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This online appendix provides the calculations for a backward induction proof
of Theorem 1, which characterizes the optimal consumption rule for a version of
the life-cycle model introduced by Phelps (1962) when it is extended to allow the
irreversible retirement choice. This analytical solution is used both to illustrate
the DC-EGM algorithm for solving life-cycle problems involving both discrete and
continuous choices, and to illustrate its accuracy.

Consider the discrete-continuous (DC) dynamic optimization problem

max
{ct �dt }Tt=1

T∑
t=1

βt
(
log(ct)− δdt

)
� (S1)

involving choice of consumption ct and when to retire to maximize discounted utility,
where dt = 0 denotes retirement, dt = 1 denotes continued work, and δ > 0 is the disutil-
ity of work. We assume retirement is absorbing, that is, a retiree cannot return to work.

We solve (S1) subject to a sequence of period-specific borrowing constraints, ct ≤Mt ,
where Mt = R(Mt−1 − ct−1) + ydt−1 is the consumer’s resources at the beginning of pe-
riod t. There is a fixed, nonstochastic gross interest rate R and labor income y for work-
ers. The continuous consumption decision and discrete retirement decision are made at
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the start of each period, whereas interest earnings and labor income are paid at the end
of the period. This timing convention is standard in the literature and is the appropriate
when we subsequently extend the model to a much wider class of problems where R

and y are random variables.
Let Vt(M) and V R

t (M) be the expected discounted lifetime utility of a worker and a
retiree, respectively, in period t of their life. The choice problem of the worker can be
expressed recursively through the Bellman equation

Vt(M)= max
{
vt(M�0)� vt(M�1)

}
� (S2)

where the choice-specific value functions are given as

vt(M�0)= max
0≤c≤M

{
log(c)+βVt+1

(
R(M − c)

)}
� (S3)

vt(M�1)= max
0≤c≤M

{
log(c)− δ+βV R

t+1
(
R(M − c)+ y

)}
� (S4)

The value function for a retiree V R
t (M) has a closed-form solution given by Phelps (1962,

p. 742), so we focus on deriving formulas for vt(M�1) and finding the optimal consump-
tion rule ct(M�1) for a worker who has the option to either retire or continue working.

Note that even if vt(M�0) and vt(M�1) are concave functions of M , the value func-
tion Vt(M) is the maximum of these two concave functions and will generally not be
globally concave (Clausen and Strub (2013)). Furthermore. Vt(M) will generally have a
kink point at the value M = Mt where the two choice-specific value functions cross:
vt(Mt�1)= vt(Mt�0). We refer to these as primary kinks since they constitute optimal re-
tirement thresholds for the worker, that is, dt(M)= 1 if M <Mt and dt(M)= 0 if M ≥ Mt .

The worker is indifferent between retiring and working at the primary kink Mt , and
Vt(M�1) is nondifferentiable at this point. However, the left and right hand derivatives,
V −
t and V +

t , exist and satisfy V −
t (Mt�1) < V +

t (Mt�1). The discontinuity in the deriva-
tive of Vt(M) at Mt leads to a discontinuity in the optimal consumption function in the
previous period t − 1 because the Bellman equation for Vt−1(M) depends on Vt(M), so
the primary kink in the latter results in a secondary kink in Vt−1(M). Thus, the primary
kinks propagate back in time and manifest themselves in an accumulation of secondary
kinks in the value functions in earlier periods, resulting in a increasing number of dis-
continuities in the consumption functions in earlier periods of the life cycle. The jumps
in consumption are caused by the worker’s desire to increase saving for an anticipated
retirement at some point in the future.

