗),
Na1 ⊂ Ua1(i0), |N ′′

a2
| = qa2 −1, and |Na1 | = qa1 −1. Therefore, a2, a1 and i0, i∗∗, i1 constitute

a cycle, that is, a generalized cycle of size 2, which is a contradiction. Q.E.D.
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4Virtually, Ergin (2002) only considers two of the four cases, Case (1-α) and Case (2-α), of the alternative
proof.
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