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Appendix A: Proofs for the low-dimensional case

Recall gn(X ) = E[g(X )g(X )′I{X ∈ Xn}]−1/2g(X )I{X ∈ Xn} and rn(X ) = E[g(X )g(X )′ ×
I{X ∈ Xn}]−1/2r(X )I{X ∈ Xn}. Define λ̃= arg min

λ
En[φ∗(λ′gn(X )) − λ′rn(X )].

A.1 Lemmas

Lemma 1. Let f (x) = (f1(x), � � � , fK(x))′ be a K-dimensional vector of functions, and
Mq = max1≤j≤K{E|fj(X )|q}1/q. Suppose {Xi}ni=1 is α-mixing with mixing coefficient

{αm}m∈N satisfyingKM2(M2 +Mq
∑n
m=1 α

1/2−1/q
m )/n→ 0 for some q ∈ (2, ∞]. Then

∣∣En[f (X )
] −E

[
f (X )

]∣∣ =Op
(√√√√KM2

n

(
M2 +Mq

n∑
m=1

α
1/2−1/q
m

))
.

Lemma 2. Suppose Conditions D, S, and I hold true. Then

(i) for all x ∈ X and n large enough, λ′
bgn(x) ∈ C, where C is a compact set in

(φ(1)(0), φ(1)(+∞)),

(ii) supx∈Xn |ω0(x) −φ(1)∗ (λ′
bgn(x))| =O(ηK,n ).

Lemma 3. Suppose the conditions for Theorem 1 hold true. Then

(i) if we additionally assume that {Xi}ni=1 is iid and ζ2
K,n logK/n → 0, then |En×

[gn(X )gn(X )′] − I| = Op(
√
ζ2
K,n logK/n), and thus λmin(En[gn(X )gn(X )′]) is

bounded away from zero and from above with probability approaching to one,

(ii) |En[rn(X ) −ω0(X )gn(X )]| =Op(
√
KμK,n/n),
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(iii) |En[{ω0(X ) −φ(1)∗ (λ′
bgn(X ))}gn(X )]| =Op(BK,n ),

(iv) |λ̃− λb| =Op(
√
KμK,n/n+BK,n ).

Proof of Lemma 1

LetW (X ) = f (X ) −E[f (X )]. Note that

E
[∣∣En[W (Xi )

]∣∣2] = 1

n2

n∑
i=1

K∑
j=1

E
[
Wj(Xi )

2] + 1

n2

n∑
i �=l

K∑
j=1

E
[
Wj(Xi )Wj(Xl )

]
.

The first term is bounded as 1
n2

∑n
i=1

∑K
j=1 E[W 2

j (Xi )] ≤ KM2
2/n. For the second term,

Hall and Heyde (2014, Corollary A.2) implies

∣∣E[
Wj(Xi )Wj(Xl )

]∣∣ �
{
E

[∣∣Wj(Xi )∣∣q]}1/q
√
E

[
Wj(Xl )2

]
α

1/2−1/q
i−l ≤MqM2α

1/2−1/q
i−l ,

and thus 1
n2

∑n
i �=l

∑K
j=1 E[Wj(Xi )Wj(Xl )] � KMqM2

∑n
m=1 α

1/2−1/q
m . Therefore, the con-

clusion follows by Markov’s inequality.

Proof of Lemma 2(i)

By boundedness and positivity of ω0 (Condition D(3)) and continuous differentiability
and strict convexity of [φ(1)∗ ]−1(·) on (0, +∞) (Condition D(4), since [φ(1)∗ ]−1(·) =φ(1)(·)
on (0, +∞)), both φ(1)(0) < γ = infx∈X [φ(1)∗ ]−1(ω0(x)) and γ = supx∈X [φ(1)∗ ]−1(ω0(x))
are finite. Thus, by (15) in Condition S, there exists C1 > 0 such that

λ′
bgn(x) ∈ [γ−C1ηK,n, γ+C1ηK,n], (37)

for all x ∈ Xn. The conclusion holds for all x ∈ X by the requirement ηK,n → 0 and
φ(1)(0)< 0 from Condition D(4).

Proof of Lemma 2(ii)

Note that (37) also guarantees

ω0(x) −φ(1)∗
(
λ′
bgn(x)

) ∈ [
φ(1)∗

(
λ′
bgn(x) −C1ηK,n

) −φ(1)∗
(
λ′
bgn(x)

)
,

φ(1)∗
(
λ′
bgn(x) +C1ηK,n

) −φ(1)∗
(
λ′
bgn(x)

)]
,

for all x ∈ Xn and n large enough. By applying the mean value theorem to the upper and
lower bounds under Condition I, there exist c1, c2 > 0 such that

φ(1)∗
(
λ′
bgn(x) +C1ηK,n

) −φ(1)∗
(
λ′
bgn(x)

) ≤ c1C1ηK,n,

φ(1)∗
(
λ′
bgn(x) −C1ηK,n

) −φ(1)∗
(
λ′
bgn(x)

) ≥ −c2C1ηK,n,

for all x ∈Xn and n large enough. Combining these results, the conclusion follows.
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Proof of Lemma 3(i)

This follows directly from Belloni et al. (2015, Lemma 6.2) or Chen and Christensen
(2015, Lemma 2.1).

Proof of Lemma 3(ii)

Let f (x) = rn(x) −ω0(x)gn(x). By (1) and the Cauchy–Schwarz inequality, we have∣∣E[
f (X )

]∣∣ �
∣∣E[{

ω0(X )g(X ) − r(X )
}
I{X /∈ Xn}

]∣∣,
≤

√
E

[∣∣ω0(X )g(X ) − r(X )
∣∣2]√

P{X /∈ Xn} = o(
√
K/n), (38)

where the equality follows from Condition S. Condition S guarantees max
1≤j≤K{E ×

[|fj(X )|q]}1/q �MK,n. Thus, Lemma 1 implies∣∣En[f (X )
] −E

[
f (X )

]∣∣ =Op(
√
KμK,n/n). (39)

The conclusion follows by (38) and (39).

Proof of Lemma 3(iii)

Let

ξ(X ) = {
ω0(X ) −φ(1)∗

(
λ′
bgn(X )

)}
, ρ̂= (

En
[
gn(X )gn(X )′

])−1
En

[
gn(X )ξ(X )

]
.

By the assumption |En[gn(X )gn(X )′]−I| = op(1), it holds (En[gn(X )gn(X )′])−1 =Op(1),
and then

∣∣En[gn(X )ξ(X )
]∣∣ ≤ ∣∣En[gn(X )gn(X )′

]∣∣|ρ̂| � |ρ̂| �
√
En

[(
ρ̂′gn(X )

)2]
, (40)

with probability approaching one, where the last inequality follows from Condition S.
Since ρ̂ is the empirical projection coefficient from ξ(X ) on gn(X ), we have

En
[(
ρ̂′gn(X )

)2] ≤ {
En

[
ξ(X )2] −E

[
ξ(X )2]} +E

[
ξ(X )2] =Op

(
B2
K,n

)
, (41)

where the equality follows from (16) in Condition S and Lemma 1 (note that E[|ξ(X )|q] �
ς

2/q
K,n under Conditions D and S). The conclusion follows from (40) and (41).