Theorem 1 (Analytical Solution to the Retirement Problem (Revisited)). Assume that
income and disutility of work are time-invariant, and the discount factor β and the disu-
tility of work δ are not too large, that is,

βR ≤ 1 and δ < (1 +β) log(1 +β)� (S5)
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Then for τ ∈ {1� � � � �T } the optimal consumption rule in the workers’ problem (S2)–(S4) is
given by

cT−τ(M�1)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M if M ≤ y/Rβ�

[M + y/R]/(1 +β) if y/Rβ ≤M ≤ M
l1
T−τ�[

M + y
(
1/R+ 1/R2)]/(1 +β+β2) if M

l1
T−τ ≤M ≤ M

l2
T−τ�

· · · · · ·[
M + y

(
τ−1∑
i=1

R−i

)](
τ−1∑
i=0

βi

)−1

if M
lτ−2
T−τ ≤M ≤ M

lτ−1
T−τ�[

M + y

(
τ∑

i=1

R−i

)](
τ∑

i=0

βi

)−1

if M
lτ−1
T−τ ≤M <M

rτ−1
T−τ�[

M + y

(
τ−1∑
i=1

R−i

)](
τ∑

i=0

βi

)−1

if M
rτ−1
T−τ ≤M <M

rτ−2
T−τ�

· · · · · ·
[
M + y

(
1/R+ 1/R2)]( τ∑

i=0

βi

)−1

if M
r2
T−τ ≤M <M

r1
T−τ�

[M + y/R]
(

τ∑
i=0

βi

)−1

if M
r1
T−τ ≤M <MT−τ�

M

(
τ∑

i=0

βi

)−1

if M ≥MT−τ�

(S6)

The segment boundaries are totally ordered with

y/Rβ<M
l1
T−τ < · · · <M

lτ−1
T−τ <M

rτ−1
T−τ < · · · <M

r1
T−τ <MT−τ� (S7)

and the rightmost threshold MT−τ, given by

MT−τ = (y/R)e−K

1 − e−K
� where K = δ

(
τ∑

i=0

βi

)−1

� (S8)

defines the smallest level of wealth sufficient to induce the consumer to retire at age t =
T − τ.

Proof. It is straightforward to show using backward induction that the value function
for a retiree at age T − t (i.e., t periods before end of life) is a logarithmic function of M ,1

V R
T−t(M) = log(M)

(
t∑

i=0

βi

)
+At� (S9)

1See Phelps (1962), Hakansson (1970).
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where

AT−t = − log

(
t∑

i=0

βi

)(
t∑

i=0

βi

)
+β

[
log(β)+ log(R)

][ t−1∑
i=0

βi

(
t−1−i∑
j=0

βj

)]
� (S10)

The optimal consumption rule for a retiree is linear in M :

cT−t(M�0)=M

(
t∑

i=0

βi

)−1

� (S11)

Recalling that vt(M�1) is the discounted utility of a person of age T − t who decides to
work (not retire), we can define the optimal retirement threshold at age t, Mt , as the
value of M that makes the person indifferent between retiring and not retiring at that
age:

vt(M�0) = vt(M�1)� (S12)

Since we assume δ > 0 (positive disutility from working), it will be optimal for a person
of age t to retire if M ≥ Mt and to work otherwise. We will have a nonconvex kink in the
value function for working vt(M�1) at the point Mt since we have

Vt(M) = max
[
vt(M�0)� vt(M�1)

]
� (S13)

As we show below, the two decision-specific value functions are strictly concave and
intersect only once at a point Mt for which we provide an explicit expression below. We
show that vt(M�1) > vt(M�0) for M < Mt so it is optimal to work in this region, and
vt(M�1) < vt(M�0) for M >Mt , so it is optimal to retire in this region.

Let ct(M�0) be the optimal consumption of a retiree of age t. This function is given by
formula (S11) above (with trivial reindexing). The optimal consumption of a individual
who decides not to retire is

ct(M�1)= argmax
0≤c≤M

[
log(c)− δ+βVt+1

(
R(M + yt − c)

)]
� (S14)

The overall optimal consumption rule is then given by

ct(M) =
{
ct(M�1) if M <Mt�

ct(M�0) if M ≥ Mt�
(S15)

It is easy to see that due to the nonconvex kink in the value function at Mt , the optimal
consumption function ct(M) will have a discontinuity at Mt , and

ct(Mt�1) > ct(Mt�0)� (S16)