Proof of Lemma 3(iv)

Recall that ω̂(X ) =φ(1)∗ (λ̂′g(X )I{X ∈ Xn}) =φ(1)∗ (λ̃′gn(X )), where λ̃= arg max
λ
Q̂(λ) and

Q̂(λ) = λ′
En

[
rn(X )

] −En
[
φ∗

(
λ′gn(X )

)]
.

By Condition D, Q̂(λ) is concave. Let Q̂(1)(λ) and Q̂(2)(λ) be the first and second deriva-
tives of Q̂(λ), respectively, if they exist. The proof is split into several steps.
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Step 1: Show Q̂(1)(λb ) = Op(δn ), where δn = √
KμK,n/n + BK,n. Since Q̂(1)(λb ) =

En[rn(X ) −φ(1)∗ (λ′
bgn(X ))gn(X )], the triangle inequality yields

∣∣Q̂(1)(λb )
∣∣ ≤ ∣∣En[rn(X ) −ω0(X )gn(X )

]∣∣ + ∣∣En[{ω0(X ) −φ(1)∗
(
λ′
bgn(X )

)}
gn(X )

]∣∣
Thus, Lemma 3(ii) and (iii) imply Q̂(1)(λb ) =Op(δn ).

Step 2: Show that for any C > 0, there exists some c > 0 such that

ηC = inf
|λ−λb|≤Cδn,x∈X

φ(2)∗
(
λ′gn(x)

)
> c.

Pick any C > 0. Since δnζK,n = o(1), we have∣∣λ′gn(x)
∣∣ ≤ ∣∣λ′

bgn(x)
∣∣ + |λ− λb|

∣∣gn(x)
∣∣ ≤ ∣∣λ′

bgn(x)
∣∣ +CδnζK,n,

for all λ satisfying |λ− λb| ≤ Cδn. Thus, by Lemma 2(i), λ′gn(x) lies in some compact set
C̃ in (φ(1)(0), φ(1)(+∞)) for all λ satisfying |λ−λb| ≤ Cδn and x ∈ X . Condition I and the
Weierstrass theorem guarantee ηC > c = mina∈C̃ φ

(2)∗ (a)> 0.

Step 3: Show that there exists some C∗ > 0 such that Q̂(λ)< Q̂(λb ) with probability
approaching one for all λ satisfying |λ − λb| = C∗δn. Pick any ε > 0. By Step 1, we can
take C∗ > 0 such that

P
{∣∣Q̂(1)(λb )

∣∣< cC∗δn/4
} ≥ 1 − ε, (42)

for all n large enough, where c > 0 is chosen in Step 2. An expansion of Q̂(λ) around
λ= λb yields

Q̂(λ) − Q̂(λb ) = Q̂(1)(λb )′(λ− λb ) + 1
2

(λ− λb )′Q̂(2)(λ̇)(λ− λb ),

for some λ̇ on the line joining λ and λb. By Step 2,

Q̂(2)(λ̇) = −En
[
φ(2)∗

(
λ̇′gn(X )

)
gn(X )gn(X )′

] ≤psd −cEn
[
gn(X )gn(X )′

]
,

and Condition S(1) implies

1
2

(λ− λb )′Q̂(2)(λ̇)(λ− λb ) ≤ − c
4
|λ− λb|2,

with probability approaching one. Combining these results, for all λ satisfying |λ−λb| =
C∗δn,

Q̂(λ) − Q̂(λb ) ≤ ∣∣Q̂(1)(λb )
∣∣|λ− λb| − c

4
|λ− λb|2 ≤

(∣∣Q̂(1)(λb )
∣∣ − cC∗δn

4

)
|λ− λb|.

Thus, (42) implies that Q̂(λ)< Q̂(λb ) with probability approaching one.
Step 4: By continuity of Q̂(λ), it has a maximum on the compact set {λ : |λ− λb| ≤

C∗δn}. By Step 3, the maximum λ̃C∗ on set {λ : |λ− λb| ≤ C∗δn} must satisfy |λ̃C∗ − λb| <
C∗δn. By concavity of Q̂(λ), λ̃C∗ also maximizes Q̂(λ) over Rk. The conclusion follows by
the same argument used at the end of the proof of Newey and McFadden (1994, Theo-
rem 2.7).
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A.2 Proof of Theorem 1

Proof of (17)

Let ωb(x) = φ(1)∗ (λ′
bgn(x)). Pick any C > 0. From Step 2 in the proof of Lemma 3(iv),

λ′gn(x) lies in some compact set C̃ in (φ(1)(0), φ(1)(+∞)) for all x ∈ X and λ satisfying
|λ− λb| ≤ Cδn. Let En be the event that λ̃′gn(x) ∈ C̃ for all x ∈ X . Lemma 3(iv) guarantees
P{En} → 1. On event En, an expansion around λ̃= λb yields

ω̂(x) −ωb(x) =φ(2)∗
(
λ̄′
xgn(x)

)
(λ̃− λb )′gn(x), (43)

where λ̄x is a point on the line joining λ̃ and λb, and λ̄′
xgn(x) ∈ C̃ for all x ∈ X . The Weier-

strass theorem and Condition I imply

sup
|λ−λb|≤Cδn,x∈X

φ(2)∗
(
λ′gn(x)

)
<C1 <∞, (44)

for some C1 > 0. Furthermore, observe that

En
[{
ω̂(X ) −ωb(X )

}2] = (λ̃− λb )′En
[{
φ(2)∗

(
λ̄′
Xgn(X )

)}2
gn(X )gn(X )′

]
(λ̃− λb )

≤ C1|λ̃− λb|2
∣∣En[gn(X )gn(X )′

]∣∣
= Op

(|λ̃− λb|2
)
, (45)

where the inequality follows from (44) and P{En} → 1, and the second equality follows
from Condition S and Lemma 3(iv). Now, the same argument in the proof of Lemma
3(iii) for (41) yields

En
[{
ωb(X ) −ω0(X )

}2] =Op
(
B2
K,n

)
. (46)

The conclusion follows by (45), (46), and the triangle inequality.