This result follows from the condition that

V ′−
t (Mt) < V ′+

t (Mt)� (S17)
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Since there is a kink at Mt , the derivative V ′−
t (Mt) must be interpreted as the left

hand derivative (derivative from below Mt ); correspondingly, V ′+
t (Mt) is the right hand

derivative of Vt at M =Mt .
We now establish these results by backward induction, starting at period T −1, which

is the first period where the consumption–retirement decision is nontrivial (it is easy to
see that in the final period of life, it is optimal to retire and consume all remaining sav-
ings). For notational simplicity, we drop the time subscripts on income, y = yt , since in-
come is constant by assumption. To derive a formula for the retirement threshold MT−1,
consider the T − 1 optimization problem

cT−1(M|d = 1) = argmax
0≤c≤M

[
log(c)− δ+β log

(
R(M − c)+ y

)]
� (S18)

The solution to this is given by

cT−1(M|d = 1)=
{
M if M < y/Rβ�

(M + y/R)/(1 +β) if y/Rβ ≤M ≤MT−1�
(S19)

Note that the worker is liquidity constrained when M < y/Rβ and in this region it is
optimal to consume all of her beginning of period savings M and rely on the end-of-
period payment of wage earnings y to finance consumption in her last period of life, T .
The value function for the worker at age T − 1 is

vT−1(M|d = 1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log(M)− δ+β log(y)

if M < y/Rβ�

log(M + y/R)(1 +β)− δ+β
[
log(β)+ log(R)

] − log(1 +β)(1 +β)

if y/Rβ ≤M ≤MT−1�

and the value function for a retiree is given by equation (S9). Equating the values of work
and retirement, and solving for the optimal retirement threshold MT−1 we have

MT−1 = (y/R)exp
{−δ/(1 +β)

}
1 − exp

{−δ/(1 +β)
} � (S20)

provided this is greater than y/Rβ (the threshold below which the consumer is liquidity
constrained); otherwise,

MT−1 = [
y/(Rβ)

]
(1 +β)

(1+β)
β exp{−δ/β}� (S21)

However, it is easy to see that assumption δ < (1 + β) log(1 + β) implies that MT−1 >

y/Rβ. It is also easy to see that as the disutility of working δ → ∞, we have MT−1 → 0,
and as δ → 0, then MT−1 → ∞, that is, if there is no disutility of working, the person
would never choose to retire.

Note also that at MT−1 there is a kink in the value function: this is a downward kink
(in terms of Clausen and Strub (2013)) as the max of two concave functions vT−1(M�0)
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and vT−1(M�1), and this kink in the value function results in a discontinuity in the
optimal consumption function cT−1(M). There is a drop in consumption equal to
(y/R)/(1 + β) at MT−1, and with two remaining periods in his/her life, a retiree has a
“marginal propensity to consume” out of wealth equal to 1/(1+β) the same as a worker.
The discontinuous drop in consumption that occurs at the retirement threshold equals
the present value of forgone earnings due to retirement, y/R, multiplied by the marginal
propensity to consume out of wealth, 1/(1 +β).

To summarize the solution at T − 1, the optimal retirement threshold is MT−1 given
in equation (S20), the consumption function is given by

cT−1(M) =

⎧⎪⎪⎨
⎪⎪⎩
M if M < y/Rβ�

(M + y/R)/(1 +β) if y/Rβ ≤M ≤ MT−1�

M/(1 +β) if M >MT−1�

(S22)

and the value function is given by

VT−1(M)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(M)− δ+β log(y)

if M < y/Rβ�

log(M + y/R)(1 +β)− δ+β
[
log(β)+ log(R)

] − log(1 +β)(1 +β)

if y/Rβ ≤M ≤ MT−1�

log(M)(1 +β)+β
[
log(β)+ log(R)

] − log(1 +β)(1 +β)

if M >MT−1�

(S23)

Now consider going back one more time period in the backward recursion, to T − 2. We
want to illustrate the possibility of secondary kinks/discontinuities in the consumption
function for a worker cT−2(M�1) caused by the kinks in VT−1(M). Let MT−2 denote the
primary kink due to the retirement threshold at T −2 and letM

rj
T−2 denote the secondary

kinks, where j = 1� � � � �NT−2 and NT−t is the number of secondary kinks t periods before
the end of life at age T .

To see how these secondary kinks arise, consider how the T − 2 consumption func-
tion is determined, as the solution to

cT−2(M�1)= argmax
0≤c≤M

[
log(c)− δ+βVT−1

(
R(M − c)+ y

)]
� (S24)

As shown above, VT−1(M) has two kinks: one at M = y/Rβ, where the liquidity constraint
stops being binding, and the other at MT−1, where the worker retires. Assume that the
initial wealth of the worker at the start of period T − 1 is low enough so that the worker
will be liquidity constrained in period T − 1. This implies that R(M − c) + y < y/Rβ.
Then substituting the liquidity-constrained formula for VT−1(M) from (S23) into the pe-
riod T −2 optimization (S24), we find that optimal consumption is given by ct−2(M�1)=
(M + y/R)/(1 + β). However, imposing the liquidity constraint, we must also have
(M + y/R)/(1 + β) ≤ M , which implies that M ≤ y/Rβ, and it is easy to verify that for



Supplementary Material Grid method for dynamic choice models 7

wealth satisfying this constraint, the worker will be liquidity constrained both in period
T − 2 and in period T − 1 as well.

However, for wealth above y/Rβ, the worker is no longer liquidity constrained in
period T − 2 but our derivation of the worker’s consumption in period T − 2 is still con-
tingent on the assumption that the worker is liquidity constrained in period T − 1. This
will be true provided that the savings and earnings the worker brings to the start of pe-
riod T − 1, Rβ(M + y/R)/(1 +β), is less than y/Rβ, which is equivalent to the inequality
M ≤ [y/(Rβ)2](1 + β − Rβ2). It is not hard to show that when R = 1, we have y/β <

(y/β2)(1 +β−β2) so the interval for which the consumer will consume (M + y)/(1 +β)

is nonempty when R = 1. For R > 1, the inequality y/(Rβ) < [y/(Rβ)2](1 + β − Rβ2) is
equivalent to Rβ< 1, so under this assumption this interval will also exist; otherwise, the
interval is empty and the consumer goes from consuming cT−2(M�1)=M to consuming
an amount we derive below.

In the next region, wealth is sufficiently high in period T − 2 so the consumer is not
liquidity constrained at T − 2, and the saving and earning will keep the consumer out
of the liquidity-constrained region at T − 1, but the worker’s wealth is not high enough
to retire at T − 1. The relevant expression for VT−1(M) in this case is given by the mid-
dle expression in equation (S23). This implies an optimal consumption level equal to
cT−2(M�1)= (M + y(1/R+ 1/R2))/(1 +β+β2).

For even larger level of wealth there will come a point where the consumer can save
enough in period T − 2 to retire in period T − 1, that is, savings will exceed the MT−1

threshold. Thus, there is some wealth level M
r
T−2 at which the the relevant expression

for the worker’s period T − 1 value function VT−1(M) is given by the last, retirement,
formula in (S23). The optimal consumption in this region is cT−2(M�1) = (M + y/R)/

(1 + β + β2). It is important to carefully check values of c such that savings M + y − c

is in the “convex region” of VT−1(M) around the T − 1 retirement threshold MT−1. In
this region there will be two local optima for c: one involving the higher consump-
tion (M + y(1/R + 1/R2))/(1 + β + β2) and the other involving the lower consumption
(M + y/R)/(1 +β+β2) that enables the worker to retire at T − 1.