Proof of θ̂
p→ θ0

Observe that

|θ̂− θ0| ≤ ∣∣En[ω̂(X )h(X , Y )
] −En

[
ω0(X )h(X , Y )

]∣∣ + ∣∣En[ω0(X )h(X , Y )
]

−E
[
ω0(X )h(X , Y )

]∣∣
≤

√
En

[{
ω̂(X ) −ω0(X )

}2]√
En

[
h(X , Y )2

] + ∣∣En[ω0(X )h(X , Y )
]

−E
[
ω0(X )h(X , Y )

]∣∣
= Op(

√
KμK,n/n+BK,n ) + op(1),

where the first inequality follows from the triangle inequality, the second inequality fol-
lows from the Cauchy–Schwarz inequality, and the final equality follows from the law
of large numbers (under Condition D) for stationary and ergodic processes and (17) in
Theorem 1.
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Proof of (18)

By the triangle inequality,

sup
x∈Xn

∣∣ω̂(x) −ω0(x)
∣∣ ≤ sup

x∈Xn

∣∣ω̂(x) −ωb(x)
∣∣ + sup

x∈Xn

∣∣ωb(x) −ω0(x)
∣∣.

From the proof of (17), it is easy to see that supx∈Xn |ω̂(x)−ωb(x)| =Op(ζK,n(
√
KμK,n/n+

BK,n )). Thus, the conclusion follows by Lemma 2(ii).

A.3 Proof of Theorem 2

Let

hi = h(Xi, Yi ), hXi = E[hi|Xi], ω0i =ω0(Xi ), gni = gn(Xi ),

ωbi =φ(1)∗
(
λ′
bgni

)
, ω̂i =φ(1)∗

(
λ̃′gni

)
, rni = rn(Xi ), rhi = rh(Xi ).

(47)

By an expansion of θ̂= 1
n

∑n
i=1φ

(1)∗ (λ̃′gni )hi around λ̃= λb, we decompose

√
n(θ̂− θ0 ) = 1√

n

n∑
i=1

(ω0ihi − θ0 ) + T1 + T2 + T3 + T4,

where

T1 = E
[
φ(2)∗

(
λ′
bgni

)
hig

′
ni

]√
n(λ̃− λb ),

T2 = 1√
n

n∑
i=1

{
φ(2)∗

(
λ′
bgni

)
hig

′
ni −E

[
φ(2)∗

(
λ′
bgni

)
hig

′
ni

]}
(λ̃− λb ),

T3 = 1
2

(λ̃− λb )′
(

1√
n

n∑
i=1

φ(3)∗
(
λ̇′gni

)
hignig

′
ni

)
(λ̃− λb ),

T4 = 1√
n

n∑
i=1

(ωbihi −ω0ihi ),

and λ̇ lies on the line joining λ̃ and λb.
First, we consider T2. Since Lemma 2(i) and Assumption N imply max

1≤j≤K{E[|φ(2)∗ ×
(λ′
bgn )hgnj|2]} � 1 and max

1≤j≤K{E[|φ(2)∗ (λ′
bgw )hgnj|q1 ]}1/q1 �MK,n, Lemma 1 yields

∣∣∣∣∣1
n

n∑
i=1

{
φ(2)∗

(
λ′
bgni

)
hig

′
ni −E

[
φ(2)∗

(
λ′
bgni

)
hig

′
ni

]}∣∣∣∣∣ =Op
(√

KμK,n

n

)
.

Thus, the Cauchy–Schwarz inequality and Lemma 3(iv) imply T2 = Op(
√
KμK,n×

(
√
KμK,n/n+BK,n )).
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Next, we consider T3. The definitions of ζK,n and matrix L2-norm, Lemmas 2(i) and
3(iv), and Condition I imply | 1

n

∑n
i=1φ

(3)∗ (λ̇′gni )hignig′
ni| = Op(ζ2

K,n ). Thus, the Cauchy–
Schwarz inequality and Lemma 3(iv) imply

T3 =Op
(√
nζ2
K,n

(
KμK,n/n+B2

K,n

))
.

Third, we consider T4. From the proof of Lemma 3(iii) and the law of large numbers,
we have T4 =Op(

√
nBK,n ).

We now consider T1. By expanding the first-order condition of λ̃,

0 = 1
n

n∑
i=1

{
φ(1)∗

(
λ̃′gni

)
gni − rni

}

= 1
n

n∑
i=1

(ωbigni − rni ) + 1
n

n∑
i=1

φ(2)∗
(
λ̄′gni

)
gnig

′
ni(λ̃− λb ),

(48)

where λ̄ lies on the line joining λ̃ and λb. Letψ= E[φ(2)∗ (λ′
bgni )hig

′
ni],�= E[φ(2)∗ (λ′

bgni ) ×
gnig

′
ni], and �̄= 1

n

∑n
i=1φ

(2)∗ (λ̄′gni )gnig′
ni. By solving this for λ̃−λb and inserting to T1, we

have

T1 = −ψ�̄−1 1√
n

n∑
i=1

(ωbigni − rni ) = T11 + T12 + T13,

where

T11 = −ψ(
�̄−1 −�−1) 1√

n

n∑
i=1

(ωbigni − rni ),

T12 = −ψ�−1 1√
n

n∑
i=1

(ωbi −ω0i )gni,

T13 = −ψ�−1 1√
n

n∑
i=1

(ω0igni − rni ).

For T12, note that

|T12| ≤ |ψ| 1
λmin(�)

∣∣∣∣∣ 1√
n

n∑
i=1

(ωbi −ω0i )gni

∣∣∣∣∣.
It is easy to see that |ψ| = O(ζK,n ) due to the definition of ζK,n. Lemma 3(iii) yields
| 1√
n

∑n
i=1(ωbi − ω0i )gni| = Op(

√
nBK,n ). Since λmin(�) is bounded away from zero by

Condition D and Lemma 2(i), we have T12 = Op(
√
nζK,nBK,n ). For T11, note that (48)

implies

T11 = √
nψ

(
�̄−1 −�−1)�̄(λ̃− λb ) = √

nψ�−1(�− �̄)(λ̃− λb ),
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which can be bounded as |T11| ≤ √
n|ψ| 1

λmin(�)
|�− �̄| · |λ̃−λb|. By the triangle inequality

and Condition N(2),

|�− �̄| ≤ ∣∣En[(φ(2)∗
(
λ̄′gn

) −φ(2)∗
(
λ′
bgn

))
gng

′
n

]∣∣ +Op(�K,n ).

By an expansion of φ(2)∗ (λ̄′gni ) and Lemmas 2(i) and 3(iv), we have |En[(φ(2)∗ (λ̄′gn ) −
φ(2)∗ (λ′

bgn ))gng′
n]| =Op(ζ3

K(
√
KμK,n/n+BK,n )). Therefore, we obtain

|�− �̄| =Op
(
ζ3
K,n(

√
KμK,n/n+BK,n ) + �K,n

)
.