These two solutions are reflected in the two possible solutions to the first order con-
dition for optimal consumption given by

0 = 1
c

−
{(

β+β2)/(M − c + y
(
1/R+ 1/R2)) if R(M − c)+ y ≤ MT−1�(

β+β2)/(M − c + y/R) if R(M − c)+ y >MT−1�
(S25)

For M < M
r
T−2, the global optimum will be cT−2(M�1) = (M + y(1/R + 1/R2))/

(1+β+β2) and the consumer will be working in both periods T −2 and T −1. However,
for M >M

r
T−2, the consumer will still work at T − 2 (provided M <MT−2, the primary

kink point at T − 2, the wealth threshold at which the consumer retires at T − 2) but
will have enough savings to retire at T − 1. The optimal consumption in this case will
be cT−2(M�1) = (M + y/R)/(1 + β + β2). It is not hard to show that if M ≤ [y/(Rβ)2]×
(1 + β − Rβ2), then the quantity R(M − cT−2(M�1)) + y ≤ y/Rβ, that is, the consumer
will indeed be in the liquidity-constrained region M ≤ y/Rβ at the start of T −1 as we as-
sumed would be the case. We also have that y/Rβ< [y/(Rβ)2](1+β−Rβ2) provided that
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Rβ ≤ 1, which we assumed to be the case. Otherwise this region would be empty and the
optimal consumption would be given by cT−2(M�1)= (M + y(1/R+1/R2))/(1+β+β2)

as derived above. We can check that this consumption function, which is also derived
under the assumption that the consumer will not be liquidity constrained at period
T − 1, will result in total savings at T − 1 that satisfies R(M − c)+ y ≥ y/Rβ (so the con-
sumer is not liquidity constrained at T − 1) for wealth at T − 2 at the lower end of this
interval (i.e., at M = y/Rβ) provided that R≤ 1/β.

However, at M = M
r
T−2 the consumer will be indifferent between consuming the

larger amount (M + y(1/R + 1/R2))/(1 + β + β2) knowing that he/she will not retire at
T −1 and consuming the lower amount (M+y/R)/(1+β+β2) and knowing that he/she
will retire at T − 1. We find M

r
T−2 as the solution to the equation

log
((
M + y

(
1/R+ 1/R2))/(1 +β+β2))

+βVT−1
((
y +R

(
M − (

M + y
(
1/R+ 1/R2)))/(1 +β+β2)))

= log
(
(M + y/R)/

(
1 +β+β2)) +βVT−1

(
y +R

(
M − (M + y/R)

)
/
(
1 +β+β2))�

Thus, at M = M
r
T−2 the consumer is indifferent between consuming the larger amount

(M + y(1/R + 1/R2))/(1 + β + β2) or consuming the smaller amount (M + y/R)/

(1 + β + β2) that provides the additional savings necessary to enable the consumer to
retire at T − 1.

Now we can express period T − 2 consumption of the worker as the piecewise linear
function

cT−2(M�1)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M

if M < y/Rβ�

(M + y/R)/(1 +β)

if y/Rβ ≤M ≤ [
y/(Rβ)2](1 +β−Rβ2)�(

M + y
(
1/R+ 1/R2))/(1 +β+β2)

if
[
y/(Rβ)2](1 +β−Rβ2) ≤M ≤ M

r
T−2�

(M + y/R)/
(
1 +β+β2)

if M
r
T−2 <M <MT−2�

(S26)

It is straightforward to verify that cT−2(M�1) has two kinks at M = [y/(Rβ)2](1+β−Rβ2)

and M = y/Rβ followed by a discontinuity at M =M
r
T−2.

To derive the time T − 2 retirement threshold MT−2, we solve for the value of M that
makes the consumer indifferent between retiring at T −2 and working (but with enough
wealth so that the person is above the secondary kink M

r
T−2 where their consumption is

given by cT−2(M�1) = (M + y/R)/(1 +β+β2)),

log(M)
(
1 +β+β2) +AT−2 = log(M + y/R)

(
1 +β+β2) − δ+AT−2� (S27)

where AT−2 is defined in equation (S10) above. Note that the right hand side of (S27) is
the value function for a consumer who does not have enough wealth to retire at T − 2,
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but since M >M
r
T−2 (the secondary kink point), it follows that the appropriate formula

for VT−1(M) will be the one where M >MT−1 in equation (S23) above. The solution to
this equation is MT−2 given by

MT−2 = (y/R)e−K

(1 − e−K)
� (S28)

where K is given by

K = δ

(1 +β+β2)
� (S29)

Notice that formulas (S28) and (S20) imply that MT−1 <MT−2, that is, the wealth thresh-
old for retirement decreases as one approaches the end of life, T .

To summarize the solution we found at T −2, the optimal retirement threshold MT−2
is the solution to equation (S27), and the optimal consumption function is given by

cT−2(M)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M

if M < y/Rβ�

(M + y/R)/(1 +β)

if y/Rβ ≤M ≤ [
y/(Rβ)2](1 +β−Rβ2)�(

M + y
(
1/R+ 1/R2))/(1 +β+β2)

if
[
y/(Rβ)2](1 +β−Rβ2) ≤M ≤ M

r
T−2�

(M + y/R)/
(
1 +β+β2)

if M
r
T−2 <M ≤ MT−2�

M/
(
1 +β+β2)

if M >MT−2�

(S30)

The optimal consumption function at T − 2 has two kinks at M = y/Rβ (the level of
wealth at which the consumer is no longer liquidity constrained) and M = [y/(Rβ)2]×
(1+β−Rβ2), and two discontinuities: one at the secondary kink point M

r
T−2 where con-

sumption drops by (y/R2)/(1 +β+β2), and the other at the retirement threshold MT−2
where consumption drops by (y/R)/(1 + β + β2). Note that the secondary kink point
M

r
T−2 is precisely the amount of wealth where, while the consumer does not yet retire

at T − 2, they know they will have enough to retire at T − 1. Thus, the drop in consump-
tion at this secondary kink point can be regarded as saving at T − 2 for their anticipated
retirement at time T − 1.

The value function at T − 2 can be expressed as

VT−2(M) =
{

log
(
cT−2(M)

) − δ+βVT−1
(
R

(
M − cT−2(M)

) + y
)

if M <MT−2�

log(M)
(
1 +β+β2) +AT−2 if M ≥MT−2�

(S31)

Thus, depending on whether the person’s wealth at T −2 is above or below the secondary
kink point M

r
T−2, he/she will know whether he/she will have enough (with their T − 2

earnings y) to retire at T − 1 or not, and will save/consume accordingly.
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Now consider solving the problem at t = T − 3, three periods before the end of life.
The consumption rule will have three kinks including the level of M where the liquidity
constraint no longer binds, and three discontinuities, including the retirement threshold
M

r
T−3 in period T − 3. One additional kink in cT−3(M) is added above the end point

[y/(Rβ)2](1 + β − Rβ2) of the first linear segment of cT−2(M) and reflects the liquidity
constraint in period T − 2. The additional discontinuity corresponds to the secondary
kink point M

r
T−2.

Note the pattern here: cT−1(M) has one kink and one discontinuity, cT−2(M) has two
kinks and two discontinuities, and cT−3(M) will have three kinks and three discontinu-
ities. The important additional point to notice is that cT−1, cT−2, and, as we show shortly,
cT−3, are all piecewise linear.

It will be helpful to distinguish the points marking the sequence of connected linear
segments of the consumption function due to kinks in the value function arising at the
end of the liquidity-constrained region [0� y/Rβ] from those at higher levels of wealth
that related to retirement decisions—both current retirement and anticipated future re-
tirements. As we noted there will always be an initial linear segment over the interval
[0� y/Rβ] where ct(M) = M for M ∈ [0� y/Rβ]. Thus there will be a kink in the consump-
tion function at y/Rβ related to the current period liquidity constraint. We have also
shown that for M >Mt it will be optimal to retire, so there is a discontinuity in ct(M) at
Mt that relates to the primary kink in the value function and the decision to retire in the
current period.