Also by |ψ| =O(ζK,n ) and Lemma 3(iv), we have

|T11| =Op
(√
nζ4
K,n

(
KμK,n/n+B2

K,n

) + √
nζK,n�K,n(

√
KμK,n/n+BK,n )

)
.

Now consider T13. Note that

T13 = − 1√
n

n∑
i=1

(
ω0ih

X
i − rhi

) − 1√
n

n∑
i=1

{
β′(ω0igni − rni ) − (

ω0ih
X
i − rhi

)}

= − 1√
n

n∑
i=1

(
ω0ih

X
i − rhi

) + op(1),

where the second equality follows from Lemma 1 and the condition (19).
Combining these results, we obtain

√
n(θ̂− θ0 ) = 1√

n

n∑
i=1

{
ω0ihi − θ0 − (

ω0ih
X
i − rhi

)} +Op(rn ),

where rn = (
√
n(ζ4

K,nKμK,n/n + ζK,nBK,n + √
KμK,n/nζK,n�K,n )). Since rn → 0 by the

assumption, the central limit theorem forα-mixing processes (e.g., Theorem 0 in Bradley
(1985)) yields the conclusion.

A.4 Proof of Proposition 2

Proof of (i) In this case, r(X ) is a constant vector r = E[ω0igi]. We set rh(X ) as a con-
stant vector rh = E[ω0ih

X
i ]. Observe that

E
[
β′(ω0igni − rni ) − (

ω0ih
X
i −E

[
ω0ih

X
i

])]2 ≤N1 +N2 +N3,

where

N1 = E
[
β′(ω0igni −E[ω0igni]

) − (
ω0ih

X
i −E

[
ω0ih

X
i

])]2
,

N2 = E
[
β′(

E[ω0igni] −E[rni]
)]2

,

N3 = E
[
β′(

E[rni] − rni
)]2

.



Supplementary Material Information theoretic approach 9

ForN1,

N1 ≤ E
[
ω2

0i

(
hXi −β′gni

)2] ≤
(

sup
x∈X

ω2
0(x)

φ(2)∗
(
λ′
bgn(x)

))
E

[(
h̃i −β′

pg̃ni
)2]

,

where h̃i =
√
φ(2)∗ (λ′

bgni )h
X
i , g̃i =

√
φ(2)∗ (λ′

bgni )gni, and βp = E[g̃nig̃′
ni]

−1
E[g̃nih̃i]. Since

βp is the projection coefficient that solves minbE[(h̃i − b′g̃ni )2], the assumption in (21)
guarantees N1 = o(n−1 ). For N2, (38) implies |β| =O(1) (because β is a projection coef-
ficient). By (21), we have

N2 � E
[∣∣ω0(X )g(X ) − r(X )

∣∣2]
P{X /∈ Xn} = o(n−1).

ForN3, the definition of rni, |β| =O(1), and (21) imply

N3 = E
[
β′(rni −E[rni]

)]2 � |β|2KP{X ∈ Xn}P{X /∈ Xn} = o(n−1).

Combining these results, the conclusion follows.

Proof of (ii) This follows by a standard projection argument and thus the proof is omit-
ted.

Appendix B: Proofs for high-dimensional case

B.1 Proof of Theorem 3

By the mean value theorem, there exists tx ∈ [0, 1] such that

ω̂(x) −ωo(x) =φ(2)∗
(
λ′

og(x) + tx(λ̂− λo )′g(x)
)
(λ̂− λo )′g(x), (49)

for each x ∈ X .
First, consider the case (i) when ζ̃Kκo,n � 1. Hölder’s inequality and Lemma 4(ii) im-

ply

sup
x∈X

∣∣tx(λ̂− λo )′g(x)
∣∣ ≤ ‖λ̂− λo‖1ζ̃K =Op(ζ̃Kκo,n ) =Op(1). (50)

The assumption supx∈X |ωo(x) − ω0(x)| � 1 and (50) imply P{En} → 1, where En is the
event thatφ(2)∗ (λ′

og(x) + tx(λ̂−λo )′g(x)) lies in a bounded set for all x ∈ X . On the event
En, (49) and (50) imply

En
[{
ω̂(X ) −ωo(X )

}2] � (λ̂− λo )′En
[
g(X )g(X )′

]
(λ̂− λo )

≤ ‖λ̂− λo‖2
1

∥∥En[g(X )g(X )′
]∥∥∞

= Op
(
κ2

onξn
)
,

where the second inequality follows from Hölder’s inequality and the equality follows
from Lemma 4(ii) and the definition of ξn.

Now consider the case (ii) when φ(2)∗ is bounded from above and away from zero. In
this case, it is easy to see that we still have En[{ω̂(X ) −ωo(X )}2] =Op(κ2

onξn ) from (49).
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Therefore for both cases, on the event En, the triangle inequality, the result
En[{ω̂(X ) − ωo(X )}2] = Op(κ2

onξn ), and the assumption
√
E[{ωo(X ) −ω0(X )}2] � ςo,n

yield the conclusion in (23).

Proofs of θ̂
p→ θ0 and (24) are similar to those of Theorem 1, and thus omitted.

B.2 Proof of Theorem 4

We employ the notation in (47). By the Karush–Kuhn–Tucker (KKT) condition of λ̂ in (14)
for the high-dimensional case, an expansion around λ̂= λo yields

0 =Q(1)
n (λ̂) + αnκ̂=Q(1)

n (λo ) + c∗En
[
g(X )g(X )′

]
(λ̂− λo ) + αnκ̂,

where Qn(λ) = En[φ∗(λ′g(X )) − λ′r(X )] and Q(1)
n (λ) = En[φ(1)∗ (λ′g(X ))g(X ) − r(X )]

is its first derivative. Since ωo(·) = φ(1)∗ (λ′
og(·)), an expansion of 1

n

∑n
i=1φ

(1)∗ (λ̂′gi )hi
around λ̂= λo yields

θ̂DB = 1
n

n∑
i=1

ωoihi + 1
n

n∑
i=1

c∗hig′
i

{
(λ̂− λo ) + αn�̂κ̂

}
.