However, at ages T − t < T − 1, in addition to these two “current period” kinks/dis-
continuities, there will be a set of kinks and discontinuities related to the future periods,

that is, “future liquidity constraint” kinks M
lj
T−t and a set of “future retirement threshold”

discontinuities M
rj
T−t . These discontinuities correspond to secondary kinks in the same

period value function and result from the primary kinks in the value functions of all
future periods.

Thus cT−2(M) has one future liquidity constraint kink M
l1
T−2 at [y/(Rβ)2] ×

(1 +β−Rβ2) and one future retirement threshold discontinuity at M
r1
T−2. The former

represents the level of saving at which the consumer is not liquidity constrained at age
T − 2, but will be liquidity constrained at age T − 1. The latter is the level of wealth that
leads the worker to discontinuously reduce consumption at T − 2 so as to have enough
savings to retire at T − 1.

In period T − 3 there will be a total of three discontinuities in cT−3(M). The last dis-
continuity occurs at the retirement threshold MT−3, but there will be two additional dis-
continuities at the secondary kink points in the value function VT−3. These are denoted
M

r1
T−3 and M

r2
T−3. We have the ordering MT−3 >M

r1
T−3 >M

r2
T−3. The highest secondary

kink point M
r1
T−3 is the level of wealth that leads the consumer to save an amount (in-

cluding current period wage earnings) of MT−2, which is the retirement threshold at
period T − 2. Thus at wealth levels that just exceed M

r1
T−3 the consumer works in period

T −3 but discontinuously reduces consumption so as to have enough resources to retire
in period T − 2. At wealth levels that are just below M

r2
T−3, the consumer works in both

periods T − 3 and T − 2, and retires only in period T − 1.
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The consumption function cT−3(M) will also have two future liquidity constraint

kinks M
l1
T−3 = [y/(Rβ)2](1 +β−Rβ2) and M

l2
T−3 in addition to the current liquidity con-

straint at M = y/Rβ. The first kink will be at the level of saving that is sufficient for the
consumer not to be liquidity constrained at age T − 3 but not enough to avoid being

liquidity constrained at age T − 2. At M
l1
T−3 the consumer switches from consuming ac-

cording to the second linear segment of cT−3(M) = (M + y/R)/(1 +β) to consuming on
the third linear segment cT−3(M)= (M + y(1/R+ 1/R2))/(1 +β+β2).

At the second future liquidity constraint kink point M
l2
T−3, the worker has sufficient

saving to not be liquidity constrained at both ages T − 3 and T − 2, but not enough to

avoid being liquidity constrained at age T − 1. At M
l2
T−3 the worker switches from con-

suming on the third segment of cT−3(M) = (M + y(1/R + 1/R2))/(1 + β + β2) to the
fourth segment, which is the first of the segments created by the retirement thresh-

old kink points M
rj
T−3. Thus for wealth that exceeds M

l2
T−3, consumption switches to

cT−3(M) = (M + y(1/R + 1/R2 + 1/R3))/(1 + β + β2 + β3). Then for still higher levels
of wealth the worker consumes according to the various piecewise linear segments de-
marcated by the successive future retirement threshold kink points M

rj
T−3, j = 2�1, and

finally MT−3, the retirement threshold at period T − 3.
Note that the marginal propensity to consume out of wealth is also piecewise linear

and monotonically decreasing in M . In the liquidity-constrained region the marginal
propensity to consume is 1, in the first of the liquidity-constrained consumption seg-
ments it is 1/(1+β), and in the second liquidity-constrained segment it is 1/(1+β+β2).
Then in the remaining retirement related consumption segments, the marginal propen-
sity to consume out of wealth is constant and equal to 1/(1 +β+β2 +β3).