By plugging in the form of αnκ̂ from the KKT condition to the above equation, we obtain

1
n

n∑
i=1

c∗hig′
i

{
(λ̂− λo ) + αn�̂κ̂

}

= 1√
n

n∑
i=1

c∗hig′
i

{
(λ̂− λo ) − �̂[

Q(1)
n (λo ) +En

[
g(X )g(X )′

]
(λ̂− λo )

]}

= − 1√
n

n∑
i=1

c∗hig′
i�̂En

[
ωo(X )g(X ) − r(X )

] + T�,

where T� = 1√
n

∑n
i=1 c∗hig′

i(I − En[g(X )g(X )′]�̂)(λ̂− λo ). Combining these results and

the definition of β̂DB, we obtain the following decomposition:

√
n(θ̂DB − θ0 ) = 1√

n

n∑
i=1

{
rhi − θ0 +ω0i

(
hi − hXi

)} + T1 + T2 + T3 + T4 + T5 + T�,

where

T1 = −c∗ 1√
n

n∑
i=1

[
β̂′

DB(ω0igi − ri ) − (
ω0ih̃

X
i − r̃hi

)]
,

T2 = 1√
n

n∑
i=1

(ωoi −ω0i )
(
h̃X − β̂′

DBgi
)
,

T3 = 1√
n

n∑
i=1

(ωoi −ω0i )
(
hXi − h̃Xi

)
,
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T4 = 1√
n

n∑
i=1

(ωoi −ω0i )
(
hi − hXi

)
,

T5 = 1√
n

n∑
i=1

[
ω0i

(
hXi − h̃Xi

) + (
r̃hi − rhi

)]
.

Condition DB guarantees T1
p→ 0. By the Cauchy–Schwarz inequality,

|T2| ≤
√
n

√√√√1
n

n∑
i=1

(ωoi −ω0i )2

√√√√1
n

n∑
i=1

(
h̃X − β̂′

DBgi
)2 p→ 0,

where the equality follows from Chebychev’s inequality for the term 1
n

∑n
i=1(ωoi −ω0i )2

and Condition DB.
For T3, the Cauchy–Schwarz inequality and the assumptions in the theorem im-

ply E[T3] �
√
nςnτn → 0. Also, Chebychev’s inequality implies T3 − E[T3]

p→ 0. Combin-

ing these results, we obtain T3
p→ 0. Note that both T4 and T5 have zero mean. Thus,

Chebyshev’s inequality implies T4 = Op(ςn ) = op(1) and T5 = Op(τn ) = op(1). Finally,
by Hölder’s inequality, we have

T� �
√
n

∥∥∥∥∥1
n

n∑
i=1

higi

∥∥∥∥∥
∞

∥∥I −En
[
g(X )g(X )′

]
�̂

∥∥
1‖λ̂− λo‖1 = op(1),

under the assumptions of this theorem.
Combining these results, we obtain

√
n(θ̂DB − θ0 ) = 1√

n

n∑
i=1

{
rhi − θ0 +ω0i

(
hi − hXi

)} + op(1),

and the conclusion follows by a central limit theorem.

B.3 Proof of Theorem 5

First, we show |�̂ − �∗| = Op(γn ), where γn =
√
ζ2

s /n. Recall �̂ = arg max�∈Rs Q̂s(�),
where

Q̂s(�) = En
[
�′rs(X ) −φ∗

(
�′gs(X )

)]
.

By Condition I’, Q̂s(�) is strictly concave in �. By taking the derivative, we have
Q̂(1)

s (�∗ ) = En[rs(X ) − φ(1)∗ (�′∗gs(X ))gs(X )]. Also note that E[rs(X ) − φ(1)∗ (�′∗ ×
gs(X ))gs(X )] = 0 because �∗ minimizes E[�′rs(X ) − φ∗(�′gs(X ))]. Thus, by Assump-
tion S’ and Chebyshev’s inequality, we have Q̂(1)

s (�∗ ) =Op(
√
ζ2

s /n). The rest of the proof
is similar to steps 2–4 in Lemma 3(iv), and thus is omitted.

Next, by an expansion of θ̃= 1
n

∑n
i=1φ

(1)∗ (�̂′gsi )hi around �̂=�∗, we obtain

√
n(θ̃− θ0 + b) = 1√

n

n∑
i=1

(�i + v1i + v2i + v3i ) + T1 + T2 + T3,



12 Qiu and Otsu Supplementary Material

where

T1 = E
[
φ(2)∗

(
�′∗gsi

)
higsi

]′√
n(�̂−�∗ ) + 1√

n

n∑
i=1

(
ω∗ih̃Xi − r̃hi

)
,

T2 =
(

1√
n

n∑
i=1

φ(2)∗
(
�′∗gsi

)
higsi −E

[
φ(2)∗

(
�′∗gsi

)
higsi

])′
(�̂−�∗ ),

T3 = 1
2

(�̂−�∗ )′
(

1√
n

n∑
i=1

φ(3)∗
(
�̃′gsi

)
higsig

′
si

)
(�̂−�∗ ),

and �̃ is on the line joining �̂ and �∗. By Condition I’ and Chebyshev and Cauchy–
Schwarz inequalities, we have

|T2| ≤
√
n

∣∣∣∣∣ 1√
n

n∑
i=1

φ(2)∗
(
�′∗gsi

)
higsi −E

[
φ(2)∗

(
�′∗gsi

)
higsi

]∣∣∣∣∣|�̂−�∗| =Op(ζsγn ).

For T3, similarly we have

|T3| ≤
√
n|�̂−�∗|2

∣∣∣∣∣1
n

n∑
i=1

φ(3)∗
(
�̃′gsi

)
higsig

′
si

∣∣∣∣∣
2

=Op
(√
nζ2

s γ
2
n

)
.

We now consider T1. By expanding the first-order condition of �̂,

0 = 1
n

n∑
i=1

{
φ(1)∗

(
�̂′gsi

)
gsi − rsi

}

= 1
n

n∑
i=1

(ω∗igsi − rsi ) + 1
n

n∑
i=1

φ(2)∗
(
�̄′gsi

)
gsig

′
si(�̂−�∗ ),

where �̄ lies on the line joining �̂ and �∗. Denote �s = E[φ(2)∗ (�′∗gsi )gsig
′
si] and �̄s =

1
n

∑n
i=1φ

(2)∗ (�̄′gsi )gsig
′
si. By solving the above equation for �̂−�∗ and inserting to T1, we

have

T1 = −E
[
φ(2)∗

(
�′∗gsi

)
higsi

]′
�̄−1

s
1√
n

n∑
i=1

(ω∗igsi − rsi ) + 1√
n

n∑
i=1

(
ω∗ih̃Xi − r̃hi

)
= T11 + T12 + T13,

where

T11 = −E
[
φ(2)∗

(
�′∗gsi

)
higsi

]′(
�̄−1

s −�−1
s

) 1√
n

n∑
i=1

(ω∗igsi − rsi ),

T12 = −E
[
φ(2)∗

(
�′∗gsi

)
higsi

]′
�−1

s
1√
n

n∑
i=1

(ω0igsi − rsi ) + 1√
n

n∑
i=1

(
ω0ih̃

X
i − r̃hi

)
,
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T13 = −E
[
φ(2)∗

(
�′∗gsi

)
higsi

]′
�−1

s
1√
n

n∑
i=1

(ω∗i −ω0i )gsi + 1√
n

n∑
i=1

(ω∗i −ω0i )h̃
X
i .

For T11, we apply a similar argument used to bound T11 in Theorem 2 but for iid
data, which yields |T11| = Op(

√
nζ4

s γ
2
n ). Note that E[T12] = 0. By Condition N’(2) and

Chebyshev’s inequality, we have T12 = op(1). Also, the definition of h̃Xi implies T13 =
1√
n

∑n
i=1(ω∗i −ω0i )(h̃Xi −β′

sgsi ) = 0. Combining these results, we have

√
n(θ̃− θ0 + b) = 1√

n

n∑
i=1

(�i + v1i + v2i + v3i ) + rn,

where rn = Op(ζ6
s /

√
n) = op(1) under the assumptions in this theorem. The conclusion

follows by applying a central limit theorem for iid data.

B.4 Proof of Theorem 6

Recall ωs(x) =φ(1)∗ (λ′
osgos(x)). By an expansion of the debiased estimator,

θ̂TD = 1
n

n∑
i=1

φ(1)∗
(
λ̂′

TDgi
)
hi = 1

n

n∑
i=1

φ(1)∗
(
�̂′

sgsi
)
hi

around �̂s = λos, we obtain

√
n(θ̂TD − θ0 + b̃) = 1√

n

n∑
i=1

(�i + ṽ1i + ṽ2i + ṽ3i ) + T1 + T2 + T3,

where

T1 = √
nE

[
φ(2)∗

(
λ′

osgsi
)
higsi

]′
(�̂s − λos ) + 1√

n

n∑
i=1

(
ωsih̃

X
TDi − r̃hTDi

)
,

T2 =
[

1√
n

n∑
i=1

{
φ(2)∗

(
λ′

osgsi
)
higsi −E

[
φ(2)∗

(
λ′

osgsi
)
higsi

]}]′
(�̂s − λos ),

T3 = 1
2

(�̂s − λos )′
(

1√
n

n∑
i=1

φ(3)∗
(
�̃′

sgsi
)
higsig

′
si

)
(�̂s − λos ),

and �̃s is on the line joining �̂s andλos. Since Condition TD(3) implies E[φ(2)∗ (λ′
osgs )h]2 =

O(1), Chebyshev’s inequality yields∣∣∣∣∣ 1√
n

n∑
i=1

{
φ(2)∗

(
λ′

osgsi
)
higsi −E

[
φ(2)∗

(
λ′

osgsi
)
higsi

]}∣∣∣∣∣ =Op
(√
ζ2

s /n
)

.

Thus, by the Cauchy–Schwarz inequality and Lemma 5(ii), it follows

|T2| ≤
√
n

∣∣∣∣∣1
n

n∑
i=1

{
φ(2)∗

(
λ′

osgsi
)
higsi −E

[
φ(2)∗

(
λ′

osgsi
)
higsi

]}∣∣∣∣∣|�̂s − λos| =Op(ζsγ̃n ).
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For T3, note that

|T3| ≤
√
n|gs|2|�̂s − λos|2

√√√√1
n

n∑
i=1

φ(3)∗
(
�̃′

sgsi
)2

√√√√1
n

n∑
i=1

h2
i =Op

(√
nζ2

s γ̃
2
n

)
,

where the first inequality follows from Cauchy–Schwarz inequality, and the equality fol-
lows from the law of large numbers, Condition TD(3), and Lemma 5(ii).

Now we consider T1. By Lemma 5(i), we have

�̂s − λos = −�̂s
1
n

n∑
i=1

(ωsigsi − rsi ) + �̃,

where �̃ = (Is − �̂sQ
(2)
n (λ̄s ))(λ̂s − λos ) and Q(2)

n (λ̄s ) = En[φ(2)∗ (λ̄′
sgs )gsg

′
s]. Also let

Q(2)(λos ) = E[φ(2)∗ (λ′
osgs )gsg

′
s]. Note that T1 is decomposed as T1 = T11 +· · ·+T14, where

T11 = −√
nE

[
φ(2)∗

(
λ′

osgsi
)
higsi

]′
Q(2)(λos )−1 1

n

n∑
i=1

(ω0igsi − rsi )

+ 1√
n

n∑
i=1

(
ω0ih̃

X
TDi − r̃hTDi

)
,

T12 = −√
nE

[
φ(2)∗

(
λ′

osgsi
)
higsi

]′
Q(2)(λos )−1 1

n

n∑
i=1

(ωsi −ω0i )gsi

+ 1√
n

n∑
i=1

(ωsi −ω0i )h̃
X
i ,

T13 = −√
nE

[
φ(2)∗

(
λ′

osgsi
)
higsi

]′(
�̂−Q(2)(λos )−1)1

n

n∑
i=1

(ωsigsi − rsi ),

T14 = √
nE

[
φ(2)∗

(
λ′

osgsi
)
higsi

]�̃.

For T11, Condition TD and Chebychev’s inequality imply

T11 = − 1√
n

n∑
i=1

{β̃′
s(ω0igsi − rsi ) − (

ω0ih̃
X
i − r̃hi

) p→ 0.

By the definition, we have T12 = − 1√
n

∑n
i=1(ωsi − ω0i )(β̃′

sgsi − h̃Xi ) = 0. To bound T13,

note that E[φ(2)∗ (λ′
osgsi )higsi] =Op(ζs ). By the Cauchy–Schwarz inequality, Lemma 5(iv),

and Condition TD(2), we have

|T13| =
∣∣∣∣∣√nE[

φ(2)∗
(
λ′

osgsi
)
hXi gsi

]′(
�̂−Q(2)(λos )−1)1

n

n∑
i=1

(ωsigsi − rsi )
∣∣∣∣∣

= Op(
√
nζs�nγ̃n ).
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Similarly, by the Cauchy–Schwarz inequality, Lemma 5(ii) and (v), and the relation be-
tween �1- and �2-norms, it holds

|T14| = ∣∣√nE[
φ(2)∗

(
λ′

osgsi
)
hXi gsi

]′(
Is − �̂Q(2)

n (λ̄s )
)
(λ̂s − λos )

∣∣
≤ √

nE
[
φ(2)∗

(
λ′

osgsi
)
hXi gsi

]′∣∣Is − �̂Q(2)
n (λ̄s )

∣∣‖λ̂s − λos‖1

= Op
(√
nκ2

o,nζ
4
s + √

nζsκo,n�n
)
.

Combining these results, we obtain

√
n(θ̂TD − θ0 + b̃) = 1√

n

n∑
i=1

(�i + ṽ1i + ṽ2i + ṽ3i ) + rn,

where rn =Op(
√
nκ2

o,nζ
4
s + √

nγ̃nζs�n + √
nζ2

s γ̃
2
n ) = op(1) under the assumptions of this

theorem. The conclusion follows by applying a central limit theorem.