In summary, the consumption function at T − 3 is given by

cT−3(M)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M if M < y/Rβ�

(M + y/R)/(1 +β) if y/Rβ≤ M ≤ M
l1
T−3�(

M + y
(
1/R+ 1/R2))/(1 +β+β2) if M

l1
T−3 ≤ M ≤ M

l2
T−3�(

M + y
(
1/R+ 1/R2 + 1/R3))/(1 +β+β2 +β3) if M

l2
T−3 ≤ M ≤ M

r2
T−3�(

M + y
(
1/R+ 1/R2))/(1 +β+β2 +β3) if M

r2
T−3 ≤ M <M

r1
T−3�

(M + y/R)/
(
1 +β+β2 +β3) if M

r1
T−3 ≤ M <MT−3�

M/
(
1 +β+β2 +β3) if MT−3 <M�

(S32)

The retirement threshold MT−3 is given by

MT−3 = (y/R)e−K

(1 − e−K)
� where K = δ

(1 +β+β2 +β3)
� (S33)

We solve for the secondary kinks/discontinuities {Mli
T−3�M

rj
T−3}, i = 1�2 and j = 1�2, in

the same way as we did for the period T − 2: we solve for the level of a wealth that makes
the consumer indifferent between consuming the higher level of consumption to the
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“left” of the kink point (more precisely, the limit of consumption for wealth approaching

the kink point from below) and the lower level of consumption to the “right” of the dis-

continuity (the limit of consumption for wealth approaching the kink point from above).

Finally, the value function is given by

VT−3(M) =
{

log
(
cT−3(M)

) − δ+βVT−2
(
R

(
M − cT−3(M)

) + y
)

if M <MT−3�

log(M)
(
1 +β+β2 +β3) +AT−3 if M ≥ MT−3�

(S34)

Due to the monotonicity of the saving function, the fact that MT−2 >M
r
T−2 implies that

M
l1
T−3 >M

l2
T−3 >M

r1
T−3 >M

r2
T−3. Similarly, it is not hard to show that MT−3 >MT−2.

Having solved for the consumption function explicitly by doing backward induction

for three periods, it is easy to see the general pattern. At t periods before the end of life

T , t ≥ 1, that is, at period T − t, the consumption function cT−t (M) will have a total

of t kinks relating to current and future liquidity constraints, namely y/Rβ and M
lj
T−t ,

j = 1� � � � � t−1; t−1 discontinuities relating the the future retirement thresholds denoted

M
rj
T−t , j = 1� � � � � t − 1; and one discontinuity at the period t retirement threshold MT−t .

Consequently, cT−t (M) will have 2t + 1 linear segments. For every period T − t, t ≥ 1,

there will be a kink in the consumption function at M = y/Rβ corresponding to the end

of the liquidity-constrained region, [0� y/Rβ].
Under the assumptions Rβ ≤ 1 and δ < (1 +β) log(1 +β), all the kink/discontinuity

points define nonempty intervals such that the ordering

y/Rβ<M
l1
T−t <M

l2
T−t < · · · <M

lt−1
T−t <M

rt−1
T−t <M

rt−2
T−t

< · · · <M
r2
T−t <M

r1
T−t <MT−t

(S35)

holds. The first of the future liquidity constraint kink points is always at the same value

of M :

M
l1
T−t = [

y/(Rβ)2](1 +β−Rβ2) for t ≥ 2� (S36)

Period T − t retirement threshold MT−t is given by

MT−t = (y/R)e−K

(1 − e−K)
� where K = δ

(
t∑

i=0

βi

)−1

� (S37)

The values of the last t − 2 future liquidity constraint kink points M
lj
T−t , j = 2� � � � � t − 1,

and the future retirement threshold discontinuity points M
rj
T−t , j = 1� � � � � t−2, are deter-

mined by the values of wealth that make the consumer indifferent between consuming

according to the linear segments of the consumption function on either side of each of

these kink points as described above.
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The value function VT−t(M) can be expressed recursively in terms of the already de-
fined value function VT−t+1(M) one period ahead,

VT−t(M) =

⎧⎪⎪⎨
⎪⎪⎩

log
(
cT−t(M)

) − δ+βVT−t+1
(
R

(
M − cT−t(M)

) + y
)

if M <MT−t �

log(M)

(
t∑

i=0

βi

)
+AT−t if M ≥ MT−t �

(S38)

where AT−t was defined in equation (S10) above. It is then straightforward to show with
the formal mathematical induction argument the general formula (S6). �
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