B.5 Lemmas

Lemma 4. Under the conditions of Theorem 3, it holds

(i) Pr{ 1
2E(λ̂) + αn‖λ̂− λo‖1 ≤ 4E(λo ) + 16α2

ns

φ2
Sλo

�
} ≥ 1 − ε,

(ii) E(λ̂) =Op(κon
√

logK/n) and ‖λ̂− λo‖1 =Op(κon ).

Lemma 5. Let Q(λs ) = E[φ∗(λ′
sgs ) − λ′

srs] and Qn(λs ) = En[φ∗(λ′
sgs ) − λ′

srs]. Under the
conditions of Theorem 6, it holds

(i) �̂s −λos = −�̂ 1
n

∑n
i=1(ωsigsi− rsi )+�̃, where �̃ = (Is − �̂sQ

(2)
n (λ̄s ))(λ̂s −λos ), and

λ̄s is on the line between λ̂s and λos,

(ii) |�̂s − λos| =Op(γ̃n ), where γ̃n = κo,n ∨ √
s logK/n,

(iii) |Q(2)
n (λ̄s ) −Q(2)(λos )| =Op(κo,nζ

3
s ),

(iv) | 1
n

∑n
i=1(ωsigsi − rsi )| =Op(γ̃n ),

(v) |Is − �̂sQ
(2)
n (λ̄s )| =Op(κo,nζ

3
s +�n ).

Proof of Lemma 4(i)

Pick any ε > 0 small enough and n ∈ N large enough to satisfy Condition H. Then set
M = Qo

2σε,n
and take λ̄ = tλ̂+ (1 − t )λo with t = M

M+‖λ̂−λo‖1
. Due to the definition of λ̂ in

(14) and convexity of its objective function, we have

En
[
φ∗

(
λ̄′g(X )

) − λ̄′r(X )
] + αn‖λ̄‖1

≤ En
[
φ∗

(
λ′

og(X )
) − λ′

or(X )
] + αn‖λo‖1,
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and thus

E(λ̄) + αn‖λ̄‖1 ≤ −{
νn(λ̄) − νn(λo )

} + E(λo ) + αn‖λo‖1

≤ E(λo ) + αn‖λo‖1 + Qo

2
, (51)

with probability at least 1 − ε, where the second inequality follows from Condition H(1)

combined with ‖λ̄− λo‖1 = M‖λ̂−λo‖1

M+‖λ̂−λo‖1
≤M . Hereafter, all inequalities involving λ̄ hold

true with probability at least 1 − ε.
Note that λ = λSλo

+ λScλo
, λo,Sλo

= λo, and λo,Scλo
= 0. Thus, (51) and the triangle

inequality imply

E(λ̄) + αn‖λ̄Scλo
‖1 ≤ E(λo ) + αn‖λ̄Sλo

− λo‖1 + Qo

2

≤Qo + αn‖λ̄Sλo
− λo‖1, (52)

where the second inequality follows from E(λo ) ≤ Qo
2 (due to the definition ofQo). Thus,

the triangle inequality yields

E(λ̄) + αn‖λ̄− λo‖1 ≤Qo + 2αn‖λ̄Sλo
− λo‖1. (53)

In order to bound the right-hand side of (53), we consider two cases: (I) 2αn‖λ̄Sλo
−

λo‖1 <Qo, and (II) 2αn‖λ̄Sλo
− λo‖1 ≥Qo.

Case (I) 2αn‖λ̄Sλo
− λo‖1 <Qo.

In this case, (53) and Condition H(3) imply

E(λ̄) + αn‖λ̄− λo‖1 < 2Qo ≤ αnM

2
, (54)

and thus ‖λ̄− λo‖1 ≤ M
2 .

Case (II) 2αn‖λ̄Sλo
− λo‖1 ≥Qo.

In this case, (52) and λo,Scλo
= 0 guarantees

‖λ̄Scλo
− λo,Scλo

‖1 = ‖λ̄Scλo
‖1

≤ 3‖λ̄Sλo
− λo,Sλo

‖1

≤ 3
√
s

φSλo

√
(λ̄− λo )′E

[
g(X )g(X )′

]
(λ̄− λo ),

where the last inequality follows from Condition C. Observe that

E(λ̄) + αn‖λ̄− λo‖1 ≤ 4αn‖λ̄Sλo
− λo‖1 ≤ 4αn

√
s

φSλo

√
(λ̄− λo )′E

[
g(X )g(X )′

]
(λ̄− λo ),

where the first inequality follows from (53) and the condition of Case (II), and the second

inequality follows from (55) (note λo = λo,Sλo
). Now by using xy ≤ x2 + y2

4 for any x, y ∈R,
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we obtain

4αn
√
s

φSλo

√
(λ̄− λo )′E

[
g(X )g(X )′

]
(λ̄− λo )

≤ 1
2

(
�(λ̄− λo )′E

[
g(X )g(X )′

]
(λ̄− λo ) + 16αns

φ2
Sλo
�

)

≤ 1
2

(
E(λ̄) + 16αns

φ2
Sλo
�

)
,

where the second inequity follows from Condition H(2). Combining these results with
the definition ofQo,

E(λ̄) + αn‖λ̄− λo‖1 ≤ 1
2
E(λ̄) + 8α2

ns

φ2
Sλo
�

≤ 1
2
E(λ̄) +Qo, (55)

which implies (by Condition H(3)) ‖λ̄− λo‖1 ≤ 2σεM
αn

≤ M
4 .

Therefore, for both cases, it holds ‖λ̄− λo‖1 ≤ M
2 and also ‖λ̂− λo‖1 ≤M , that is, λ̂ is

close enough to λo to invoke Condition H(1).
Repeat the proof above by replacing λ̄ with λ̂. Then we obtain the counterparts of

(54) and (55) with replacements of λ̄ with λ̂, that is,

1
2
E(λ̂) + αn‖λ̂− λo‖1 ≤ 2Qo,

with probability at least 1 − ε. Therefore, the conclusion follows.

Proof of Lemma 4(ii)

By setting αn ∝
√

logK
n , Part (i) of this lemma implies

1
2
E(λ̂) +

√
logK
n

‖λ̂− λo‖1 =Op
(

E(λo ) ∨ s logK
n

)
,

and the conclusion follows.

Proof of Lemma 5(i)

By the KKT conditions for λ̂s, an expansion around λos yields

0s = 1
n

n∑
i=1

(ωsigsi − rsi ) + αnκ̂s = 1
n

n∑
i=1

(ωsigsi − rsi ) +Q(2)
n (λ̄s )(λ̂s − λos ) + αnκ̂s, (56)

where λ̄s is on the line between λ̂s and λos. Thus, we have

�̂s − λos = λ̂s − λos + �̂sαnκ̂s

= λ̂s − λos − �̂s

[
1
n

n∑
i=1

(ωsigsi − rsi ) +Q(2)
n (λ̄s )(λ̂s − λos )

]
,
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where Is is an s × s identity matrix, the first equality follows from the definition of �̂s,
and the second equality follows from (56). The conclusion follows by the definition of �̃.

Proof of Lemma 5(ii)

By the definition of �̂s,

|�̂s − λos| ≤ |λ̂s − λos| + |�̂sαnκ̂s|
≤ ‖λ̂s − λos‖1 + |�̂sαnκ̂s|

� κo,n +
√

s logK
n

= Op

(
κo,n ∨

√
s logK
n

)
,

where the first inequality follows from the triangle inequality, the second inequality fol-
lows from the relationship between the �1- and �2-norms, and the third inequality fol-
lows from Lemma 4(ii) and the assumption |�̂s| =Op(1).

Proof of Lemma 5(iii)

Note that

Q(2)(λos ) = E
[
φ(2)∗

(
λ′

osgs
)
gsg

′
s
]
, Q(2)

n (λ̄s ) = En
[
φ(2)∗

(
λ̄′

sgs
)
gsg

′
s
]
,

and further denote Q(2)
n (λos ) = En[φ(2)∗ (λ′

osgs )gsg
′
s]. By Lemma 5(ii) and Condition

TD(3), we have

∣∣Q(2)
n (λ̄s ) −Q(2)

n (λos )
∣∣

= ∣∣En[{φ(2)∗
(
λ′

osgs
) −φ(2)∗

(
λ̄′

sgs
)}
gsg

′
s
]∣∣

≤ ζ2
s

{
sup

�:‖�−λos‖1�γ̃n

1
n

n∑
i=1

φ(3)∗
(
λ′

sgsi
)2

}1/2{
1
n

n∑
i=1

{
(λ̄s − λos )′gs

}2

}1/2

=Op
(
κo,nζ

3
s
)
.

Thus, the triangle inequality and Lemma 3(i) imply

∣∣Q(2)
n (λ̄s ) −Q(2)(λos )

∣∣ ≤ ∣∣Q(2)
n (λ̄s ) −Q(2)

n (λos )
∣∣ + ∣∣Q(2)

n (λos ) −Q(2)(λos )
∣∣

= Op
(
κo,nζ

3
s
) +Op

(√
ζ2

s log s
n

)

= Op
(
κo,nζ

3
s
)
.
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Proof of Lemma 5(iv)

By (56), we have∣∣∣∣∣1
n

n∑
i=1

(ωsigsi − rsi )
∣∣∣∣∣ ≤ ∣∣Q(2)

n (λ̄s )(λ̂s − λos )
∣∣ + |αnκ̂s| ≤

∣∣Q(2)
n (λ̄s )

∣∣‖λ̂s − λos‖1 + |αnκ̂s|

� ‖λ̂s − λos‖1 + |αnκ̂s| =Op
(
κo,n ∨

√
s logK
n

)
,

where the second inequality follows from the definition of the matrix norm | · | and the
relationship between the �1- and �2-norms, and the third inequality uses Lemma 4(iii)
and Condition TD.

Proof of Lemma 5(v)

By triangle inequality, we have∣∣Is − �̂sQ
(2)
n (λ̄s )

∣∣ ≤ ∣∣{Q(2)(λos )−1 − �̂s
}
Q(2)(λos )

∣∣ + ∣∣�̂s
{
Q(2)(λos ) −Q(2)

n (λ̄s )
}∣∣.

Condition TD guaranteesQ(2)(λos ) =O(1) and �̂s =Op(1). Thus, the conclusion follows
by Lemma 5(iii).

Appendix C: Additional tables

Table 5. Cross-sectional regression for other low-dimensional portfolios.

Intercept λSDF λRM λSMB λHML AdjustedR2

Panel A: 10 momentum
KL: No penalty 0.752 −0.168 0.918

(21.715) (−10.056)
KL: αn = 0.05 0.716 −0.129 0.908

(18.714) (−9.493)
3 Factors 2.365 −1.198 −0.068 −1.485 0.815

(1.576) (−0.754) (−0.057) (−1.615)

Panel B: 25 long term reversal and size
KL: No penalty 0.741 −0.215 0.505

(8.023) (−5.049)
KL: αn = 0.05 0.382 −0.180 0.785

(4.372) (−9.416)
3 Factors 0.702 0.219 0.111 0.633 0.754

(2.541) (0.833) (1.678) (5.051)

Note: The estimated SDF is derived in a rolling window out-of-sample fashion from July 1963 to December 2010. Panel A
presents results using 10 momentum portfolios, and Panel B is concerned with results using 25 long term reversal and size
portfolios. The second column is the estimated constant in each model, the last column records the adjusted R2, and the other
columns summarize estimated price of risk. Numbers in the bracket are the corresponding t-values. In each panel, the first row
is about the estimated SDF with KL when no penalty is imposed, the second row is the estimated SDF with KL when penalty
level is at 0.05, and the third row is the seminal Fama-French three-factor models.
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Table 6. Cross-sectional regression for intermediate dimensional portfolios.

Interceptm λSDF λRM λSMB λHML Adjusted R2

Panel A: 100 size and book-to-market
KL: No penalty 1.033 −0.926 0.581

(52.744) (−11.532)

KL: αn = 0.1 0.725 −0.273 0.652
(20.435) (−13.367)

3 Factors 1.575 −0.639 0.190 0.439 0.627
(8.618) (−3.670) (5.577) (11.175)

Panel B: 49 industry
KL: No penalty 0.800 −0.129 0.329

(16.239) (−4.852)

KL: αn = 0.1 0.686 −0.065 0.294
(0.686) (−0.065)

3 Factors 1.064 −0.008 −0.096 −0.109 −0.002
(6.229) (−0.047) (−0.923) (−1.151)

Panel C: 25 long term reversal+25 short term reversal+25 momentum
KL: No penalty 1.083 −1.919 0.605

(48.960) (−10.698)

KL: αn = 0.1 1.130 −0.484 0.441
(43.162) (−7.705)

3 Factors 1.416 −0.432 0.293 0.012 0.153
(4.489) (−1.454) (3.370) (0.064)

Note: Cross-sectional regression results in the intermediate case. The estimated SDF is derived in a rolling window out-of-
sample fashion from July 1963 to December 2010, using portfolios in each corresponding panel. Panel A presents results using
100 size and book-to-market portfolios, Panel B presents results using 49 industry portfolios, and Panel C presents results
using 75 portfolios listed in the beginning of the panel. The second column is the estimated constant in each model, the last
column records the adjusted R2, and the other columns summarize estimated price of risk. Numbers in the bracket are the
corresponding t-values. In each panel. the first row is about the estimated SDF with KL when no penalty is imposed, the second
row is the estimated SDF with KL when penalty level is at 0.1, and the third row is the seminal Fama–French three- factor
models.
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